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Introduction 

Timely and accurate crop yield estimation is essential for 

ensuring food security, resource optimization and effective 

policy making (1). Rice (Oryza sativa L.), the staple food for over 

half the global population, holds significant socioeconomic 

importance, especially across Asia (2). The demand for 

scalable, data-driven yield estimation techniques has grown 

significantly in response to the challenges posed by climate 

change, scarce resources and changing land use (3). 

 Traditional forecasting methods, largely based on field 
surveys and expert judgment, are often time-consuming, 

labour-intensive and expensive. To address these limitations, 

the integration of remote sensing and crop modelling has 

emerged as a powerful alternative, enabling large-scale, cost-

effective and timely yield assessments (4).  

 Among various remote sensing (RS) based yield 

forecasting models, two prominent modelling approaches are 

semi-physical models and process-based crop simulation 

models. Semi-physical models use remote sensing-derived 

inputs such as photosynthetically active radiation (PAR), 

fraction of absorbed photosynthetically active aadiation 

(FPAR), temperature and water stress to estimate yield based 

on biophysical relationships. They are easier to implement, 

computationally efficient and useful in data-scarce regions. 

Synthetic aperture radar (SAR)-derived metrics in a semi-

physical framework to estimate rice yields over large areas (5). 

Process-based crop models like DSSAT simulate physiological 

crop processes by integrating genotype, environment and 

management (G × E × M) interactions. Although more accurate 

and adaptable to diverse agro-climatic conditions, these 

models require extensive input data and calibration (6). 

Remote sensing, particularly SAR (Sentinel-1), provides 

consistent, cloud-penetrating observations that complement 

both modelling approaches. SAR backscatter data are sensitive 

to crop structure and moisture, offering robust indicators of 

crop growth (7). 

 The present study provides a thorough comparative 

evaluation of the semi-physical model alongside the DSSAT 

crop simulation model for spatially estimating rice yield. The 

analysis utilizes remote sensing-derived biophysical indicators, 

ground truth data and environmental variables to assess each 
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Abstract  

This study presents a comparative assessment of two modelling approaches for estimating spatial rice yields across the Cauvery delta 
zone (CDZ) in Tamil Nadu, viz., (a) a process-based crop simulation model (DSSAT-CERES Rice) and (b) a semi-physical model (SPM). The 

DSSAT model was calibrated using field data, cultivar-specific genetic coefficients and further refined through the integration of leaf area 

index (LAI) derived from Sentinel-1 synthetic aperture radar (SAR) imagery. In contrast, the SPM utilized remote sensing-derived inputs 
such as photosynthetically active radiation (PAR), fraction of absorbed PAR (FPAR), temperature and water stress indices and radiation 

use efficiency (RUE) to compute yield via net primary productivity (NPP). Results revealed that DSSAT achieved higher alignment with crop 

cutting experiment (CCE) data (88.6 %) than SPM (83.3 %), attributed to its capability to simulate complex crop-soil-climate interactions. 

However, the SPM demonstrated greater scalability and ease of implementation, particularly in regions with limited field data. The study 
highlights the strengths and limitations of each approach, offering insights into model selection based on accuracy, data availability and 

operational feasibility. These findings suggest that integration of remote sensing and crop modelling could serve as a valuable strategy for 

improving regional yield forecasting and enhancing agricultural decision-making.  
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model's performance in terms of spatial accuracy, sensitivity 

and operational feasibility. By systematically contrasting these 

two modelling paradigms, this research contributes to the 

development of efficient, scalable and context-specific yield 

estimation frameworks, supporting advances in precision 

agriculture, climate-resilient farming, crop insurance 

companies and regional food security planning. 

 

Materials and Methods  

Study area 

The Cauvery delta zone (CDZ), located in eastern Tamil Nadu, 

India, encompasses the districts of Thanjavur, Thiruvarur, 

Nagapattinam and Mayiladuthurai. Geographically, the region 

lies between 10°00′N and 11°15′N latitude and 78°45′E and 79°

55′E longitude, featuring flat terrain that gradually slopes 

toward the Bay of Bengal (Fig. 1). Agriculture in the CDZ is 

primarily supported by regulated irrigation from the Mettur 

Dam and seasonal rainfall, particularly from the northeast 

monsoon (October–December), which brings 900-1200 mm of 

annual precipitation. Rice is the dominant crop grown mainly 

during the Kuruvai (June-September), Samba (August-January) 

and Thaladi (October-February) seasons. Farming practices 

vary across districts, with Thanjavur and Thiruvarur possessing 

better irrigation infrastructure and mechanization, while 

Nagapattinam and Mayiladuthurai exhibit more traditional and 

diverse systems. The region’s temperature ranges from 24 °C to 

34 °C, which can accelerate crop development under heat 

stress. CDZ’s agro-ecological diversity, variability in water 

availability and well-documented farming systems make it an 

ideal setting for comparative crop yield modelling. Its reliable 

remote sensing coverage and strong institutional support for 

ground-truth data further enhance its suitability for spatial 

analysis. The details of the satellite data used in this study are 

presented in Table 1. 

Methodology for rice area estimation 

The preprocessing of time-series Sentinel-1A SAR data, 

provided by ESA, was carried out using MAPscape-RICE-

specialized software tailored by Sarmap, Switzerland. This 

customized tool incorporates a fully automated SAR 

processing workflow initially developed, specifically designed 

to convert multi-temporal Sentinel-1A IW-GRD SAR datasets 

into terrain-corrected σ° values (8) (Fig. 2). The processing steps 

were executed in the following sequence: 

Strip mosaicking 

SAR scenes from the same orbit and date were merged along 

the azimuth direction to create continuous image strips in slant 

range geometry, simplifying subsequent data processing. 

Co-registration 

All SAR images with consistent viewing geometry were co-

registered to align pixels across acquisition dates, enabling 

effective multi-temporal analysis. 

Time series speckle filtering 

A temporal filter (equivalent number of looks) was applied to 

reduce speckle noise by assuming uniform surface reflectivity 

across time-series acquisitions. 

Terrain geocoding, radiometric calibration and normalization 

Using a DEM and a range-doppler approach, σ° backscatter was 

projected into SAR image space. Radiometric calibration 

accounted for antenna gain, scattering area and range spreading 

loss, while cosine-law correction normalized incidence angle 

variations. 

ANLD filtering 

An adaptive non-local means denoising filter enhanced spatial 

contrast by suppressing noise in homogeneous areas (9). 

Atmospheric correction 

An interpolation-based method corrected for atmospheric 

anomalies such as moisture-induced variations in the SAR 

signal (10). 

Rice detection and classification 

Post-processing, rice areas were identified using a rule-based 

classification in MAPscape-RIICE software. Temporal σ° 

backscatter profiles were analyzed based on local agronomic 

knowledge of rice phenology and cultivation practices. Although 

general detection rules were available, regional calibration was 

essential to adapt to local crop dynamics. 

Methodology for spatial DSSAT yield estimation 

The decision support system for agrotechnology transfer 
(DSSAT), developed through international cooperation under the 

IBSNAT initiative in the USA, was utilized in this study. Daily rice 

crop growth and development were modelled using CERES-Rice, 

a component of DSSAT version 4.7. The crop simulation model 

represents a simplified yet process-based framework to simulate 

crop growth and yield as influenced by interacting factors such 

as variety, soil properties, climatic conditions and management 

practices. In this study, the CERES-Rice model was successfully 

calibrated and validated to estimate rice yields across spatially 

heterogeneous environments within the CDZ. 

Input requirements for the DSSAT model 

Weather data 

Weather data, including daily maximum and minimum 

temperatures (°C), solar radiation (MJ m-2) and precipitation 

(mm), were formatted into DSSAT-compatible files using the 

built-in Weather Man utility for simulations with the CERES-Rice 

model. 

Soil data 

Soil profile information for Tamil Nadu was sourced from the 
Department of Remote Sensing and GIS, Tamil Nadu 

Agricultural University, at a 1:50,000 scale. This data was used 

to generate soil input files for DSSAT. 

 

S. No. Satellite Data/products Resolution 
1  INSAT 3DR Daily insolation 1 km 
 2 MODIS 8 days composite FPAR 500 m 
 3 MODIS 8 days composite surface reflectance 500 m 
 4 Sentinel-1 Rice area mask 20 m 
 5 Gridded data Daily minimum and maximum temperatures 5 km Grid 

Table 1. Satellite data/products used in the study  
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Fig. 2. Schematic representation of the processing of SAR data and rice area mapping. 

Fig. 1. Geographical location of the study area.  
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Cultivar information 

Genetic coefficient files for rice cultivars CR 1009, BPT 5204 and 

ADT 45 were prepared using field data  

Crop management data 

Using the ‘X Build’ tool in DSSAT, management files were 

created to capture detailed field conditions and experimental 

inputs. These included soil and field characteristics, planting 

configuration, irrigation and nutrient schedules, residue and 

chemical applications, tillage operations and simulation 

parameters. 

Model calibration and validation 

The model was calibrated with field data collected during the 

rice-growing season to estimate genetic coefficients for the 

three cultivars. Validation involved comparing simulated yields 

with actual yields recorded from farmers’ fields in the study 

region. Model accuracy was evaluated using regression plots 

and correlation coefficients between observed and simulated 

outputs. 

Derivation of leaf area index (LAI) from SAR backscatter 

data 

Backscatter values in decibels (dB) were extracted from SAR 

images for selected monitoring fields using the QGIS point 

sampling tool. Simulated LAI values were paired with these dB 

values to establish a linear regression model. The QGIS raster 

calculator was then employed to generate spatial LAI maps by 

applying the regression equation to the dB images taken 

during the flowering stage of the rice crop. 

Estimating rice yield through remote sensing 

The final rice yield estimation combined DSSAT-simulated 

outputs with SAR-derived LAI data. A regression model was 

developed linking simulated yield and spatial LAI values 

derived from SAR imagery. This relationship was used to 

extrapolate rice yield across the broader study area (Fig. 3). 

Methodology for semi physical approach yield estimation 

Time series data downloaded from MOSDAC (INSAT 3DR) and 

MODIS satellite data from August 2024 to January 2025 were 

used for this analysis. The methodology for SPM is presented in 

Fig. 4. 

Photosynthetically active radiation (PAR) 

Insolation or incoming solar radiation, is the total amount of 

solar radiation received by an earth surface over a specific 

period. PAR is the portion of this solar radiation that falls within 

the 400-700 nm wavelength range, which is usable by plants for 

photosynthesis. PAR constitutes a fraction of the total 

insolation and is influenced by factors such as cloud cover, 

ozone levels and atmospheric conditions (11). Insolation data 

from the INSAT-3DR imager were downloaded for the study 

period. Daily insolation data was multiplied by 0.48 to generate 

daily PAR. Daily PAR is then composited into an 8-day 

composite raster with respect to the acquisition dates of the 

MODIS datasets. The datasets were resampled from 4000 m to 

500 m. 

Fraction of photosynthetically active radiation (FPAR) 

FPAR quantifies the proportion of incoming PAR absorbed by 

the plant canopy, influenced by factors like canopy structure, 

leaf properties, atmospheric conditions and solar geometry. 

FPAR is linked to the plant’s ability to synthesize carbohydrates 

and is crucial for estimating plant productivity (12). A well-

growing crop with a dense canopy absorbs more PAR, resulting 

in higher FPAR values, while unhealthy vegetation reflects 

more PAR, leading to lower FPAR values. Higher FPAR generally 

leads to increased biomass and crop yield. 

Computation of water stress 

Water stress arises when a crop experiences insufficient water 

availability, negatively impacting its physiological functions. 

This water deficit occurs due to limited soil moisture, 

inadequate rainfall and excessive water loss through 

evapotranspiration. These processes are further influenced by 

atmospheric conditions, such as air saturation deficit (13). This 

imbalance affects physiological, morphological and 

biochemical processes, leading to reduced growth, yield and 

productivity. The SWIR (short wavelength infrared) band is 

sensitive to plant water content, making LSWI a valuable 

indicator of vegetation and soil moisture. 

        

 

 

 

 

 

 Where, Wstress= waer stress, LSWI = land surface water 

index, LSWImax = maximum land surface water index of the area, 

NIR = near infrared and SWIR = short wavelength infrared. 

Computation of temperature stress 

Temperature data for the study area were retrieved in CSV 

format from the IMD data portal (14). The data were 

interpolated to generate a temperature raster. Temperature 

stress was generated using the equation: 

 

 

 

 Where, Tstress = temperature stress, T = daily mean 

temperature, Tmin =  minimum temperature for photosynthesis 

(°C), Tmax = maximum temperature for photosynthesis (°C) and 

Topt = optimum temperature for photosynthesis (°C). 

Computation of net primary product (NPP) 

NPP represents the rate at which an ecosystem accumulates 

biomass. Specifically, it is the difference between the amount 

of biomass crops produced through photosynthesis and the 

amount of energy (carbon dioxide) used for respiration (15). 

 RUE is the ratio of the biomass produced through 

photosynthesis to the amount of PAR intercepted by the plant 

(16). NPP for the period from sowing to harvest date has been 

computed at an interval of 8 days with a spatial resolution of 

500 m using the periodical PAR, FPAR, Wstress, Tstress and 

maximum radiation use efficiency.  

 NPP = PAR x FPAR x RUE x Wstress x Tstress       (Eqn. 4) 

 Total NPP has been computed for the whole rice 
growing season from 8-day composite datasets. 

LSWI= 
NIR - SWIR 

NIR + SWIR (Eqn. 1) 

(Eqn. 2) 
Wstress= 

1+LSWI 

1+LSWImax 

Tstress= 

(T-Tmin)-(T-Tmax) 

(T-Tmin)(T-Tmax)(T-T0pt)2 

(Eqn. 3) 
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Fig. 4. Methodology for semi-physical approach yield estimation. 

Fig. 3. Workflow for integrating SAR-based LAI with DSSAT-simulated yield for rice yield estimation.  
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Spatial rice yield estimation 

Rice yield was calculated from the product of total NPP and 

harvest index of rice. The harvest index (HI) is the economic and 

biological yield ratio. 

 The spatial rice yield for the study area was calculated 

from the total NPP. 

 Yield = NPPsum x HI   (Eqn. 6) 

 

Results and Discussion  

Rice area estimation 

Time-series Sentinel-1A SAR data were acquired for the period 
from August 2024 to January 2025. The data were pre-

processed and analyzed using MAPscape software to estimate 

rice cultivation areas for the CDZ. The total rice area estimated 

across the entire study area was 298087 ha. Fig. 5 shows the 

spatial distribution of rice area across the CDZ. Among the four 

districts, Thanjavur recorded the highest rice sown area with 

106914 ha, followed by Thiruvarur (101825 ha), Mayiladuthurai 

(45640 ha) and Nagapattinam (43708 ha) (Table 2). To assess 

the accuracy of the rice area classification, ground truth data 

were collected during the cropping season. A total of 182 rice 

points and 95 non-rice points were surveyed across the study 

area. The classification accuracy for rice area was found to be 

93.90 %, with a Kappa coefficient of 0.88, indicating a high level 

of agreement between the classified and ground truth. 

Spatial yield estimation using the DSSAT model 

Weather data 

Weather input files for the crop simulation were generated 

using the DSSAT Weatherman utility for the CDZ. These 

datasets were critical inputs for the CERES-Rice model, 

capturing the temporal and spatial climatic variability during 

the rice-growing season. The generated weather files indicated 

a mean maximum temperature ranging from 27.9 °C to 35.8 °C 

and a mean minimum temperature between 20.6 °C and 25.8 °

C across the districts. Additionally, solar radiation values varied 

slightly, from 13.4 to 21.7 MJ m-2 day-1, indicating relatively 

consistent solar energy availability for photosynthesis during 

the growing period. Total seasonal rainfall recorded during the 

cropping period was 945 mm, highlighting spatial variability in 

water availability, a critical factor influencing rice growth and 

yield in the ecosystem.  

Soil data 

Soil input files for the CERES-Rice model were prepared using 

laboratory-analyzed data and formatted through the DSSAT 

‘SBuild’ utility. The study area comprised 22 distinct soil series, 

highlighting the edaphic diversity of the CDZ.  Soil texture 

varied widely, with sand ranging from 21.40 % to 85.90 %, silt 

1.00 % to 29.60 % and clay 8.40 % to 54.10 %, leading to 

differences in water retention and infiltration. Bulk density 

ranged from 1.28 to 1.65 g cm-3 and organic carbon content 

ranging from 0.04 % to 1.43 %, indicating variability in soil 

fertility. These spatially explicit inputs were crucial for 

simulating yield variability and assessing soil-crop interactions 

within the model. 

Calibration and validation 

The CERES-Rice model in the DSSAT was calibrated to simulate 

rice growth and yield by incorporating variety-specific genetic 

coefficients. These coefficients were derived using the 

GENCALC utility for three predominant rice cultivars in the CDZ, 

namely, CR 1009, BPT 5204 and ADT 45 under uniform 

management and environmental conditions. The calibration 

process ensured accurate alignment of simulated phenological 

stages and yield with observed field data, thereby enhancing 

the model’s reliability across spatially diverse conditions. 

 To enable spatial scaling of yield simulations, the remote 

sensing data is integrated with the crop simulation model. One of 

the critical steps in this process was the assimilation of remotely 

sensed LAI values derived from Sentinel-1A SAR imagery. 

Regression models were developed to relate SAR backscatter 

with field measured and model simulated LAI, allowing the 

extrapolation of LAI values across the entire study region. This 

spatially distributed LAI served as a driving variable in the model, 

providing a dynamic representation of crop canopy growth 

during the season. Using weather, soil, genetic and management 

inputs, along with spatially integrated LAI, the CERES-Rice model 

simulated key growth and development parameters. It includes 

days to emergence, anthesis and physiological maturity, as well 

as yield components such as biomass, harvest index and grain 

yield. The results indicated distinct spatial variability in simulated 

rice yields across the CDZ (Fig. 6). The mean rice yield for the 

entire study area was estimated at 3524 kg/ha. Among the 

districts, Thanjavur recorded the highest average yield of 3752 

kg/ha, while Nagapattinam registered the lowest at 3330 kg/ha. 

Mayiladuthurai and Thiruvarur recorded intermediate yields of 

3396 kg/ha and 3617 kg/ha, respectively, reflecting the influence 

of local agro-climatic and soil conditions on crop performance. 

 The results showed strong agreement between satellite

-derived and observed yields, with district-level accuracy 

ranging from 85.50 % to 91.30 % and the overall agreement of 

the CDZ is 88.60 % (Table 3). Accurate simulation of growth 

stages and yield using CERES-Rice were reported, while NRMSE 

values of 11.38 % and 15.27 % for early and late rice cultivars 

were achieved, respectively (17, 18). Similarly, improved spatial 

yield predictions by integrating SAR-derived LAI with the DSSAT 

crop model was demonstrated (19). 

Semi-physical model-based yield estimation 

Net primary productivity (NPP) was estimated using key 

biophysical and environmental parameters, including PAR, 

FPAR, RUE and stress indices related to water and temperature 

(5). These components collectively represent the crop’s ability to 

convert solar energy into biomass under varying environmental 

conditions. 

S. No. District Rice area (ha) 

1 Thanjavur 106914 

2 Thiruvarur 101825 

3 Nagapattinam 43708 

4 Mayiladuthurai 45640 

Total 298087 

Table 2. District wise rice area during the samba season 

HI= 
Economic Yield 

Bilogical Yield 
(Eqn. 5) 
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Fig. 6. DSSAT model based spatial rice yield. 

Fig. 5. Spatial distribution of rice area for the Cauvery delta zone.  
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 PAR, which indicates the portion of solar radiation 

available for photosynthesis, varied seasonally from 150-315 

MJ m-2 (5). Peak values (270–314 MJ m-2) were recorded in 

September 2024 during active vegetative growth, while the 

lowest values (155–187 MJ m-2) occurred in November 2024 due 

to cloud cover and reduced daylight during the reproductive 

and maturity stage. FPAR, representing canopy efficiency in 

capturing incident radiation, ranged from 0 to 1 across the 

season, reflecting dynamic changes in canopy structure and 

crop development. High FPAR values during mid-season 

coincided with vigorous vegetative growth. Water and 

temperature stress, key constraints to productivity, remained 

minimal throughout the rice-growing season in the CDZ due to 

adequate rainfall, irrigation and favourable temperatures, 

allowing for optimal photosynthesis and biomass accumulation. 

A constant RUE value of 2.9 g MJ-1 was used, as rice typically 

maintains stable RUE under optimal conditions (20). 

 The integration of PAR, FPAR, RUE and stress indices 

enabled spatial and temporal assessment of rice yield (Fig. 7). 

The average estimated yield was 4471 kg/ha, with the highest 

in Thiruvarur (4590 kg/ha), followed by Mayiladuthurai (4555 

kg/ha), Thanjavur (4465 kg/ha) and Nagapattinam (4275 kg/

ha). The semi-physical model achieved 83.30 % agreement 

with observed yields (Table 3). These results highlight the 

effectiveness of combining physiological parameters with 

environmental data to capture yield variability and support 

informed agricultural decision-making. Similar studies also 

estimated the yield using semi physical model (19, 21).  

Comparison of DSSAT and semi-physical model based 

remote sensing yield 

Spatial rice yield estimation using the DSSAT model and the 
semi-physical model (SPM) was compared against observed 

(CCE) data. The DSSAT-based yield estimates demonstrated a 

higher concordance with the observed values, achieving an 

accuracy of 88.60 %, whereas the SPM yielded a slightly lower 

accuracy of 83.60 % (Fig. 8). These results underscored the 

superior predictive capability of the DSSAT model when 

supplied with detailed input data. 

District CCE  (kg/ha) 
SPM yield           

(kg/ha) 
DSSAT yield     

(kg/ha) 
Agreement between SPM and 

CCE Yield (kg/ha) 
Agreement between DSSAT and CCE 

yield (kg/ha) 

Mayiladuthurai 3597 3975 3355 84.40 87.60 

Nagapattinam 3588 3897 3426 84.20 85.50 

Thanjavur 3774 4379 3822 81.40 91.30 

Thiruvarur 3624 4024 3689 83.40 90.10 

Mean 3646 4068 3573 83.30 88.60 

Table 3. Agreement between the observed yield and the different model based remote sensing yield  

Fig. 7. Semi-physical model-based rice yield. 
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 The DSSAT model benefits from its ability to simulate 

complex interactions among soil, weather, crop genotype and 

management practices, resulting in more realistic and accurate 

yield predictions. However, the model’s effectiveness is 

contingent upon the availability of extensive and precise input 

data, as well as considerable calibration efforts, which may limit 

its applicability in large-scale or time-sensitive scenarios. In 

contrast, the SPM, while slightly less accurate, offers a simpler 

and more scalable approach. It leverages remote sensing-

derived parameters to estimate yield, making it useful in data-

scarce environments. Yet, its reliance on empirical relationships 

and satellite data makes it more susceptible to input errors and 

environmental variability. In conclusion, while DSSAT offers 

higher prediction accuracy, it demands substantial data and 

calibration resources. The SPM, though relatively less accurate, 

presents a viable and operationally efficient alternative for 

regional-scale yield estimation, particularly in data-constrained 

settings. 

 

Conclusion  

The comparative evaluation of DSSAT and semi-physical models 

for spatial rice yield estimation in the CDZ has provided key 

insights into the capabilities and limitations of each approach. 

The DSSAT crop simulation model, calibrated with region-

specific field data and integrated with SAR-derived LAI, 

demonstrated higher alignment with observed CCE data, 

achieving an accuracy of 88.60 %. This underscored the model’s 

robustness in simulating crop growth under varying agro-

climatic and soil conditions when supported by detailed input 

datasets. The semi-physical model, utilizing remote sensing-

derived parameters such as PAR, FPAR, RUE and stress indices, 

offered a scalable and efficient alternative with an accuracy of 

83.30 %. Its ability to estimate yield using fewer field inputs 

highlights its potential utility in operational contexts, particularly 

in data-scarce environments. However, its performance is more 

sensitive to input resolution and environmental variability. This 

study demonstrated the benefits of integrating advanced 

geospatial tools, simulation frameworks and biophysical 

modelling to improve regional scale rice yield estimation. The 

findings emphasized that while DSSAT excels in accuracy and 

depth of simulation, the semi-physical approach provides 

practical advantages in terms of scalability and ease of 

implementation. Together, these methodologies contribute to 

building a robust decision-support system for policymakers, 

agricultural planners and food security strategists, enabling 

timely and informed decisions across diverse rice-growing 

landscapes. The research reinforces the importance of adopting 

context-appropriate models to meet the dual objectives of 

accuracy and operational feasibility in agricultural monitoring, 

particularly under climate variability and resource constraints. 

Further, machine learning models can be integrated with either 

DSSAT or SPM for better accuracy.  
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