Skip to main navigation menu Skip to main content Skip to site footer

Special Issue: Soil and Phytomicrobiomes for Plant Growth and Soil Fertility

Vol. 8 No. sp1 (2021)

Indigenous entomopathogenic nematode as biocontrol agents for insect pest management in hilly regions

DOI
https://doi.org/10.14719/pst.1501
Submitted
22 September 2021
Published
05-07-2022

Abstract

The present investigation mainly emphasized on the development and use of entomopathogenic nematodes (EPNs) as a bio-insecticide. The success in controlling insect pests in the soil environments increased the production and use of the adapted indigenous EPNs species for insect management in the fields. EPNs as biocontrol agents were capable for high virulence, easy for application, safe for non-target animals and eco-friendly in nature. These nematodes have ubiquitous nature. These occur in low population in their natural habitat which was mass multiplied in the laboratory. In the present investigation, 5 concentrations (30IJs, 60IJs, 90IJs, 120IJs and 150IJs) of Heterorhabditis bacteriophora strain S15 were applied against the 3rd and 4th instar larvae of four major agricultural insect pests, namely Helicoverpa armigera, Spodoptera litura, Agrotis segetum and Mythimna separata under laboratory conditions at different time exposure (24, 48, 72 and 96 hr). It was observed that the 3rd and 4th larval instars of all 4 insects (H. armigera, S. litura, A. segetum and M. separata) were highly susceptible for the pathogenesis caused by H. bacteriophora Sirmaur isolates. Amongst all insects, both the larval instars of M. separata are highly susceptible for EPNs infection with highest 96% and 98% mortality in highest dose @150IJs. In 3rd instar larvae of other insects such as H. armigera, S. litura and A. segetum larval mortality ranges from 84%, 92% and 94% respectively. Among 4th instar larvae of H. armigera, S. litura and A. segetum the pathogenicity varies from 88%, 94% and 96% respectively. The recorded median lethal concentration (LC50) in 3rd instar larvae of H. armigera, S. litura, A. segetum and M. separata varies from 36.15, 30.05, 30.97 and 23.8. Similarly in 4th instar larvae of H. armigera, S. litura, A. segetum and M. separata, LC50 ranged from 31.41, 28.64, 26.92 and 20.64 respectively. Statistically significant variations were observed in the data recorded on the mortality, in all the treatments. EPNs are the best weapon to overcome insect resistance problems and must be employed to manage insect population.

References

  1. Kaneda T, Greenbaum C, Kline K. World population data sheet shows older populations growing, total fertility rates declining. Population Reference Bureau. 2020. Available from: https://www.prnewswire.com/news-releases/prbs-2021-world-population-data-sheet-released-301357333.html
  2. Thakur N, Tomar P, Kaur S, Jhamta S, Thakur R, Yadav AN. Entomopathogenic soil microbes for sustainable crop protection, In: Yadav AN.; Editor. Soil Microbiomes for Sustainable Agriculture Springer. 2021;529-71. https://doi.org/10.1007/978-981-15-6949-4_1
  3. Bhat AH, Chaubey AK, Askary TH. Global distribution of entomopathogenic nematodes, Steinernema and Heterorhabditis. Egypt J Biol Pest Co. 2020;30:1-15. https://doi.org/10.1186/s41938-020-0212-y
  4. Kaya HK, Gaugler R. Entomopathogenic nematodes. Ann Rev Ent. 1993; 38(1):181-206. https://doi.org/10.1146/annurev.en.38.010193.001145
  5. Hominick WM. Biogeography. In: Gaugler R., editor Entomopathogenic Nematology. CABI Publications, UK. 2002;1:115-43.https://doi.org/10.1079/9780851995670.0115
  6. Campos-Herrera R. Nematode pathogenesis of insects and other pests: ecology and applied technologies for sustainable plant and crop protection In: Campos-Herrera R., editor Sustainability in plant and crop protection. Springer. 2015; p. 1-531. https://doi.org/10.1007/978-3-319-18266-7
  7. Georgis R, Koppenhöfer AM, Lacey LA, Bélair G, Duncan LW, Grewal PS et al. Successes and failures in the use of parasitic nematodes for pest control. Biol Control. 2006;38(1):103-23. https://doi.org/10.1016/j.biocontrol.2005.11.005
  8. Grewal PS, Selvan S, Gaugler R. Nematodes: niche breadth for infection, establishment and reproduction. J Therm Biol. 1994;19:245-53.https://doi.org/10.1016/0306-4565(94)90047-7
  9. Gulcu BA, Cimen HA, Raja RK, Hazir SE. Entomopathogenic nematodes and their mutualistic bacteria: their ecology and application as microbial control agents. Biopestic. 2017;13(2):79-112.
  10. Kaya HK, Nelsen C. Encapsulation of steinernematid and heterorhabditid nematodes with calcium alginate: a new approach for insect control and other applications. Environ Entomol. 1985;14(5):572-74. https://doi.org/10.1093/ee/14.5.572
  11. Thakur N, Kaur S, Tomar P, Thakur S, Yadav AN. Microbial biopesticides: current status and advancement for sustainable agriculture and environment, In: Rastegari AA, Yadav AN, Yadav N, editors Trends of Microbial Biotechnology for Sustainable Agriculture and Biomedicine Systems: Diversity and Functional Perspectives. Elsevier, Amsterdam. p 243-82. https://doi.org/10.1016/B978-0-12-820526-6.00016-6
  12. Dillman AR, Guillermin ML, Lee JH, Kim B, Sternberg PW, Hallem EA. Olfaction shapes host–parasite interactions in parasitic nematodes. In: Proceedings of the National Academy of Sciences. 2012;109(35):E2324-E2333. https://doi.org/10.1073/pnas.1211436109
  13. Hallem EA, Dillman AR, Hong AV, Zhang Y, Yano JM, DeMarco SF, Sternberg PW. A sensory code for host seeking in parasitic nematodes. Current Biol. 2011;21(5):377-83. https://doi.org/10.1016/j.cub.2011.01.048
  14. Grewal P, Gaugler R, Selvan S. Host recognition by entomopathogenic nematodes: behavioral response to contact with host feces. J Chem Ecol. 1993;19(6):1219-31. https://doi.org/10.1007/BF00987382
  15. Burnell A, Stock SP. Heterorhabditis, Steinernema and their bacterial symbionts—lethal pathogens of insects. Nematol. 2000;2(1):31-42. https://doi.org/10.1163/156854100508872
  16. Forst S, Dowds B, Boemare N, Stackebrandt E. Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol. 1997;51(1):47-72. https://www.annualreviews.org/doi/10.1146/annurev.micro.51.1.47
  17. Fitt GP. The ecology of Heliothis species in relation to agroecosystems. Annu Rev Entomol. 1989;34(1):17-53.https://doi.org/10.1146/annurev.en.34.010189.000313
  18. Dhir B, Mohapatra H, Senapati B. Assessment of crop loss in groundnut due to tobacco caterpillar, Spodoptera litura (F.). Indian J Plant Prot. 1992;20(2):215-17.
  19. Rao GR, Wightman J, Rao DR. World review of the natural enemies and diseases of Spodoptera litura (F.) (Lepidoptera: Noctuidae). Int J Tropic Insect Sci. 1993;14(3):273-84. https://doi.org/10.1017/S1742758400014764
  20. Ram G, Misra S, Dhamayanthi K. Relative susceptibility of advanced hybrids and promising cultivars of potato, Solanum tuberosum L. to greasy cutworm, Agrotis ipsilon (Hufn.) in North-eastern plains. J Entomol Res. 2001;25(3):183-87.
  21. Mrowczynski M, Wachowiak H, M B. Cutworms -a dangerous pest in the autumn of 2003. Ochrana Roslin. 2003;47:24-26.
  22. Napiorkowska K, Gawowska J. Increase of harmfulness of caterpillars (Hadeninae and Noctuinae, Lepidoptera: Noctuidae) on cabbage and other cole crops. Progress in Plant Prot. 2004;44:978-80.
  23. Arab Republic of Egypt. Ministry of Agriculture and Land Reclamation. Technical Recommendations for Agricultural Pest Control. p. 1-285. http://www.apc.gov.eg/Files/Releases/Recom.20-English.pdf
  24. Hill M, Atkins A. Incidence of the armyworm, Mythimna separata Walker (Noctuidae: Lepidoptera), and its introduced parasite, Apanteles ruficrus Halliday (Braconidae: Hymenoptera), in maize. New Zeal J Agr Res. 1983;26(1):135-38. https://doi.org/10.1080/00288233.1983.10420963
  25. White G. A method for obtaining infective nematode larvae from cultures Science (Washington). 1927;66(1709):302-03. https://doi.org/10.1126/science.66.1709.302-b
  26. Orozco RA, Lee M-M, Stock SP. Soil sampling and isolation of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae). J Visual Exp. 2014;(89):e52083. https://dx.doi.org/10.3791/52083
  27. Kumar L, Bisht RS, Singh H, Kumar M. Studies on growth and development of Helicoverpa armigera (Hub.) on various hosts and artificial diet under laboratory conditions. Int J Curr Microbiol Appl Sci. 2017;6(12):1627-37. https://doi.org/10.20546/ijcmas.2017.612.183
  28. Seth R, Sharma V. Growth, development, reproductive competence and adult behaviour of Spodoptera litura (Lepidoptera: Noctuidae) reared on different diets. 2002;15-22. https://www.osti.gov/etdeweb/biblio/20246472
  29. Verma K. Bioecology and management of turnip moth (Lepidoptera, Noctidae) attacking vegetable crops. Doctoral dissertation, Ph. D. Thesis, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, 1996 p. 121.
  30. Manjula K, Kotikal Y. Biology of turnip moth, Agrotis segetum (Denis and Schiffermüller) on palak, Beta vulgaris var. bengalensis Hort. J Entomol Zool Stud. 2018;6(6):1183-86.
  31. Patil J, Vijayakumar R, Linga V, Sivakumar G. Susceptibility of Oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae) larvae and pupae to native entomopathogenic nematodes. J Appl Entomol. 2020;144(7):647-54. https://doi.org/10.1111/jen.12786
  32. Hassani-Kakhki M, Karimi J and Hosseini M. Efficacy of entomopathogenic nematodes against potato tuber moth, Phthorimaea operculella (Lepidoptera: Gelechiidae) under laboratory conditions. Biocontrol Sci Technol. 2013;23(2):146-59. https://doi.org/10.1080/09583157.2012.745481
  33. Vashisth S. Distribution and biocontrol potential of entomopathogenic nematodes against some lepidopterous pests. Doctoral dissertation, Ph. D. Thesis, CSKPV Krishi Vishavavidyalaya, Palampur. Himachal Pradesh. 2014;1-182. http://hdl.handle.net/10603/203884
  34. Kary NE, Golizadeh A, Dastjerdi HR, Mohammadi D, Afghahi S, Omrani M, et al. A laboratory study of susceptibility of Helicoverpa armigera (Hübner) to three species of entomopathogenic nematodes. Munis Entomol Zool. 2012;7(1):72-379.
  35. Vashisth S, Chandel Y, R Chandel. Comparative efficacy of indigenous heterorhabditid nematodes from north western Himalaya and Heterorhabditis indica (Poinar, Karunakar & David) against the larvae of Helicoverpa armigera (Hubner). Int J Pest Manage. 2019;65(1):16-22. https://doi.org/10.1080/09670874.2018.1453099
  36. Andaló V, Faria LS, Carvalho FJ, Assis GA, Santos V, Mendes SM, Gonring AH Entomopathogenic nematodes for the control of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) pupae. Arq Inst Biol. 2021;88:1-8. https://doi.org/10.1590/1808-1657000742019
  37. Glazer I, Navon A. Activity and persistence of entomoparasitic nematodes tested against Heliothis armigera (Lepidoptera: Noctuidae). J Econ Entomol. 1990;83(5):1795-1800. https://doi.org/10.1093/jee/83.5.1795
  38. Yan X, Shahid Arain M, Lin Y, Gu X, Zhang L, Li J, Han R. Efficacy of entomopathogenic nematodes against the tobacco cutworm, Spodoptera litura (Lepidoptera: Noctuidae). J Econ Entomol. 2020;113(1):64-72. https://doi.org/10.1093/jee/toz262
  39. Acharya R, Hwang HS, Mostafiz MM, Yu YS, Lee KY. Susceptibility of various developmental stages of the fall armyworm, Spodoptera frugiperda, to entomopathogenic nematodes. Insects. 2020;11(12):868. https://doi.org/10.3390/insects11120868
  40. Acharya R, Yu YS, Shim JK, Lee KY. Virulence of four entomopathogenic nematodes against the tobacco cutworm, Spodoptera litura Fabricius. Biol Control. 2020;150:104348. https://doi.org/10.1016/j.biocontrol.2020.104348
  41. Dichusa CA, Ramos R, Aryal S, Sumaya NP, Sumaya NH. Survey and identification of entomopathogenic nematodes in the province of Cotabato, Philippines, for biocontrol potential against the tobacco cutworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Egypt J Biol Pest Co. 2021;31(1):1-10. https://doi.org/10.1186/s41938-021-00390-w
  42. Radhakrishnan S, Shanmugam S. Bioefficacy of entomopathogenic nematodes against Spodoptera litura (Lepidoptera: Noctuidae) in Bhendi. Int J Curr Microbiol Appl Sci. 2017;6:2314-19. DOI:10.20546/ijcmas.2017.607.273.https://doi.org/10.20546/ijcmas.2017.607.273
  43. Chandel Y, Kapoor S, Kumar S. Virulence of Heterorhabditis bacteriophora (Poinar) against cutworm, Agrotis segetum (Denis & Schiff.). J Biol Cont. 2010;23(4):409-15. https://doi.org/10.18311/jbc/2009/3696
  44. Kumari V, Singh NP, Shinde S, Meena S, Lata RK. Factors affecting propagation of Heterorhabditis bacteriophora Poinar, an entomopathogenic nematode in Plutella xylostella (L.) J Biopestic. 2019;12(1):1-6.
  45. Chandel RS, Verma KS, Rana A, Sanjta S, Badiyala A, Vashisth S, et al. The ecology and management of cutworms in India. Oriental Insects. 2021;1-26. https://doi.org/10.1080/00305316.2021.1936256
  46. Radhakrishnan S, Shanmugam S, Ramasamy R. Bio control efficacy of Entomopathogenic nematodes against Black Cutworms, Agrotis ipsilon (Hufnagel) (Noctuidae: Lepidoptera) in potato. Chem Sci Rev Lett. 2017;6(21):219-24. https://www.researchgate.net/publication/318458813
  47. Ebrahimi L, TanhaMaafi Z, Sharifi P. First report of the entomopathogenic nematode, Steinernema carpocapsae from Moghan region of Iran and its efficacy against the turnip moth, Agrotis segetum Denis & Schiffermuller (Lepidoptera: Noctuidae), larvae. Egypt J Biol Pest Co. 2019;29(1):1-6. https://doi.org/10.1186/s41938-019-0168-y
  48. FAO. 2018 http//www.fao.org/statisticaldatabases/agriculture.

Downloads

Download data is not yet available.