Assessment of genetic diversity in five populations of Solanum torvum Swartz. from Tripura using SSR and RAPD markers

Authors

  • Mitali Das Cytogenetics and Plant Biotechnology Laboratory, Department of Botany, Tripura University, Suryamaninagar 799 022, Tripura, India
  • H R Singha Cytogenetics and Plant Biotechnology Laboratory, Department of Botany, Tripura University, Suryamaninagar 799 022, Tripura, India
  • Kishan Saha Cytogenetics and Plant Biotechnology Laboratory, Department of Botany, Tripura University, Suryamaninagar 799 022, Tripura, India

DOI:

https://doi.org/10.14719/pst.2020.7.1.650

Keywords:

Genetic diversity, Polymerase Chain Reaction, RAPD, SSR, Solanum torvum

Abstract

Polymerase Chain reaction (PCR) based molecular characterization has been undertaken for assessing the genetic diversity in five populations of Solanum torvum using SSR and RAPD markers. In this study, 8 SSRs produced 151 fragments of which 131 bands were polymorphic (86.38%). The primers, At5 amplified the highest number of polymorphic loci (27) and the highest PIC was recorded in CBT08 (0.54). In comparison, RAPD assay produced 70 bands with 79.16% polymorphism. The PIC value was highest in OPC14 (0.41). UPGMA clustering for SSR and RAPD markers grouped all the populations into two clusters. Our findings on SSR profile suggests that though different populations of S. torvum are inherited from a common ancestor eventually the population (STP5) with greater genetic diversity is stabilized in the high altitude of Sub - Himalayan region of Tripura in the due course of evolution.

Downloads

Download data is not yet available.

References

1. Myers N, Mittermier RA, Mittermier CG, Fonseca GABda, Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;40:853-858. http://dx.doi.org/10.1038/35002501

2. Mao AA, Hynniewta TM, Sanjappa M. Plant wealth of northeast India with reference to ethnobotany. Indian J Tradit know. 2009; 8:96-103.

3. Deb DB. The Flora of Tripura state. Vol II. New Delhi: Today and tomorrow’s publishers; 1983.

4. Nasir JY, Solanaceae. In: Ali SI, Nasir E, editors. Flora of Pakistan. Islamabad: Pakistan Agriculture Research Council; 1985. p. 61.

5. Choudhury R, Datta Choudhury M, De B, Paul SB. Importance of certain tribal ediable plants of Tripura. Indian Journal of Traditional Knowledge 2010; 9(2):300-02.

6. Deb D, Sarkar A, Debbarma B, Datta BK, Majumdar K. Wild Edible Plants and Their Utilization in Traditional Recipes of Tripura, Northeast India. Adv Biol Res. 2013; 7 (5): 203-11. https://doi.org/10.5829/idosi.abr.2013.7.5.11895

7. Karmakar K, Islam Md A, Chhanda SA, Tuhin TI, Muslim T, Rahman Md A. Secondary metabolites from the fruits of Solanum torvum SW. Journal of Pharmacognosy and Phytochemistry. 2015; 4(1): 160-63.

8. Asase A, Akwetey GA, Achel DG. Ethnopharmacological use of herbal remedies for the treatment of malaria in the Dangme West District of Ghana. J. Ethnopharmacol. 2010; 129 (3): 367–76. https://doi.org/10.1016/j.jep.2010.04.001

9. Jaiswal BS. Solanum torvum: A review of its traditional uses, phytochemistry and pharmacology. Int J Pharma Bio Sci. 2012; 3(4):104-11.

10. Lu Y, Luo J, Huang X, Kong L. Four new steroidal glycosides from Solanum torvum and their cytotoxic activities. Steroids. 2009; 74:95-101. https://doi.org/10.1016/j.steroids.2008.09.011

11. Chah KF, Muko KN Oboegbulem SI. Antimicrobial activity of methanolic extract of Solanum torvum fruit. Fitoterapia. 2000; 71:187-89. https://doi.org/10.1016/S0367-326X(99)00139-2

12. Wiart C, Mogana S, Khalifah S, Mahan M, Ismail S, Buckle M. Antimicrobial screening of plants used for traditional medicine in the state of Perak, Peninsular Malaysia. Fitoterapia. 2004; 75:68-73. https://doi.org/10.1016/j.fitote.2003.07.013

13. Arthan D, Svasti J, Kittakoop P, Pittayakhachonwutb D, Tanticharoenb M, Thebtaranonth Y. Antiviral isoflavonoid sulfate and steroidal glycosides from the fruits of Solanum torvum leaves. Phytochemistry 2002; 59(4):459-63. https://doi.org/10.1016/S0031-9422(01)00417-4

14. Dickson RA, Amponasah IK, Annan K, Fleischer TC. Nutritive potential of a poly herbal preparation from some selected Ghanaian herbs. J Nat Prod Plant Resour. 2014; 4(3): 77-81.

15. Mathmood U, Agrawal PK, Thakur RS. Torvonin-A, a spirostane saponin from Solanum torvum leaves. Phytochemistry 1985;24:2456-57. https://doi.org/10.1016/S0031-9422(00)83069-1

16. Agrawal PK, Mahmood U Thakur RS. Studies on medicinal plants. Torvonin-B, a spirostane saponin from Solanum torvum. Heterocycles 1989;29:1895-99. https://doi.org/10.3987/COM-89-5032

17. Amjad M, Iqbal I, Rees D, Iqbal Q, Nawaz A, Ahmed T. Effect of packing materials and different storage regimes on shelf life of green hot pepper fruits. Acta Hortic. 2010; 8:227-34. https://doi.org/10.17660/ActaHortic.2010.876.30

18. Das AK, Borah SP. Assessment of genetic diversity among some important wild species of non-tuberous Solanum using RAPD and ISSR markers. Int J Pharma Bio Sci. 2015; 6(3): 1029-42.

19. Whitkus R, Doebley J Wendel JF. Nuclear DNA markers in systematics and evolution. In: Phillips RL, Vasil IK, editors. DNA-based Markers in Plants. Netherland: Kluwer Academic Publishers; 1994. p. 116-41. https://doi.org/10.1007/978-94-011-1104-1_6

20. Karp AS, Kresovich KV, Bhat WG, Ayad TH. Molecular tools in plant genetic resources conservation: a guide to the technologies. Italy: International Plant Genetic Resources Institute; 1997.

21. Parker PG, Snow AA, Schug MD, Booton GC, Fuerst PA. What molecules can tell us about populations: choosing and using molecular markers. Ecology 1998;79:361-82. https://doi.org/10.2307/176939

22. Schlotterer C. The evolution of molecular markers-just a matter of fashion. Nat Rev Genet. 2004;5:63-69. https://doi.org/10.1038/nrg1249

23. Haddad A, El Rabey, Fawzia A, Kholoud M Al-O. Phylogenetic relationships of some economically important cereal plants based on genome characterization using molecular markers. Caryologia 2015;68(3):225-32. https://doi.org/10.1080/00087114.2015.1032612

24. Verma KS, Ul Haq S, Kachhwaha S, Kothari SL. RAPD and ISSR marker assessment of genetic diversity in Citrullus colocynthis (L.) Schrad: a unique source of germplasm highly adapted to drought and high-temperature stress. 3 Biotech 2017;7(5):288. https://doi.org/10.1007/s13205-017-0918-z

25. Amom T, Tikendra L, Rahaman H, Potshangbam A, Nongdam P. Evaluation of genetic relationship between 15 bamboo species of North-East India based on ISSR marker analysis. Mol Biol Res Commun. 2018;7(1):7–15. https://doi.org/10.22099/mbrc.2018.28378.1303

26. Rameshkumar R, Pandian S, Rathinapriya P, Selvi CT, Satish L, Gowrishankar S, Leung WM D, Ramesh M, Genetic diversity and phylogenetic relationship of Nilgirianthus ciliatus populations using ISSR and RAPD markers: Implications for conservation of an endemic and vulnerable medicinal plant. Biocatalysis and Agricultural Biotechnology 2019;18:101072. https://doi.org/10.1016/j.bcab.2019.101072

27. Weising K, Nybom H, Wolff K, Kahl G. DNA Fingerprinting in plants: principles, methods and applications. 2nd ed. Florida: CRC Press; 2005. https://doi.org/10.1201/9781420040043

28. Welsh J, Mcclelland M. (1990) Fingerprinting Genomes Using PCR with Arbitrary Primers. Nucleic Acids Res. 1990;18:7213-18. http://dx.doi.org/10.1093/nar/18.24.7213

29. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990; 18(22):6531–35. https://doi.org/10.1093/nar/18.22.6531

30. Verma M, Rathi S, Munshi AD, Kumar, Arya L, Bhat KV, Kumar R. Genetic diversity of Indian brinjal revealed by RAPD and SSR markers. Indian J Hort. 2012;69(4):517-22.

31. Augustinos A, Petropoulos C, Karasoulou V, Bletsos F, Papasotiropoulos V. Assessing diversity among traditional Greek and foreign eggplant cultivars using molecular markers and morphometrical descriptors. Spanish Journal of Agricultural Research. 2017; 14(4):e0710. https://doi.org/10.5424/sjar/2016144-9020

32. VS Kumar A, AV S, Krishnan R, K. M. ISSR markers for comparative analysis of genetic variability in Solanum L. species of southern western ghats of Kerala, South India. Eur J Pharm Sci. 2018; 5(2): 293-300.

33. Wang Y, Rashid MAR, Li X, Yao C, Lu L, Bai J, et al. Collection and evaluation of genetic diversity and population structure of potato landraces and varieties in China. Front Plant Sci. 2019;10:139. https://doi.org/10.3389/fpls.2019.00139

34. Roldan IR, Dendauw J, Van EB, Depicker A, Loose MD. AFLP markers reveal high polymorphic rates in rye grasses (Lolium spp.). Mol Breed. 2000;6:125-34. https://doi.org/10.1023/A:1009680614564

35. Powell W, Morgante M, Andre C, Hanafey M, Vogel, J, Tingey S, Rafalski A. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed. 1996;2:225–38. https://dx.doi.org/10.1007/BF00564200

36. Kimura M, Crow JF. The number of alleles that can be maintained in a finite population. Genetics 1964;49:725-38.

37. Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA. 1973; 70:3321-23. https://doi.org/10.1073/pnas.70.12.3321

38. Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX. (1997) POPGENE, the user friendly shareware for population genetic analysis. Alberta: Molecular Biology and Biotechnology Centre; 1997.

39. Lewontin RC. Testing the theory of natural selection. Nature 1972;236:181-82. https://doi:10.1038/236181a0

40. Dice LR. Measures of the amount of ecologic association between species. Ecology 1945;26:297-302. http://dx.doi.org/10.2307/1932409

41. Rohlf FJ. NTSYSpc: numerical taxonomy system. version 2.21c. Exeter Software: New York: Setauket; 2000.

42. Clain C, Silva D Da, Fock I, Vaniet S, Carmeille A, Gousset C, Sihachakr D, Luisetti J, Kodja H, Besse P. RAPD genetic homogeneity and high levels of bacterial wilt tolerance in Solanum torvum Sw. (Solanaceae) accessions from Reunion Island, Plant Sci. 2004;166(6):1533-40.https://doi.org/10.1016/j.plantsci.2004.02.006

43. Gousset C, Collonnier C, Mulya K, Mariska I, Rotino GL, Besse P, Servaes A, Sihachakr D. Solanum torvum, as a useful source of resistance against bacterial and fungal diseases for improvement of egg plant (S. melongena L.). Plant Sci. 2005;168:319-27. https://doi.org/10.1016/j.plantsci.2004.07.034

44. Bhagwat R, Banu S, Dholakia B, Kadoo N, Lagu M, Gupta V. Evaluation of genetic variability in Symplocos laurina Wall. from two biodiversity hotspots of India. Plant Syst Evol. 2004;300(10):2239-47. https://doi.org/10.1007/s00606-014-1046-4

45. Alqahtani MM. Assessing molecular biodiversity within the Solanum genus collected from Saudi Arabia. Int. J. Botany. 2019;4(2):14-20.

Downloads

Published

01-01-2020

How to Cite

1.
Das M, Singha HR, Saha K. Assessment of genetic diversity in five populations of Solanum torvum Swartz. from Tripura using SSR and RAPD markers. Plant Sci. Today [Internet]. 2020 Jan. 1 [cited 2024 Apr. 19];7(1):46-54. Available from: https://www.horizonepublishing.com/journals/index.php/PST/article/view/650

Issue

Section

Research Articles