Grain productive efficiency of soybean plants under lactofen application

Authors

  • Willian Pelisser da Rosa Faculty of Agronomy and Veterinary Medicine, Agronomy Post-Graduate Program, University of Passo Fundo, Passo Fundo/RS, 99052-900, Brazil
  • Andreia Caverzan Faculty of Agronomy and Veterinary Medicine, Agronomy Post-Graduate Program, University of Passo Fundo, Passo Fundo/RS, 99052-900, Brazil
  • Geraldo Chavarria Faculty of Agronomy and Veterinary Medicine, Agronomy Post-Graduate Program, University of Passo Fundo, Passo Fundo/RS, 99052-900, Brazil

DOI:

https://doi.org/10.14719/pst.2020.7.2.733

Keywords:

Glycine max, dropping drops, growth regulator, plant architecture, yield

Abstract

Adverse factors cause a decrease in the productive potential of crops. For soybean [(Glycine max (L.) Merrill], the excessive growth is a factor that results in plants with low effective efficiency. Thus, plants with an architecture that favours greater interception of solar radiation and deposition of pesticides tend to be more productive. The objective of this study is to evaluate the different application of lactofen, which is used as a growth inhibitor, improve the productive efficiency of soybeans by increasing the biological activity of the leaves. The study was conducted in the field with soybean cultivars NA 5909 RG and BMX Potência RR. The experiment followed a randomized complete block design with four treatments and five replicates: T1: control; T2: application of 140 g a.i ha-1 of lactofen in phenological stage V3; T3: application of 140 g a.i ha-1 of lactofen in phenological stage V6; and T4: application of 70 g a.i ha-1 of lactofen in phenological stage V3 + 70 g a.i ha-1 of lactofen in phenological stage V6. The interception of photosynthetically active radiation in the lower layer increased in all treatments. Lactofen application increased the percent area covered and the number of phytosanitary products spray droplets per cm² in the middle and lower layers of the plants. The lower third of the plants experienced the greatest effect of the treatments with regard to the number of pods, grains and grain weight, with treatment T2 presenting significant increases. The use of lactofen as a growth inhibitor at the beginning of pod development in soybean caused changes to plant architecture and root development, consequently enhanced the productive efficiency of the plant, primarily due to increased grain production in the lower layer. Future research using lactofen in different phenological stages and cultivars may provide more insights in to the performance of this growth inhibitor in soybean.

Downloads

Download data is not yet available.

References

1. El-Hamidi M, Zaher FA. Production of vegetable oils in the world and in Egypt: an overview. Bulletin of the National Research Centre. 2018;42(1):19. https://doi.org/10.1186/s42269-018-0019-0

2. Biabani A, Hashemi M, Herbert SJ. Agronomic performance of two intercropped soybean cultivars. International Journal of Plant Production. 2008;2(3):215-22. https://doi.org/10.22069/IJPP.2012.614

3. Liu B, Liu XB, Wang C, Jin J, Herbert SJ, Hashemi M. Responses of soybean yield and yield components to light enrichment and planting density. International Journal of Plant Production. 2010;4(1):1-10.

4. Nuyttens D, Baetens K, De Schampheleire M, Sonck B. Effect of nozzle type, size and pressure on spray droplet characteristics. Biosystems Engineering. 2007;97(3):333-45. https://doi.org/10.1016/j.biosystemseng.2007.03.001

5. Espindula MC, Rocha VS, Souza LT de, Souza MA de, Grossi JAS. Efeitos de reguladores de crescimento na elongação do colmo de trigo. Acta Scientiarum Agronomy. 2010;32(1):109-16. https://doi.org/10.4025/actasciagron.v32i1.943

6. Chavarria G, da Rosa WP, Hoffmann L, Durigon MR. Regulador de crescimento em plantas de trigo: Reflexos sobre o desenvolvimento vegetativo, rendimento e qualidade de grãos. Revista Ceres. 2015;62(6):583-88. https://doi.org/10.1590/0034-737X201562060011

7. Leite GHP, Crusciol CAC, Silva MDA. Desenvolvimento e produtividade da cana-de-açúcar após aplicação de reguladores vegetais em meio de safra. Semina: Ciências Agrárias. 2011;32(1):129-38. https://doi.org/10.5433/1679-0359.2011v32n1p129

8. Nagashima GT, Miglioranza E, Marur CJ, Yamaoka RS, Silva JGR. Development of cotton in response to mode of application and doses of mepiquat chloride in seeds. Ciencia Rural. 2010;40(1):007-11. https://doi.org/10.1590/S0103-84782009005000236

9. Nelson KA, Rottinghaus GE, Nelson TE. Effect of lactofen application timing on yield and isoflavone concentration in soybean seed. Agronomy Journal. 2007;99(3):645-49. https://doi.org/10.2134/agronj2006.0067

10. Gallon M, Buzzello GL, Trezzi MM, Diesel F, Silva HL Da. Ação de herbicidas inibidores da PROTOX sobre o desenvolvimento, acamamento e produtividade da soja. Revista Brasileira de Herbicidas. 2016;15(3):232-40. https://doi.org/10.7824/rbh.v15i3.471

11. Orlowski JM, Gregg GL, Lee CD, Serson WR. Early-season lactofen application fails to increase soybean yield under weed-free conditions. Agronomy Journal. 2016;108(4):1552-60. https://doi.org/10.2134/agronj2015.0589

12. Graham MY. The diphenylether herbicide lactofen induces cell death and expression of defense-related genes in soybean. Plant Physiology. 2005;139:1784-94. https://doi.org/10.1104/pp.105.068676

13. Fehr WR, Caviness CE, Burmood DT, Pennington JS. Stage of development descriptions for soybeans, Glycine max (L.) Merrill 1. Crop Science. 1971;11(6):929-31. https://doi.org/10.2135/cropsci1971.0011183X001100060051x

14. ASABE. Spray nozzle classification by droplet spectra. ANSI/ASAE S5721 W/Corr1. 2009;389-81.

15. Caverzan A, Giacomin R, Müller M, Biazus C, Lângaro NC, Chavarria G. How does seed vigor affect soybean yield components? Agronomy Journal. 2018;110(4):1318-27. https://doi.org/10.2134/agronj2017.11.0670

16. Cannell RQ. Methods of studying root systems. By W. Böhm. Berlin: Springer. 1979; pp. 200, DM 69, $38.00. Experimental Agriculture. 1980;16(4):437. https://doi.org/10.1017/S0014479700012126

17. Moojen TMBM, Cavalcante RBL, Mendes CAB. Avaliação da radiação solar com base em dados de nebulosidade. Geografia. 2012;21(3):41-55. https://doi.org/10.5433/2447-1747.2012v21n3p41

18. Costa C, Castoldi FL. CoStat: um programa para quem pensa que não gosta de estatística. 1st ed. Passo Fundo. 2009; 384 p.

19. Souza RA de, Hungria M, Franchini JC, Maciel CD, Campo RJ, Zaia DAM. Conjunto mínimo de parâmetros para avaliação da microbiota do solo e da fixação biológica do nitrogênio pela soja. Pesquisa Agropecuária Brasileira. 2008;43(1):83-91. https://doi.org/10.1590/S0100-204X2008000100011

20. Tironi SP, Reis MR, Galon L, Freitas MAM, Costa MD, Silva AA, et al. Action of herbicides on the activity of phosphate-solubilizing bacteria isolated from sugarcane rhizosphere. Planta Daninha. 2009;27(4):747-54. https://doi.org/10.1590/S0100-83582009000400013

21. Santos JB, Santos EA, Fialho CMT, Silva AA, Freitas MAM. Influence of desiccation time before sowing on the development of soybean resistant to glyphosate. Planta Daninha. 2007;25(4):869-75. https://doi.org/10.1590/S0100-83582007000400024

22. Cesco VJS, Albrecht AJP, Rodrigues DM, Krenchinski FH, Albrecht LP. Associations between herbicides and glyphosate in agronomic performance of RR2 intact soybean. Planta Daninha. 2018;36. https://doi.org/10.1590/s0100-83582018360100015

23. Lynch JP. Roots of the second green revolution. Australian Journal of Botany. 2007;55(5):493-512. https://doi.org/10.1071/BT06118

24. Souza CA, Figueiredo BP, Coelho CMM, Casa RT, Sangoi L. Plant architecture and productivity of soybean affected by plant growth retardants. Bioscience Journal. 2013;29(3):634-43.

25. Casaroli D, Fagan EB, Simon J, Medeiros SP, Manfron PA, Neto DD, et al. Radiação solar e aspectos fisiológicos na cultura de soja - uma revisão. Revista da FZVA. 2007;14(2):102-20.

26. Boschini L, Contiero RL, Macedo Junior EK, Guimarães VF. Avaliação da deposição da calda de pulverização em função da vazão e do tipo de bico hidráulico na cultura da soja. Acta Scientiarum Agronomy. 2008;30(2):171-75. https://doi.org/10.4025/actasciagron.v30i2.1789

27. Farinha JV, Martins D, Costa NV, Domingos VD. Spray deposition on soybean varietes at R1 grow stage. Ciencia Rural. 2009;39(6):1738-44. https://doi.org/10.1590/S0103-84782009000600016

28. da Cunha JPAR, Moura EAC, Da Silva JL, Zago FA, Juliatti FC. Spray nozzle effect on soybean rust chemical control. Engenharia Agricola. 2008;28(2):283-91. https://doi.org/10.1590/S0100-69162008000200009

29. Müller M, Rakocevic M, Caverzan A, Boller W, Chavarria G. Architectural characteristics and heliotropism may improve spray droplet deposition in the middle and low canopy layers in soybean. Crop Science. 2018;58(5):2029-41. https://doi.org/10.2135/cropsci2017.11.0653

30. Tancredi FD, Sediyama T, Reis MS, Cecon PR, Teixeira RDC. Influência da remoção do meristema apical sobre os componentes de produtividade em populações de plantas de soja. Acta Scientiarum Agronomy. 2004;26(1):113-19. https://doi.org/10.4025/actasciagron.v26i1.1968

31. Geldner N, Friml J, Stierhof Y-D, Jürgens G, Palme K. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature [Internet]. 2001;413(6854):425-28. https://doi.org/10.1038/35096571

32. Hanna SO, Conley SP, Shaner GE, Santini JB. Fungicide application timing and row spacing effect on soybean canopy penetration and grain yield. Agronomy Journal. 2008;100(5):1488-92. https://doi.org/10.2134/agronj2007.0135

33. Müller M, Rakocevic M, Caverzan A, Chavarria G. Grain yield differences of soybean cultivars due to solar radiation interception. American Journal of Plant Sciences. 2017;08(11):2795-10. https://doi.org/10.4236/ajps.2017.811189

34. Tariq M, Ahmad Khan T. Screening of Fenugreek (Trigonella foenum-graecum) varieties against root-knot nematode meloidogyne incognita. Journal of Plant Pathology & Microbiology. 2016;7(2). https://doi.org/10.4172/2157-7471.1000335

Published

16-05-2020

How to Cite

1.
da Rosa WP, Caverzan A, Chavarria G. Grain productive efficiency of soybean plants under lactofen application. Plant Sci. Today [Internet]. 2020 May 16 [cited 2024 Apr. 24];7(2):288-95. Available from: https://www.horizonepublishing.com/journals/index.php/PST/article/view/733

Issue

Section

Research Articles

Most read articles by the same author(s)

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.