Ethnobotanical and pharmacological importance of Taxus wallichiana Zucc.

Authors

  • Dwaipayan Sinha Department of Botany, Government General Degree College, Mohanpur, Paschim Medinipur, West Bengal 721 436, India

DOI:

https://doi.org/10.14719/pst.2020.7.1.636

Keywords:

Taxus wallichiana, terpenoids, cancer, anti-inflammatory

Abstract

Taxus wallichiana Zucc. or the Himalayan Yew is a gymnosperm growing along the Himalayan region of Indian and adjoining countries. The plant is extensively used by local people for treatment of various diseases such as fever, headache, diarrhea, fractures, problems of nervous system etc. It also finds usage in Unani system of medicine. The plant is rich in various bioorganic compounds natural products such as hydrocarbons, terpene alcohols, terpenoids (including taxoids), organic acids etc. The plant has been explored for anti-inflammatory, analgesic, antipyretic, anticonvulsant, immunomodulatory, hepatoprotective and anticancer activity with satisfactory outcome. The pharmacological activity of the plant is largely due to the presence of large number of terpenoids. The bioactive constituents present in the plant interacts with a large number of biochemical pathways involved in inflammatory processes, cell division cycles and inhibits a number of enzymes to bring about its protective action against various diseases. In this review, an attempt have been made to highlight the beneficial properties of Taxus wallichiana in various levels of usage starting from its fundamental ethnobotanical use to pharmacological use involving both in-vitro and in-vivo studies. Insights into the molecular mechanisms of action of the active constituents in bringing about the beneficial activity have also been illustrated. The plant can very well become a source of medicine for better management of a large number of diseases including cancer.

Downloads

Download data is not yet available.

References

1. Rana D, Bhatt A, Lal B. Ethnobotanical knowledge among the semi-pastoral Gujjar tribe in the high altitude (Adhwari's) of Churah subdivision, district Chamba, Western Himalaya. J Ethnobiol Ethnomed.2019;15(1):10. https://doi.org/10.1186/s13002-019-0286-3

2. Pala NA, Sarkar BC, Shukla G, Chettri N, Deb S, Bhat JA, et al. Floristic composition and utilization of ethnomedicinal plant species in home gardens of the Eastern Himalaya. J Ethnobiol Ethnomed.2019;15(1):14. https://doi.org/10.1186/s13002-019-0293-4

3. Joshi RK, Satyal P, Setzer WN. Himalayan Aromatic Medicinal Plants: A Review of their Ethnopharmacology, Volatile Phytochemistry, and Biological Activities. Medicines (Basel). 2016;3(1):6. https://doi.org/10.3390/medicines3010006

4. Rana SK, Rawat GS. Database of Himalayan Plants Based on Published Floras during a Century. Data. 2017;2(4):36. https://doi.org/10.3390/data2040036.

5. Juyal D, Thawani V, Thaledi S, Joshi M. Ethnomedical properties of Taxus wallichiana Zucc. (Himalayan yew). J Tradit Complement Med.2014;4(3):159-61. https://doi.org/10.4103/2225-4110.136544

6. Hussain A, Qarshi IA, Nazir H, Ullah I, Rashid M, Shinwari ZK. In-vitro callogenesis and organogenesis in Taxus wallichiana Zucc. The Himalayan Yew. Pak J Bot.2013;45(5):1755-59.

7. Sharma H, Garg M. Neuropharmacological activities of Taxus wallichiana bark in Swiss albino mice. Indian J Pharmacol.2015;47(3):299-303. http://dx.doi.org/10.4103/0253-7613.157128

8. Gaire BP, Subedi L. Medicinal Plant Diversity and their Pharmacological aspects of Nepal Himalayas. Phcog J.2011;3(25):6-17. https://doi.org/10.5530/pj.2011.25.2

9. Aboutabl ME. Antiepileptic drugs: progress and development. Egypt Pharmaceut J.2018;17(3):129-40.

10. Rahman S, Salehin F, Uddin MJ, Zahid A. Taxus Wallichiana Zucc. (Himalayan Yew): insights on its antimicrobial and pharmacological activities. OA Alternative Medicine.2013;1(1): 3.

11. Purohit A, Maikhuri RK, Rao KS, Nautiyal S. Impact of bark removal on survival of Taxus baccata L. (Himalayan yew) in Nanda Devi Biosphere Reserve, Garhwal Himalaya, India. Curr Sci.2001;81(5):586-90.

12. Pant S, Samant SS. Population Ecology of the Endangered Himalayan Yew in Khokhan Wildlife Sanctuary of North Western Himalaya for Conservation Management. J Mt Sci. 2008;5:257-64. https://doi.org/10.1007/s11629-008-0078-z

13. Nimasow G, Nimasow OD, Rawat JS, Tsering G, Litin T. Remote sensing and GIS-based suitability modeling of medicinal plant (Taxus baccata Linn.) in Tawang district, Arunachal Pradesh, India. Curr Sci.2016;110(2):219-27. https://doi.org/10.18520/cs/v110/i2/219-227

14. Patel P, Patel K, Gandhi T. Evaluation of Effect of Taxus baccata Leaves Extract on Bronchoconstriction and Bronchial Hyperreactivity in Experimental Animals. J Young Pharm.2011;3(1):41-47. https://doi.org/10.4103/0975-1483.76418

15. Poudel RC, Gao LM, Möller M, Baral SR, Uprety Y, Liu J, et al. Yews (Taxus) along the Hindu Kush-Himalayan region: exploring the ethnopharmacological relevance among communities of Mongol and Caucasian origins. J Ethnopharmacol.2013;147(1):190-203. https://doi.org/10.1016/j.jep.2013.02.031

16. Kandel P, Chettri N, Chaudhary RP, Badola HK, Gaira KS, Wangchuk S, et al. Plant diversity of the Kangchenjunga Landscape, Eastern Himalayas. Plant Divers. 2019; 41(3):153-65. https://doi.org/10.1016/j.pld.2019.04.006

17. Chaudhri II, Distribution of gymnosperms in West Pakistan.Vegetatio.1963;11(5-6):372-82.

18. Ismail I, Sohail M, Gilani H, Ali A, Hussain K, Hussain K, et al. Forest inventory and analysis in Gilgit-Baltistan A contribution towards developing a forest inventory for all Pakistan. International Journal of Climate Change Strategies and Management.2018;10(4):616-31. https://doi.org/10.1108/IJCCSM-05-2017-0100

19. Ali K. A comparative assessment of climate change effect on some of the important tree species of Hindu-Kush Himalayas, using predictive modelling techniques. Int J Adv Res.2015;3(5):1230-40.

20. Yang JB, Li HT, Li DZ, Liu J, Gao LM. Isolation and Characterization of Microsatellite Markers in the Endangered Species Taxus wallichiana Using the FIASCO Method. Hort Sci.2009;44(7):2043-45. https://doi.org/10.21273/HORTSCI.44.7.2043

21. Bhuju S, Gauchan DP. Taxus wallichiana (Zucc.), an Endangered Anti-Cancerous Plant: A Review. Int J Res.2018;5(21):10-21.

22. ENVIS Centre on Floral Diversity. Hosted by Botanical Survey of India, Kolkata, West Bengal.Sponsored by: Ministry of Environment, Forest & Climate Change, Govt of India. Available from: http://www.bsienvis.nic.in/CITES/Taxus%20wallichiana.pdf

23. India Biodiversity Portal. Available from: https://indiabiodiversity.org/species/show/258690

24. Viet Delta Corporation. Available from: http://herbvietnam.com/

25. Uniyal SK. Bark removal and population structure of Taxus wallichiana Zucc. in a temperate mixed conifer forest of western Himalaya. Environ Monit Assess. 2013;185(4):2921-28. https://doi.org/10.1007/s10661-012-2760-4

26. Malik K, Ahmad M, Zafar M, Ullah R, Mahmood HM, Parveen B, et al. An ethnobotanical study of medicinal plants used to treat skin diseases in northern Pakistan. BMC Complement Altern Med.2019;19(1):210. https://doi.org/10.1186/s12906-019-2605-6

27. Rana PK, Kumar P, Singhal VK, Rana JC. Uses of local plant biodiversity among the tribal communities of Pangi Valley of District Chamba in cold desert Himalaya, India. Scientific World Journal. 2014; 2014:75389. https://doi.org/10.1155/2014/753289

28. Poudel RC, Möller M, Liu J, Gao LM, Baral SR, Li DZ. Low genetic diversity and high inbreeding of the endangered yews in Central Himalaya: implications for conservation of their highly fragmented populations. Biodiversity distrib. 2014;20:1270-84. https://doi.org/10.1111/ddi.12237

29. Thomas P, Farjon A. Taxus wallichiana. The IUCN Red List of Threatened Species 2011: e.T46171879A9730085. http://dx.doi.org/10.2305/IUCN.UK.2011- 2.RLTS.T46171879A9730085.en. Available from: https://www.iucnredlist.org/species/46171879/9730085

30. ENVIS Centre on Floral Diversity Hosted by Botanical Survey of India, Kolkata, West Bengal. Available from: http://www.bsienvis.nic.in/Database/bsi_3949.aspx

31. Nand K, Naithani S. Ethnobotanical uses of wild medicinal plants by the local community in the Asi Ganga sub-basin, Western Himalaya. J Complement Med Res. 2018;9(1):34- 46. https://doi.org/10.5455/jcmr.20180507034822

32. Singh A, Hart R, Chandra S, Nautiyal MC, Sayok AK. Traditional Herbal Knowledge among the Inhabitants: A Case Study in Urgam Valley of Chamoli Garhwal, Uttarakhand, India. Evid Based Complement Alternat Med.2019;2019:5656925. https://doi.org/10.1155/2019/5656925.

33. Tiwari JK, Dangwal LR, Rana CS, Tiwari P, Ballabha R. Indigenous uses of plant species in Nanda Devi Biosphere Reserve, Uttarakhand, India. Rep Opinion.2010;2(2):67-70.

34. Bhat JA, Kumar M, Bussmann RW. Ecological status and traditional knowledge of medicinal plants in Kedarnath Wildlife Sanctuary of Garhwal Himalaya, India. J Ethnobiol Ethnomed. 2013; 9:1. https://doi.org/10.1186/1746-4269-9-1

35. Phondani PC, Maikhuri RK, Rawat LS, Farooquee NA, Kala CP, Visvakarma SCR, et al. Ethnobotanical Uses of Plants among the Bhotiya Tribal Communities of Niti Valley in Central Himalaya, India. Ethnobot Res Appl.2010;8:233-44.

36. Singh A, Nautiyal MC, Kunwar RM, Bussmann RW. Ethnomedicinal plants used by local inhabitants of Jakholi block, Rudraprayag district, western Himalaya, India. J Ethnobiol Ethnomed.2017;13(1):49. https://doi.org/10.1186/s13002-017-0178-3

37. Pant S, Samant SS. Ethnobotanical observations in the Mornaula Reserve Forest of Kumaon, West Himalaya, India. Ethnobot leaflets.2010;14:193- 217.

38. Singh KJ, Thakur AK. Medicinal Plants of the Shimla hills, Himachal Pradesh: A Survey. Int J Herb Med.2014;2(2):118- 127.

39. Rana MS, Samant SS. Diversity, indigenous uses and conservation status of medicinal plants in Manali wildlife sanctuary, North Western Himalaya. Indian J Tradit Knowl.2011;10(3):439- 459.

40. Chauhan PP, Nigam A, Santvan VK. Ethnobotanical study of wild fruits in Pabbar Valley, District Shimla, Himachal Pradesh. J Med Plants Stud.2016;4(2):216- 220.

41. Kumari P, Samant SS, Puri S. Diversity, distribution, indigenous uses and conservation of medicinal plants in central Himachal Pradesh, North Western Himalaya. J Med Plants Stud.2018;6(5):45- 68.

42. Rana D, Bhatt A, Lal B. Ethnobotanical knowledge among the semi-pastoral Gujjar tribe in the high altitude (Adhwari's) of Churah subdivision, district Chamba, Western Himalaya. J Ethnobiol Ethnomed. 2019;15(1):10. https://doi.org/10.1186/s13002-019-0286-3.

43. Rana D, Masoodi HUR. Ethno-botanical survey for wild plants in fringe villages around Shimla Water Catchment Sanctuary, Himachal Pradesh, India. J Apll Nat Sci. 2014;6(2):720-24. https://doi.org/10.31018/jans.v6i2.525

44. Rao PK, Hasan SS, Bhellum BL, Manhas RK. Ethnomedicinal plants of Kathuadistrict, J&K, India. J Ethnopharmacol.2015;171:12-27. https://doi.org/10.1016/j.jep.2015.05.028

45. Kumar R, Bhagat N. Ethnomedicinal plants of district Kathua (J & K). Int J Med Arom Plants.2012;603-11.

46. Rashid A. Ethnomedicinal plants used in traditional phytotherapy of chest diseases by Gujjar-Bakerwal tribe of district Rajouri of Jammu & Kashmir state. Int J Pharm Sci Res.2013;4(1):328-33.

47. Seikh MA, Chishti S, Chishti NTN. Medicinally important plants from Ganderbal, Kashmir, India- An ethnomedicinal survey. Eur J Pharm Med Res.2016;3(4):176-83.

48. Ishtiyak P, Hussain SA. Traditional Use of Medicinal Plants among Tribal Communities of Bangus Valley, Kashmir Himalaya, India. Ethno Med.2017;11(4):318-31. https://doi.org/10.1080/09735070.2017.1335123

49. Lone PA, Bhardwaj AK, Shah KW, Tabasum S. Ethnobotanical survey of threatened medicinal plants of Kashmir Himalaya, India. J Med Plant Res. 2014;8(47):1362-73.

50. Ahmed E, Arshad M, Ahmad M, Saeed M, Ishaque M. Ethnopharmacological Survey of Some Medicinally Important Plants of Galliyat Areas of NWFP, Pakistan. Asian J Plant Sci.2004;3(4):410-15. https://doi.org/10.3923/ajps.2004.410.415

51. Ishtiaq M, Iqbal P, Hussain T.Ethnobotanical uses of gymnosperms of Neelam and Muzaffarabad of Kashmir. Indian J Tradit Knowl.2013;12(3):404-10.

52. Ishtiaq M, Mumtaz AS, Hussain T, Ghani A. Medicinal plant diversity in the flora of Leepa Valley, Muzaffarabad (AJK), Pakistan. Afr J Biotechnol. 2012;11(13):3087-98 http://dx.doi.org/10.5897/AJB11.2711

53. Ahmad KS, Hamid A, Nawaz F, Hameed M, Ahmad F, Deng J, et al. Ethnopharmacological studies of indigenous plants in Kel village, Neelum Valley, Azad Kashmir, Pakistan. J Ethnobiol Ethnomed.2017;13(1):68. https://doi.org/10.1186/s13002-017-0196-1

54. Ummara U, Bokhari TZ, Altaf A, Younis U, Dasti AA. Pharmacological Study of Shogran Valley Flora, Pakistan. International Journal of Scientific & Engineering Research.2013;4(9):1419-27.

55. Gajurel JP, Srestha KK, Wreth S, Scheidegger C. Taxus wallichiana (Himayalan Yew) for the livelihood of local people in some protected areas of Nepal. J Nat Hist Mus. 2014;28:1-8. https://doi.org/10.3126/jnhm.v28i0.14162

56. Rehman HU, Arfan M, Rahman AU, Choudhary MI, Khan AM. Chemical constituents of Taxus wallichiana Zucc. Jour Chem Soc Pak.2003; 25(4):337-40.

57. Sowndhararajan K, Kim S. Influence of Fragrances on Human Psychophysiological Activity: With Special Reference to Human Electroencephalographic Response. Sci Pharm. 2016;84(4):724-51. https://doi.org/10.3390/scipharm84040724

58. Hao J, Guo H, Shi X, Wang Y, Wan Q, Song YB, et al. Comparative proteomic analyses of two Taxus species (Taxus × media and Taxus mairei) reveals variations in the metabolisms associated with paclitaxel and other metabolites. Plant Cell Physiol.2017;58(11):1878-90. https://doi.org/10.1093/pcp/pcx128

59. Barrales-Cureño HJ, Farrera RA, Reyes RC, Hernández FIY, García AE, Chávez SS. Taxol generalities: a systematic review. Rev Med UV.2016; 16(1):75-91.

60. Shigemori H, Kobayashi J. Biological Activity and Chemistry of Taxoids from the Japanese Yew, Taxus cuspidata. J Nat Prod.2004;67:245-56. https://doi.org/10.1021/np030346y

61. Baloglu E, Kingston DGI. The Taxane Diterpenoids. J Nat Prod.1999;62:1448-72. https://doi.org/10.1021/np990176i

62. Howat S, Park B, Oh IS, Jin YW, Lee EK, Loake GJ. Paclitaxel: biosynthesis,production and future prospects. N Biotechnol.2014;31(3):242-45. https://doi.org/10.1016/j.nbt.2014.02.010

63. Croteau R, Ketchum RE, Long RM, Kaspera R, Wildung MR. Taxol biosynthesis and molecular genetics. Phytochem Rev. 2006;5(1):75-97. https://doi.org/10.1007/s11101-005-3748-2

64. Zhou T, Luo X, Yu C, Zhang C, Zhang L, Song YB, et al. Transcriptome analyses provide insights into the expression pattern and sequence similarity of several taxol biosynthesis-related genes in three Taxus species. BMC Plant Biol.2019;19(1):33.https://doi.org/10.1186/s12870-019-1645-x

65. Chattopadhyay SK, Kulshrestha M, Tripathi V, Saha GC, Sharma RP, Mehta VK. Studies on Himalayan Yew Taxus wallichiana: Part IV- The toxoids and phenolic constituents of the roots of Taxus wallichiana. Indian J Chem.1999;701-04.

66. Phu DH, Trong PNH, Hien TTT, Nhan NT.Chemical constituents from the roots of Taxus wallichiana Zucc. J Sci Technol.2013;51(5B):233-37.

67. Khan M, Verma SC, Srivastava SK, Shawl AS, Syamsundar KV, Khanjua SPS, et al. Essential oil composition of Taxus wallichiana Zucc. from the Northern Himalayan region of India. Flavour Fragr J.2006;21:772-75. https://doi.org/10.1002/ffj.1682

68. Bala S, Uniyal GC, Chattopadhyay SK, Tripathi V, Sashidhara KV, Kulshrestha M, et al. Analysis of taxol and major taxoids in Himalayan yew, Taxus wallichiana. J Chromatogr A.1999;858(2):239-44. https://doi.org/10.1016/S0021-9673(99)00841-9

69. Vander Velde DG, Georg GI, Gollapudi SR, Jampani HB,Liang XZ, Mitscher LA, et al. Wallifoliol, a taxol congener with a novel carbon skeleton, from Himalayan Taxus wallichiana.J Nat Prod.1994;56:861-67. https://doi.org/10.1021/np50108a032

70. Prasain JK, Stefanowicz P, Kiyota T, Habeichi F, Konishi Y. Taxines from theneedles of Taxus wallichiana. Phytochemistry.2001;58(8):1167-70. https://doi.org/10.1016/S0031-9422(01)00305-3

71. Appendinho G, Ozen HC, Gariboldi O, Torregiani E, Gabetta B, Nizzola R, et al. New oxetane type taxanes from Taxus wallichiana Zucc. J Chem Soc Perkin Trans I.1993;14:1563-66. https://doi.org/10.1039/P19930001563

72. Barboni L, Gariboldi P, Torregiani E, Appendino G, Varese M, Gabetta B,et al. Minor taxoids from Taxus wallichiana. J Nat Prod. 1995;58(6):934-39.https://doi.org/10.1021/np50120a019

73. Srestha TB, Khatri Chetri SK, Banskota AH, Manandhar MD, Taylor WC. 2-Deacetoxytaxinine B: A New Taxane from Taxus wallichiana. J Nat Prod.1997;60:820-21. https://doi.org/10.1021/np9606153

74. Madhusudan KP, Chattopadhyay SK, Tripathi VK, Sashidhara KV, Kukreja AK, Jain SP.LC-ESI-MS analysis of toxoids from the bark of Taxus wallichiana. Biomed Chromatogr. 2002;16:343-55. https://doi.org/10.1002/bmc.163

75. Chattopadhyay SK, Kulshrestha M, Saha GC, Sharma RP, Jain SP, Kumar S. The Taxoid constituents of the heartwood of Taxus wallichiana. Planta Med.1996;62:482. https://doi.org/10.1055/s-2006-957949

76. Joshi BS, Roy R, Chattopadhyay SK, Madhusudanan KP. An NMR and LC–MS based approach for Mixture Analysis involving Taxoid molecules from Taxus wallichiana. J Mol Struct. 2003;235-48.https://doi.org/10.1016/S0022-2860(02)00576-8

77. Chattopadhyay SK, Tripathi V, Sashidhara KV, Mehta VK. Studies on Himalayan Yew Taxus wallichiana: Part IX- The chemical constituents of seeds of Taxus wallichiana. Indian J Biochem.2002;41B:225-27.

78. Bush A. Pathophysiological Mechanisms of Asthma. Front Pediatr. 2019;7:68. https://doi.org/10.3389/fped.2019.00068

79. Balkrishna A, Sakat SS, Joshi K, Paudel S, Joshi D, Joshi K, et al. Anti-Inflammatory and Anti-Arthritic Efficacies of an Indian Traditional Herbo-Mineral Medicine "Divya Amvatari Ras" in Collagen Antibody-Induced Arthritis (CAIA) Mouse Model Through Modulation of IL-6/IL-1?/TNF-?/NF?B Signaling. Front Pharmacol. 2019; 10:659. https://doi.org/10.3389/fphar.2019.00659

80. Bäck M, Yurdagul A Jr, Tabas I, Öörni K, Kovanen PT. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol. 2019;16(7):389-406. https://doi.org/10.1038/s41569-019-0169-2

81. Lichota A, Gwozdzinski L, Gwozdzinski K. Therapeutic potential of naturalcompounds in inflammation and chronic venous insufficiency. Eur J Med Chem. 2019;176:68-91. https://doi.org/10.1016/j.ejmech.2019.04.075

82. Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis GA, Vogiatzi G, Papaioannou S, et al. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur Cardiol.2019;14(1):50-59.https://doi.org/10.15420/ecr.2018.33.1.

83. Abufaraj M, Tabung FK, Shariat SF, Moschini M, Devore E, Papantoniou K, et al. Association between Inflammatory Potential of Diet and Bladder Cancer Risk: Results of 3 United States Prospective Cohort Studies. J Urol. 2019;202(3):484-89. https://doi.org/10.1097/JU.0000000000000279

84. Oguntibeju OO. Medicinal plants with anti-inflammatory activities from selected countries and regions of Africa. J Inflamm Res. 2018;11:307-17. https://doi.org/10.2147/JIR.S167789

85. Khan I, Nisar M, Shah MR, Shah H, Gilani SN, Gul F, et al.Anti-inflammatory activities of Taxusabietane A isolated from Taxus wallichianaZucc. Fitoterapia.2011;82(7):1003-07. https://doi.org/10.1016/j.fitote.2011.06.003

86. Qayum M, Nisar M, Shah MR, Adhikari A, Kaleem WA, Khan I, et al. Analgesic and antiinflammatory activities of toxoids from Taxus wallichiana Zucc. Phytother Res.2012;26(4):552-56. https://doi.org/10.1002/ptr.3574

87. Khan I, Nisar M, Zarrelli A, Fabio GD, Gul F, Gilani SN, et al. Molecular insights to explore abietane diterpenes as new LOX inhibitors. Med Chem Res.2013;22(12):5809-13.https://doi.org/10.1007/s00044-013-0559-7

88. Nisar M, Khan I, Simjee SU, Gilani AH, Obaidullah, Perveen H. Anticonvulsant, analgesic and antipyretic activities of Taxus wallichiana Zucc. J Ethnopharmacol.2008;116(3):490-94. https://doi.org/10.1016/j.jep.2007.12.021

89. Bhat MA, Ganie SA, Dar KB, Ali R, Hamid R. Invitro antioxidant potential and hepatoprotective activity of Taxus wallichiana. Asian J Pharm Clin Res.2018;11(8):237-43. https://doi.org/10.22159/ajpcr.2018.v11i8.22345

90. Chattopadhyay SK, Pal A, Maulik PR, Kaur T, Garg A, Khanuja SP. Taxoid fromthe needles of the Himalayan yew Taxus wallichiana with cytotoxic andimmunomodulatory activities. Bioorg Med Chem Lett.2006;16(9):2446-49. https://doi.org/10.1016/j.bmcl.2006.01.077

91. Chattopadhyay SK, Kumar TR, Maulik PR, Srivastava S, Garg A, Sharon A, et al. Absolute configuration and anticancer activity of taxiresinol andrelated lignans of Taxus wallichiana. Bioorg Med Chem.2003;11(23):4945-48.https://doi.org/10.1016/j.bmc.2003.09.010

92. Khan I, Nisar M, Ahmad M, Shah H, Iqbal Z, Saeed M, et al. Molecular simulations of Taxawallin I inside classical taxol binding site of ?-tubulin. Fitoterapia.2011;82(2):276-81. https://doi.org/10.1016/j.fitote.2010.10.011

93. Wang Y, Wang J, Wang H, Ye W. Novel taxane derivatives from Taxus wallichiana with high anticancer potency on tumor cells. Chem Biol Drug Des.2016;88(4):556-61. https://doi.org/10.1111/cbdd.12782

94. Zwawiak J, Zaprutko L. A brief history of taxol.J Med Sci.2014;1(83):47-52.

95. Weaver BA. How Taxol/paclitaxel kills cancer cells. Mol Biol Cell. 2014;25(18):2677-81. https://doi.org/10.1091/mbc.e14-04-0916

96. Kellogg EH, Hejab NMA, Howes S, Northcote P, Miller JH, Fernando Diaz J, et al. Insights into the distinct mechanisms of action of taxane and non-taxane microtubule stabilizers from cryo-EM structures. J Mol Biol.2017;429(5):633–46. https://doi.org/10.1016/j.jmb.2017.01.001

97. Mukhtar E, Adhami VM, Mukhtar H. Targeting microtubules by natural agents for cancer therapy. Mol Cancer Ther.2014;13(2):275-84. https://doi.org/10.1158/1535-7163.MCT-13-0791

98. Yanamadala G, Praveen srikumar P, Rushyendra GV, Gupta VRM, Srinivasarao S. Development and validation of a novel RP-HPLC method for the determination of cabazitaxel in bulk and formulations. Indo Am J Pharm Res. 2013; 3(10):8266-72.

99. Bidkar AP, Sanpui P, Ghosh SS. Efficient induction of apoptosis in cancer cells by paclitaxel-loaded selenium nanoparticles. Nanomedicine (Lond). 2017;12(21):2641-51.https://doi.org/10.2217/nnm-2017-0189

100. Brewer JR, Morrison G, Dolan ME, Fleming GF. Chemotherapy-induced peripheral neuropathy: Current status and progress. Gynecol Oncol. 2016;140(1):176-83. https://doi.org/10.1016/j.ygyno.2015.11.011

101. Sun J, Jiang L, Lin Y, Gerhard EM, Jiang X, Li L, et al. Enhanced anticancer efficacy of paclitaxel through multistage tumor-targeting liposomes modified with RGD and KLA peptides. Int J Nanomedicine. 2017;12:1517-37. https://doi.org/10.2147/IJN.S122859

102. McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2015; 7(4):a026716. Erratum In: Cold Spring Harb Perspect Biol. 2015;5(4). pii: a008656.https://doi.org/10.1101/cshperspect.a026716

103. Jelínek M, Balušíková K, Schmiedlová M, N?mcová-Fürstová V, Šrámek J, Stan?íková J, et al. The role of individual caspases in cell death induction by taxanes in breast cancer cells. Cancer Cell Int.2015;15(1):8. https://doi.org/10.1186/s12935-015-0155-7

104. Yao Y, Marassi FM. Reconstitution and Characterization of BCL-2 Family Proteins in Lipid Bilayer Nanodiscs. Methods Mol Biol. 2019;1877:233-46. https://doi.org/10.1007/978-1-4939-8861-7_16

105. Tessoulin B, Papin A, Gomez-Bougie P, Bellanger C, Amiot M, Pellat-Deceunynck C, et al. BCL2-Family Dysregulation in B-Cell Malignancies: From Gene Expression Regulation to a Targeted Therapy Biomarker. Front Oncol.2019;8: 645. https://doi.org/10.3389/fonc.2018.00645

106. Correia C, Lee SH, Meng XW, Vincelette ND, Knorr KL, Ding H, et al. Emerging understanding of Bcl-2 biology: Implications for neoplastic progression and treatment. Biochim Biophys Acta.2015;1853(7):1658-71. https://doi.org/10.1016/j.bbamcr.2015.03.012

107. Hientz K, Mohr A, Bhakta-Guha D, Efferth T. The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget. 2016;8(5):8921-46. https://doi.org/10.18632/oncotarget.13475

108. Simabuco FM, Morale MG, Pavan ICB, Morelli AP, Silva FR, Tamura RE. p53 and metabolism: from mechanism to therapeutics. Oncotarget. 2018;9(34):23780-823. https://doi.org/10.18632/oncotarget.25267

109. Georgakilas AG, Martin OA, Bonner WM. p21:A Two-Faced Genome Guardian. Trends Mol Med.2017;23(4):310-19. https://doi.org/10.1016/j.molmed.2017.02.001

110. Lv C, Qu H, Zhu W, Xu K, Xu A, Jia B, et al. Low-Dose Paclitaxel Inhibits Tumor Cell Growth by Regulating Glutaminolysis in Colorectal Carcinoma Cells. Front Pharmacol. 2017;8:244.https://doi.org/10.3389/fphar.2017.00244

111. Wehner F, Gawatz O. [Suicidal yew poisoning--from Caesar to today--or suicide instructions on the internet]. Arch Kriminol.2003;211(1-2):19-26.

112. Kobusiak-Prokopowicz M, Marciniak A, ?lusarczyk S, ?ciborski K, Stachurska A, Mysiak A, et al. A suicide attempt by intoxication with Taxus baccata leaves and ultra-fast liquid chromatography-electrospray ionization-tandem mass spectrometry, analysis of patient serum and different plant samples: case report. BMC Pharmacol Toxicol. 2016;17(1):41. https://doi.org/10.1186/s40360-016-0078-5

113. Piska? O, St?íbrný J, Rakovcová H, Malý M. Cardiotoxicity of yew. Cor et Vasa. 2015;57(3):e234-e238.https://doi.org/10.1016/j.crvasa.2014.11.003

114. Perju-Dumbrav? D, Morar S, Chiroban O, Lechintan E, Cioca A. Suicidal poisoning by ingestion of Taxus Baccata leaves. Case report and literature review. Rom J Leg Med. 2013;21:115-18. https://doi.org/10.4323/rjlm.2013.115

115. Willaert W, Claessens P, Vankelecom B, Vanderheyden M. Intoxication with Taxus baccata: cardiac arrhythmias following yew leaves ingestion. Pacing Clin. Electrophysiol. 2002;25(4 Pt 1):511-12. https://doi.org/10.1046/j.1460-9592.2002.00511.x

116. Poudel RC, Möller M, Gao LM, Ahrends A, Baral SR, Liu J, et al. Using morphological, molecular and climatic data to delimitate yews along the Hindu Kush-Himalaya and adjacent regions. PLoS One. 2012;7(10):e46873. https://doi.org/10.1371/journal.pone.0046873

117. Eibl R, Meier P, Stutz I, Schildberger D, Hühn T, Eibl D. Plant cell culture technology in the cosmetics and food industries: current state and future trends. Appl Microbiol Biotechnol. 2018;102(20):8661-75. https://doi.org/10.1007/s00253-018-9279-8

118. Dutta MM, Jha S. Embryo Culture of Taxus wallichiana Zucc. J Plant Biotechnol.2004;6(4):213-19.

119. Hussain A, Qarshi IA, Nazir H, Ullah I, Rashid M, Shinwari ZK. In-vitro callogenesis and organogenesis of Taxus wallichiana. Pak J Bot.2013;45(5):1755-59.

120. Datta MM, Majumder A, Jha S. Organogenesis and plant regeneration in Taxus wallichiana (Zucc.). Plant Cell Rep. 2006;25(1):11-18. https://doi.org/10.1007/s00299-005-0027-z

121. Aslam M, Raina PA, Rafiq RU, Siddiqi TO, Reshi ZA. Adventitious root formation in branch cuttings of Taxus wallichiana Zucc.(Himalayan yew): A clonal approach to conserve the scarce resource. Curr Bot.2017;8:127-35. https://doi.org/10.19071/cb.2017.v8.3231

122. Nazir N, Kamili AN, Shah D, Zargar MY. Adventitious Rooting in Shoot Cuttings of Taxus wallichiana Zucc., an Endangered Medicinally Important Conifer of Kashmir Himalaya.Forest Res. 2018;7:2. https://doi.org/10.4172/2168-9776.1000221

123. Veeresham C, Mamatha CH, Babu P, Srisilam K, Kokate CK. Production of Taxol and its Analogues from Cell Cultures of Taxus wallichiana. Pharm Biol.2003;41(6):426-30. https://doi.org/10.1076/phbi.41.6.426.17822

124. Das K, Dang R, Ghanshala N, Rajashekharan PE. In vitro establishment and maintenance of callus of Taxus wallichiana Zucc. for production of secondary metabolites. Nat Prod Rad.2008;7(2):150-53.

125. Navia-Osorio A, Garden H, Cusidó RM, Palazón J, Alfermann AW, Piñol MT. Production of paclitaxel and baccatin III in a 20-L airlift bioreactor by a cell suspension of Taxus wallichiana. Planta Med. 2002;68(4):336-40. https://doi.org/10.1055/s-2002-26739

126. Barbuti AM, Chen ZS. Paclitaxel Through the Ages of Anticancer Therapy: Exploring Its Role in Chemoresistance and Radiation Therapy. Cancers (Basel). 2015;7(4):2360-71. https://doi.org/10.3390/cancers7040897

127. Zhang D, Yang R, Wang S, Dong Z. Paclitaxel: new uses for an old drug. Drug Des Devel Ther.2014;8:279-84. https://doi.org/10.2147/DDDT.S56801

128. Kajani AA, Zarkesh-Esfahani SH, Bordbar AK, Khosropour AR, Razmjou A, Kardi M. Anticancer effects of silver nanoparticles encapsulated by Taxus baccata extracts. J Mol Liq. 2016;223:549-56. https://doi.org/10.1016/j.molliq.2016.08.064

129. Dutta S, Mariappan G, Sarkar D, Sarkar P. Assessment of Anti-inflammatory Activity of Taxus Baccata Linn. Bark Extract. Anc Sci Life.2010;29(3):19-21.

130. Patel P, Patel K, Gandhi T. Evaluation of Effect of Taxus baccata Leaves Extract on Bronchoconstriction and Bronchial Hyperreactivity in Experimental Animals. J Young Pharm. 2011;3(1):41- 47. https://doi.org/10.4103/0975-1483.76418

131. Shang W, Qiao J, Gu C, Yin W, Du J, Wang W, et al. Anticancer activity of an extract from needles and twigs of Taxus cuspidata and its synergistic effect as a cocktail with 5-fluorouracil. BMC Complement Altern Med. 2011;11:123. https://doi.org/10.1186/1472-6882-11-123

132. Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol.2014;4:177. https://doi.org/10.3389/fphar.2013.00177

133. Datta T, Patra AK, Dastidar SG. Medicinal plants used by tribal population of Coochbehar district, West Bengal, India-an ethnobotanical survey. Asian Pac J Trop Biomed.2014;4(Suppl 1):S478-S482. https://doi.org/10.12980/APJTB.4.2014C1122

134. Xie DF, Li MJ, Tan JB, Price M, Xiao QY, Zhou SD, et al. Phylogeography and genetic effects of habitat fragmentation on endemic Urophysa (Ranunculaceae) in Yungui Plateau and adjacent regions. PLoS One. 2017;12(10):e0186378. https://doi.org/10.1371/journal.pone.0186378

135. Keller LF, Waller DM. Inbreeding effects in wild populations. Trends in Ecology & Evolution. 2002;17(5):230-41.

Downloads

Published

08-02-2020

How to Cite

1.
Sinha D. Ethnobotanical and pharmacological importance of Taxus wallichiana Zucc. Plant Sci. Today [Internet]. 2020 Feb. 8 [cited 2024 May 3];7(1):122-34. Available from: https://www.horizonepublishing.com/journals/index.php/PST/article/view/636

Issue

Section

Review Articles

Most read articles by the same author(s)