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Abstract

This study presents a comparative assessment of two modelling approaches for estimating spatial rice yields across the Cauvery delta
zone (CDZ) in Tamil Nadu, viz., (a) a process-based crop simulation model (DSSAT-CERES Rice) and (b) a semi-physical model (SPM). The
DSSAT model was calibrated using field data, cultivar-specific genetic coefficients and further refined through the integration of leaf area
index (LAI) derived from Sentinel-1 synthetic aperture radar (SAR) imagery. In contrast, the SPM utilized remote sensing-derived inputs
such as photosynthetically active radiation (PAR), fraction of absorbed PAR (FPAR), temperature and water stress indices and radiation
use efficiency (RUE) to compute yield via net primary productivity (NPP). Results revealed that DSSAT achieved higher alignment with crop
cutting experiment (CCE) data (88.6 %) than SPM (83.3 %), attributed to its capability to simulate complex crop-soil-climate interactions.
However, the SPM demonstrated greater scalability and ease of implementation, particularly in regions with limited field data. The study
highlights the strengths and limitations of each approach, offering insights into model selection based on accuracy, data availability and
operational feasibility. These findings suggest that integration of remote sensing and crop modelling could serve as a valuable strategy for

improving regional yield forecasting and enhancing agricultural decision-making.
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Introduction

Timely and accurate crop yield estimation is essential for
ensuring food security, resource optimization and effective
policy making (1). Rice (Oryza sativa L.), the staple food for over
half the global population, holds significant socioeconomic
importance, especially across Asia (2). The demand for
scalable, data-driven yield estimation techniques has grown
significantly in response to the challenges posed by climate
change, scarce resources and changing land use (3).

Traditional forecasting methods, largely based on field
surveys and expert judgment, are often time-consuming,
labour-intensive and expensive. To address these limitations,
the integration of remote sensing and crop modelling has
emerged as a powerful alternative, enabling large-scale, cost-
effective and timely yield assessments (4).

Among various remote sensing (RS) based yield
forecasting models, two prominent modelling approaches are
semi-physical models and process-based crop simulation
models. Semi-physical models use remote sensing-derived
inputs such as photosynthetically active radiation (PAR),

fraction of absorbed photosynthetically active aadiation
(FPAR), temperature and water stress to estimate yield based
on biophysical relationships. They are easier to implement,
computationally efficient and useful in data-scarce regions.
Synthetic aperture radar (SAR)-derived metrics in a semi-
physical framework to estimate rice yields over large areas (5).
Process-based crop models like DSSAT simulate physiological
crop processes by integrating genotype, environment and
management (G x E x M) interactions. Although more accurate
and adaptable to diverse agro-climatic conditions, these
models require extensive input data and calibration (6).
Remote sensing, particularly SAR (Sentinel-1), provides
consistent, cloud-penetrating observations that complement
both modelling approaches. SAR backscatter data are sensitive
to crop structure and moisture, offering robust indicators of
crop growth (7).

The present study provides a thorough comparative
evaluation of the semi-physical model alongside the DSSAT
crop simulation model for spatially estimating rice yield. The
analysis utilizes remote sensing-derived biophysical indicators,
ground truth data and environmental variables to assess each
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model's performance in terms of spatial accuracy, sensitivity
and operational feasibility. By systematically contrasting these
two modelling paradigms, this research contributes to the
development of efficient, scalable and context-specific yield
estimation frameworks, supporting advances in precision
agriculture, climate-resilient farming, crop insurance
companies and regional food security planning.

Materials and Methods
Study area

The Cauvery delta zone (CDZ), located in eastern Tamil Nadu,
India, encompasses the districts of Thanjavur, Thiruvarur,
Nagapattinam and Mayiladuthurai. Geographically, the region
lies between 10°00'N and 11°15'N latitude and 78°45'E and 79°
55'E longitude, featuring flat terrain that gradually slopes
toward the Bay of Bengal (Fig. 1). Agriculture in the CDZ is
primarily supported by regulated irrigation from the Mettur
Dam and seasonal rainfall, particularly from the northeast
monsoon (October-December), which brings 900-1200 mm of
annual precipitation. Rice is the dominant crop grown mainly
during the Kuruvai (June-September), Samba (August-January)
and Thaladi (October-February) seasons. Farming practices
vary across districts, with Thanjavur and Thiruvarur possessing
better irrigation infrastructure and mechanization, while
Nagapattinam and Mayiladuthurai exhibit more traditional and
diverse systems. The region’s temperature ranges from 24 °C to
34 °C, which can accelerate crop development under heat
stress. CDZ’s agro-ecological diversity, variability in water
availability and well-documented farming systems make it an
ideal setting for comparative crop yield modelling. Its reliable
remote sensing coverage and strong institutional support for
ground-truth data further enhance its suitability for spatial
analysis. The details of the satellite data used in this study are
presented in Table 1.

Methodology for rice area estimation

The preprocessing of time-series Sentinel-1A SAR data,
provided by ESA, was carried out using MAPscape-RICE-
specialized software tailored by Sarmap, Switzerland. This
customized tool incorporates a fully automated SAR
processing workflow initially developed, specifically designed
to convert multi-temporal Sentinel-1A IW-GRD SAR datasets
into terrain-corrected o° values (8) (Fig. 2). The processing steps
were executed in the following sequence:

Strip mosaicking

SAR scenes from the same orbit and date were merged along
the azimuth direction to create continuous image strips in slant
range geometry, simplifying subsequent data processing.

Co-registration

All SAR images with consistent viewing geometry were co-
registered to align pixels across acquisition dates, enabling
effective multi-temporal analysis.

Table 1. Satellite data/products used in the study

Time series speckle filtering

A temporal filter (equivalent number of looks) was applied to
reduce speckle noise by assuming uniform surface reflectivity
across time-series acquisitions.

Terrain geocoding, radiometric calibration and normalization

Using a DEM and a range-doppler approach, 6° backscatter was
projected into SAR image space. Radiometric calibration
accounted for antenna gain, scattering area and range spreading
loss, while cosine-law correction normalized incidence angle
variations.

ANLD filtering

An adaptive non-local means denoising filter enhanced spatial
contrast by suppressing noise in homogeneous areas (9).

Atmospheric correction

An interpolation-based method corrected for atmospheric
anomalies such as moisture-induced variations in the SAR
signal (10).

Rice detection and classification

Post-processing, rice areas were identified using a rule-based
classification in MAPscape-RIICE software. Temporal ©°
backscatter profiles were analyzed based on local agronomic
knowledge of rice phenology and cultivation practices. Although
general detection rules were available, regional calibration was
essential to adapt to local crop dynamics.

Methodology for spatial DSSAT yield estimation

The decision support system for agrotechnology transfer
(DSSAT), developed through international cooperation under the
IBSNAT initiative in the USA, was utilized in this study. Daily rice
crop growth and development were modelled using CERES-Rice,
a component of DSSAT version 4.7. The crop simulation model
represents a simplified yet process-based framework to simulate
crop growth and yield as influenced by interacting factors such
as variety, soil properties, climatic conditions and management
practices. In this study, the CERES-Rice model was successfully
calibrated and validated to estimate rice yields across spatially
heterogeneous environments within the CDZ.

Input requirements for the DSSAT model
Weather data

Weather data, including daily maximum and minimum
temperatures (°C), solar radiation (MJ m?) and precipitation
(mm), were formatted into DSSAT-compatible files using the
built-in Weather Man utility for simulations with the CERES-Rice
model.

Soil data
Soil profile information for Tamil Nadu was sourced from the
Department of Remote Sensing and GIS, Tamil Nadu

Agricultural University, at a 1:50,000 scale. This data was used
to generate soil input files for DSSAT.

S. No. Satellite Data/products Resolution
1 INSAT 3DR Daily insolation 1km
2 MODIS 8 days composite FPAR 500 m
3 MODIS 8 days composite surface reflectance 500 m
4 Sentinel-1 Rice area mask 20m
5 Gridded data Daily minimum and maximum temperatures 5 km Grid
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Fig. 2. Schematic representation of the processing of SAR data and rice area mapping.
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Cultivar information

Genetic coefficient files for rice cultivars CR 1009, BPT 5204 and
ADT 45 were prepared using field data

Crop management data

Using the ‘X Build’ tool in DSSAT, management files were
created to capture detailed field conditions and experimental
inputs. These included soil and field characteristics, planting
configuration, irrigation and nutrient schedules, residue and
chemical applications, tillage operations and simulation
parameters.

Model calibration and validation

The model was calibrated with field data collected during the
rice-growing season to estimate genetic coefficients for the
three cultivars. Validation involved comparing simulated yields
with actual yields recorded from farmers’ fields in the study
region. Model accuracy was evaluated using regression plots
and correlation coefficients between observed and simulated
outputs.

Derivation of leaf area index (LAI) from SAR backscatter
data

Backscatter values in decibels (dB) were extracted from SAR
images for selected monitoring fields using the QGIS point
sampling tool. Simulated LAl values were paired with these dB
values to establish a linear regression model. The QGIS raster
calculator was then employed to generate spatial LAl maps by
applying the regression equation to the dB images taken
during the flowering stage of the rice crop.

Estimating rice yield through remote sensing

The final rice yield estimation combined DSSAT-simulated
outputs with SAR-derived LAl data. A regression model was
developed linking simulated yield and spatial LAl values
derived from SAR imagery. This relationship was used to
extrapolate rice yield across the broader study area (Fig. 3).

Methodology for semi physical approach yield estimation

Time series data downloaded from MOSDAC (INSAT 3DR) and
MODIS satellite data from August 2024 to January 2025 were
used for this analysis. The methodology for SPM is presented in
Fig. 4.

Photosynthetically active radiation (PAR)

Insolation or incoming solar radiation, is the total amount of
solar radiation received by an earth surface over a specific
period. PAR is the portion of this solar radiation that falls within
the 400-700 nm wavelength range, which is usable by plants for
photosynthesis. PAR constitutes a fraction of the total
insolation and is influenced by factors such as cloud cover,
ozone levels and atmospheric conditions (11). Insolation data
from the INSAT-3DR imager were downloaded for the study
period. Daily insolation data was multiplied by 0.48 to generate
daily PAR. Daily PAR is then composited into an 8-day
composite raster with respect to the acquisition dates of the
MODIS datasets. The datasets were resampled from 4000 m to
500 m.

Fraction of photosynthetically active radiation (FPAR)

FPAR quantifies the proportion of incoming PAR absorbed by
the plant canopy, influenced by factors like canopy structure,

4

leaf properties, atmospheric conditions and solar geometry.
FPAR is linked to the plant’s ability to synthesize carbohydrates
and is crucial for estimating plant productivity (12). A well-
growing crop with a dense canopy absorbs more PAR, resulting
in higher FPAR values, while unhealthy vegetation reflects
more PAR, leading to lower FPAR values. Higher FPAR generally
leads to increased biomass and crop yield.

Computation of water stress

Water stress arises when a crop experiences insufficient water
availability, negatively impacting its physiological functions.
This water deficit occurs due to limited soil moisture,
inadequate rainfall and excessive water loss through
evapotranspiration. These processes are further influenced by
atmospheric conditions, such as air saturation deficit (13). This
imbalance affects physiological, morphological and
biochemical processes, leading to reduced growth, yield and
productivity. The SWIR (short wavelength infrared) band is
sensitive to plant water content, making LSWI a valuable
indicator of vegetation and soil moisture.

NIR - SWIR
LSWI= ——
NIR + SWIR (Eqn. 1)
1+LSWI
Wistress= —
1L SWia (Eqn. 2)

Where, Wsress= Waer stress, LSWI = land surface water
index, LSWIlmax= maximum land surface water index of the area,
NIR=near infrared and SWIR = short wavelength infrared.

Computation of temperature stress

Temperature data for the study area were retrieved in CSV
format from the IMD data portal (14). The data were
interpolated to generate a temperature raster. Temperature
stress was generated using the equation:

(T‘Tmin)‘(T-Tmax)
(Eqn. 3)

Tstress=

(T'Tmin) (T‘Tmax) (T'TOpt)z

Where, Taess = temperature stress, T = daily mean
temperature, Tmin = minimum temperature for photosynthesis
(°C), Tmax = maximum temperature for photosynthesis (°C) and
Topt = Optimum temperature for photosynthesis (°C).

Computation of net primary product (NPP)

NPP represents the rate at which an ecosystem accumulates
biomass. Specifically, it is the difference between the amount
of biomass crops produced through photosynthesis and the
amount of energy (carbon dioxide) used for respiration (15).

RUE is the ratio of the biomass produced through
photosynthesis to the amount of PAR intercepted by the plant
(16). NPP for the period from sowing to harvest date has been
computed at an interval of 8 days with a spatial resolution of
500 m using the periodical PAR, FPAR, Watess, Tstress and

maximum radiation use efficiency.
NPP =PAR X FPAR X RUE X Wistress X Tstress (Egn.4)

Total NPP has been computed for the whole rice
growing season from 8-day composite datasets.
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Economic Yield

Bilogical Yield (Eqn. 5)

Spatialrice yield estimation

Rice yield was calculated from the product of total NPP and
harvest index of rice. The harvest index (HI) is the economic and
biological yield ratio.

The spatial rice yield for the study area was calculated
from the total NPP.

Yield = NPPsum x HI (Egn.6)

Results and Discussion
Rice area estimation

Time-series Sentinel-1A SAR data were acquired for the period
from August 2024 to January 2025. The data were pre-
processed and analyzed using MAPscape software to estimate
rice cultivation areas for the CDZ. The total rice area estimated
across the entire study area was 298087 ha. Fig. 5 shows the
spatial distribution of rice area across the CDZ. Among the four
districts, Thanjavur recorded the highest rice sown area with
106914 ha, followed by Thiruvarur (101825 ha), Mayiladuthurai
(45640 ha) and Nagapattinam (43708 ha) (Table 2). To assess
the accuracy of the rice area classification, ground truth data
were collected during the cropping season. A total of 182 rice
points and 95 non-rice points were surveyed across the study
area. The classification accuracy for rice area was found to be
93.90 %, with a Kappa coefficient of 0.88, indicating a high level
of agreement between the classified and ground truth.

Table 2. District wise rice area during the samba season

S. No. District Rice area (ha)
1 Thanjavur 106914
2 Thiruvarur 101825
3 Nagapattinam 43708
4 Mayiladuthurai 45640
Total 298087

Spatial yield estimation using the DSSAT model
Weather data

Weather input files for the crop simulation were generated
using the DSSAT Weatherman utility for the CDZ. These
datasets were critical inputs for the CERES-Rice model,
capturing the temporal and spatial climatic variability during
the rice-growing season. The generated weather files indicated
a mean maximum temperature ranging from 27.9 °C to 35.8 °C
and a mean minimum temperature between 20.6 °C and 25.8 °
C across the districts. Additionally, solar radiation values varied
slightly, from 13.4 to 21.7 MJ m? day?’, indicating relatively
consistent solar energy availability for photosynthesis during
the growing period. Total seasonal rainfall recorded during the
cropping period was 945 mm, highlighting spatial variability in
water availability, a critical factor influencing rice growth and
yield in the ecosystem.

Soildata

Soil input files for the CERES-Rice model were prepared using
laboratory-analyzed data and formatted through the DSSAT
‘SBuild’ utility. The study area comprised 22 distinct soil series,

6

highlighting the edaphic diversity of the CDZ. Soil texture
varied widely, with sand ranging from 21.40 % to 85.90 %, silt
1.00 % to 29.60 % and clay 8.40 % to 54.10 %, leading to
differences in water retention and infiltration. Bulk density
ranged from 1.28 to 1.65 g cm™ and organic carbon content
ranging from 0.04 % to 1.43 %, indicating variability in soil
fertility. These spatially explicit inputs were crucial for
simulating yield variability and assessing soil-crop interactions
within the model.

Calibration and validation

The CERES-Rice model in the DSSAT was calibrated to simulate
rice growth and yield by incorporating variety-specific genetic
coefficients. These coefficients were derived using the
GENCALC utility for three predominant rice cultivars in the CDZ,
namely, CR 1009, BPT 5204 and ADT 45 under uniform
management and environmental conditions. The calibration
process ensured accurate alignment of simulated phenological
stages and yield with observed field data, thereby enhancing
the model’s reliability across spatially diverse conditions.

To enable spatial scaling of yield simulations, the remote
sensing data is integrated with the crop simulation model. One of
the critical steps in this process was the assimilation of remotely
sensed LAl values derived from Sentinel-1A SAR imagery.
Regression models were developed to relate SAR backscatter
with field measured and model simulated LAl, allowing the
extrapolation of LAl values across the entire study region. This
spatially distributed LAl served as a driving variable in the model,
providing a dynamic representation of crop canopy growth
during the season. Using weather, soil, genetic and management
inputs, along with spatially integrated LA, the CERES-Rice model
simulated key growth and development parameters. It includes
days to emergence, anthesis and physiological maturity, as well
as yield components such as biomass, harvest index and grain
yield. The results indicated distinct spatial variability in simulated
rice yields across the CDZ (Fig. 6). The mean rice yield for the
entire study area was estimated at 3524 kg/ha. Among the
districts, Thanjavur recorded the highest average yield of 3752
kg/ha, while Nagapattinam registered the lowest at 3330 kg/ha.
Mayiladuthurai and Thiruvarur recorded intermediate yields of
3396 kg/ha and 3617 kg/ha, respectively, reflecting the influence
of local agro-climatic and soil conditions on crop performance.

The results showed strong agreement between satellite
-derived and observed vyields, with district-level accuracy
ranging from 85.50 % to 91.30 % and the overall agreement of
the CDZ is 88.60 % (Table 3). Accurate simulation of growth
stages and yield using CERES-Rice were reported, while NRMSE
values of 11.38 % and 15.27 % for early and late rice cultivars
were achieved, respectively (17, 18). Similarly, improved spatial
yield predictions by integrating SAR-derived LAl with the DSSAT
crop model was demonstrated (19).

Semi-physical model-based yield estimation

Net primary productivity (NPP) was estimated using key
biophysical and environmental parameters, including PAR,
FPAR, RUE and stress indices related to water and temperature
(5). These components collectively represent the crop’s ability to
convert solar energy into biomass under varying environmental
conditions.
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PAR, which indicates the portion of solar radiation
available for photosynthesis, varied seasonally from 150-315
MJ m?2(5). Peak values (270-314 MJ m? were recorded in
September 2024 during active vegetative growth, while the
lowest values (155-187 MJ m?) occurred in November 2024 due
to cloud cover and reduced daylight during the reproductive
and maturity stage. FPAR, representing canopy efficiency in
capturing incident radiation, ranged from 0 to 1 across the
season, reflecting dynamic changes in canopy structure and
crop development. High FPAR values during mid-season
coincided with vigorous vegetative growth. Water and
temperature stress, key constraints to productivity, remained
minimal throughout the rice-growing season in the CDZ due to
adequate rainfall, irrigation and favourable temperatures,
allowing for optimal photosynthesis and biomass accumulation.
A constant RUE value of 2.9 g MJ* was used, as rice typically
maintains stable RUE under optimal conditions (20).

The integration of PAR, FPAR, RUE and stress indices
enabled spatial and temporal assessment of rice yield (Fig. 7).
The average estimated yield was 4471 kg/ha, with the highest

in Thiruvarur (4590 kg/ha), followed by Mayiladuthurai (4555
kg/ha), Thanjavur (4465 kg/ha) and Nagapattinam (4275 kg/
ha). The semi-physical model achieved 83.30 % agreement
with observed yields (Table 3). These results highlight the
effectiveness of combining physiological parameters with
environmental data to capture yield variability and support
informed agricultural decision-making. Similar studies also
estimated the yield using semi physical model (19, 21).

Comparison of DSSAT and semi-physical model based
remote sensing yield

Spatial rice yield estimation using the DSSAT model and the
semi-physical model (SPM) was compared against observed
(CCE) data. The DSSAT-based yield estimates demonstrated a
higher concordance with the observed values, achieving an
accuracy of 88.60 %, whereas the SPM yielded a slightly lower
accuracy of 83.60 % (Fig. 8). These results underscored the
superior predictive capability of the DSSAT model when
supplied with detailed input data.
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Fig. 7. Semi-physical model-based rice yield.

Table 3. Agreement between the observed yield and the different model based remote sensing yield

District CCE (kg/ha) S(Pkl\; /yhi:;d DS(?(I;‘;’ ryaifld Agreergggtv ?etelf:lv‘zig;‘hsal;m and Agreement 3;&:&1«:&2/?\§)SAT and CCE
Mayiladuthurai 3597 3975 3355 84.40 87.60
Nagapattinam 3588 3897 3426 84.20 85.50
Thanjavur 3774 4379 3822 81.40 91.30
Thiruvarur 3624 4024 3689 83.40 90.10
Mean 3646 4068 3573 83.30 88.60
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The DSSAT model benefits from its ability to simulate
complex interactions among soil, weather, crop genotype and
management practices, resulting in more realistic and accurate
yield predictions. However, the model’s effectiveness is
contingent upon the availability of extensive and precise input
data, as well as considerable calibration efforts, which may limit
its applicability in large-scale or time-sensitive scenarios. In
contrast, the SPM, while slightly less accurate, offers a simpler
and more scalable approach. It leverages remote sensing-
derived parameters to estimate yield, making it useful in data-
scarce environments. Yet, its reliance on empirical relationships
and satellite data makes it more susceptible to input errors and
environmental variability. In conclusion, while DSSAT offers
higher prediction accuracy, it demands substantial data and
calibration resources. The SPM, though relatively less accurate,
presents a viable and operationally efficient alternative for
regional-scale yield estimation, particularly in data-constrained
settings.

Conclusion

The comparative evaluation of DSSAT and semi-physical models
for spatial rice yield estimation in the CDZ has provided key
insights into the capabilities and limitations of each approach.
The DSSAT crop simulation model, calibrated with region-
specific field data and integrated with SAR-derived LAl
demonstrated higher alignment with observed CCE data,
achieving an accuracy of 88.60 %. This underscored the model’s
robustness in simulating crop growth under varying agro-
climatic and soil conditions when supported by detailed input
datasets. The semi-physical model, utilizing remote sensing-
derived parameters such as PAR, FPAR, RUE and stress indices,
offered a scalable and efficient alternative with an accuracy of
83.30 %. Its ability to estimate yield using fewer field inputs
highlights its potential utility in operational contexts, particularly
in data-scarce environments. However, its performance is more
sensitive to input resolution and environmental variability. This
study demonstrated the benefits of integrating advanced

geospatial tools, simulation frameworks and biophysical
modelling to improve regional scale rice yield estimation. The
findings emphasized that while DSSAT excels in accuracy and
depth of simulation, the semi-physical approach provides
practical advantages in terms of scalability and ease of
implementation. Together, these methodologies contribute to
building a robust decision-support system for policymakers,
agricultural planners and food security strategists, enabling
timely and informed decisions across diverse rice-growing
landscapes. The research reinforces the importance of adopting
context-appropriate models to meet the dual objectives of
accuracy and operational feasibility in agricultural monitoring,
particularly under climate variability and resource constraints.
Further, machine learning models can be integrated with either
DSSAT or SPM for better accuracy.
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