Special Issue: Soil and Phytomicrobiomes for Plant Growth and Soil Fertility
Vol. 8 No. sp1 (2021)
Plant growth-promoting endophytic bacteria associated with Halocnemum strobilaceum (Pall.) M.Bieb and their plant beneficial traits
1Department of Genetics and Biotechnology, Samarkand State University, Samarkand 140104, Uzbekistan
Department of Microbiology and Biotechnology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
Department of Enzymology, Institute of Microbiology of the Academy of Sciences of the Republic of Uzbekistan, Tashkent 100128, Uzbekistan
Department of Genetics and Biotechnology, Samarkand State University, Samarkand 140104, Uzbekistan
Abstract
Halocnemum strobilaceum (Pall.) M.Bieb. is a halophyte desert plant. The plant is known for its antioxidant, antimicrobial, insecticidal and phytoremediation properties. Halocnemum strobilaceum grows in severe salinity and drought conditions and its’ survival can be associated with activity of endophytic bacteria. The aim of the research was to reveal and study plant growth-promoting endophytic bacteria isolated from Halocnemum strobilaceum (Pall.) M.Bieb. The plants were collected from Kyzylkum desert in Uzbekistan. The endophytic bacteria were isolated from Halocnemum strobilaceum (Pall.) M.Bieb. tissues and screened for cotton (Gossypium hirsutum L.) growth-promoting activity. As a result the most active isolates HAST-2, HAST-7, HAST-9, HAST-10 and HAST-17 were selected. The cotton seeds’ inoculation with these bacterial isolates resulted in significant improvement of seeds germination, root and shoot length, and fresh plant weight due to their ability to fix nitrogen, produce indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase, siderophores and solubilize phosphates. The chosen isolates were identified using 16S rRNA gene analysis and registered in GenBank (NCBI) as Bacillus megaterium HAST-2, Bacillus aryabhattai HAST-7, Pseudomonas plecoglossicida HAST-9, Pseudomonas putida HAST-10 and Pseudomonas chlororaphis HAST-17. These strains can be used as bio-inoculants to improve the growth of cotton and other crops.
References
- Qui XX, Huang ZY, Baskin JM, Baskin CC. Effect of temperature, light and salinity on seed germination and radicle growth of the geographically widespread halophyte shrub Halocnemum strobilaceum. Ann Bot. 2008;101:293-299. https://doi.org/10.1093/aob/mcm047
- Mariem S, Mariam K, Mariem BJ, Riadh K. Antioxidant and antimicrobial activities of Halocnemum strobilaceum fractions and their related bioactive molecules identification by GC/MS and HPLC. Res J Recent Sci. 2018;7:1-5
- Acheuk F, Lakhdari W, Dahliz A, Abdellaoui K, Moukadem M, Allili S. Toxicity, acethylcolinesterase and glutathione s-transferase effects of Halocnemum strobilaceum crude extract against Tribolium castaneum. A&F. 2018;64:23-33. https://doi.org/10.17707/AgricultForest.64.1.03
- Handoussaa H, AbdAllahb W, AbdelMohsenb M. UPLC–ESI-PDA–Msn profiling of phenolics involved in biological activities of the medicinal plant Halocnemum strobilaceum (Pall.). Iran J Pharm Res. 2019;18:422-429
- Bobtana F, Elabbar F, Bader N. Evaluation of Halocnemum strobilaceum and Hammada scoparia plants performance for contaminated soil phytoremediation. J Med Chem Sci. 2019;3:126-129. https://doi.org/10.26655/JMCHEMSCI.2019.8.1
- Fernando TC, Cruz JA. Profiling and biochemical ?dentification of potential plant growth-promoting endophytic bacteria from Nypa fruticans. Philipp J Crop Sci. 2019;44:77-85. https://doi.org/10.13140/RG.2.2.15641.98408
- Egamberdieva D, Shurigin V, Alaylar B, Wirth S, Bellingrath-Kimura SD. Bacterial endophytes from horseradish (Armoracia rusticana G. Gaertn., B.?Mey. ?&? Scherb.) with antimicrobial efficacy against pathogens. Plant Soil Environ. 2020;66:309-316. https://doi.org/10.17221/137/2020-PSE
- Shurigin V, Alaylar B, Davranov K, Wirth S, Bellingrath-Kimura SD, Egamberdieva D. Diversity and biological activity of culturable endophytic bacteria associated with marigold (Calendula officinalis L.). AIMS Microbiol. 2021;7(3):336-353. https://doi.org/10.3934/microbiol.2021021
- Egamberdieva D, Shurigin V, Gopalakrishnan S, Ram S. Microbial strategies for the improvement of legume production in hostile environments. In: Azooz MM, Ahmad P, editors. Legumes under environmental stress: yield, improvement and adaptations. UK: John Wiley & Sons Ltd; 2015. p. 133-144. https://doi.org/10.1002/9781118917091.ch9
- Chung BS, Aslam Z, Kim SW, Kim GG, Kang HS, Ahn JW, et al. A bacterial endophyte, Pseudomonas brassicacearum YC5480, isolated from the root of Artemisia sp. producing antifungal and phytotoxic compounds. Plant Pathol J. 2008;24:461-468. https://doi.org/10.5423/PPJ.2008.24.4.461
- Hu HQ, Li XS, He H. Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of capsicum bacterial wilt. Biol Control. 2010;54:359-365. https://doi.org/10.1016/j.biocontrol.2010.06.015
- Shurigin V, Egamberdieva D, Li L, Davranov K, Panosyan H, Birkeland N-K, et al. Endophytic bacteria associated with halophyte Seidlitzia rosmarinus Ehrenb. ex Boiss. from arid land of Uzbekistan and their plant beneficial traits. J Arid Land. 2020;12:730-740. https://doi.org/10.1007/s40333-020-0019-4
- Bibi F, Strobel GA, Naseer MI, Yasir M, Al-Ghamdi AAK, Azhar EI. Halophytes-associated endophytic and rhizospheric bacteria: diversity, antagonism and metabolite production. Biocontrol Sci Technol. 2018;28:192-213. https://doi.org/10.1080/09583157.2018.1434868
- Coombs JT, Franco CM. Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol. 2003;69:5603-5608. https://doi.org/10.1128/AEM.69.9.5603-5608.2003
- Fouda A, Eid AM, Elsaied A, El-Belely EF, Barghoth MG, Azab E, et al. Plant growth promoting endophytic bacterial community inhabiting the leaves of Pulicaria incisa (Lam.) DC inherent to arid regions. Plants. 2021;10:76. https://doi.org/10.3390/plants10010076
- Sarwar M, Kremer RJ. Determination of bacterially derived auxins using a microplate method. Lett Appl Microbiol. 1995; 20:282-285. https://doi.org/10.1111/j.1472-765X.1995.tb00446.x
- Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL. Isolation and characterization of soybean- associated bacteria and their potential for plant growth promotion. Environ Microbiol. 2004;6:1244-1251. https://doi.org/10.1111/j.1462-2920.2004.00658.x.
- Mehta S, Nautiyal CS. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr Microbiol. 2001;43:51-56. https://doi.org/10.1007/s002840010259
- Bashan Y, Holguin G, Lifshitz R. Isolation and characterization of plant growth-promoting rhizobacteria. In: Glick BR, Thompson JE, editors. Methods in plant molecular biology and biotechnology. USA, FL, Boca Raton: CRC Press; 1993. p. 331-345
- Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987;160:45-46. https://doi.org/10.1016/0003-2697(87)90612-9.
- Egamberdieva D, Kucharova Z, Davranov K, Berg G, Makarova N, Azarova T, et al. Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol Fertil Soils. 2011;47:197-205. https://doi.org/10.1007/s00374-010-0523-3
- Stanier RY, Palleroni NJ, Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966;43:159-271. https://doi.org/10.1099/00221287-43-2-159
- Palleroni NJ, Doudoroff M. Some properties and taxonomic subdivisions of the genus Pseudomonas. Annu Rev Phytopathol. 1972; 10:73-100. https://doi.org/10.1146/annurev.py.10.090172.000445
- MacFaddin JF, editor. Biochemical tests for identification of medical bacteria. 2nd ed. Baltimore: Williams & Wilkins; 1980
- Cowan ST, editor. Cowan and Steel’s manual for the identification of medical bacteria. Cambridge: Cambridge University Press; 1974
- Veron M. Nutrition et taxonomie des Enterobacteriaceae et bacteries voisines. I. Methods d'etude des auxanogrammes. Ann Microbiol (Paris). 1975;126:267-274.
- Ishimaru K, Akagawa-Matsushita M, Muroga K. Vibrio penaeicida sp. nov., a pathogen of kuruma prawns (Penaeus japonicus). Int J Syst Evol Microbiol. 1995;45:134-138. https://doi.org/10.1099/00207713-45-1-134
- Dashti AA, Jadaon MM, Abdulsamad AM, Dashti HM. Heat treatment of bacteria: a simple method of DNA extraction for molecular techniques. KMJ. 2009;41:117-122
- Lane DJ. 16S/23S rRNA Sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematic. New York: John Wiley and Sons; 1991. p. 115-175
- Kruasuwan W, Thamchaipenet A. Diversity of culturable plant growth-promoting bacterial endophytes associated with sugarcane roots and their effect of growth by co-inoculation of diazotrophs and actinomycetes. J Plant Growth Regul. 2016;35:1074-1087. https://doi.org/10.1007/s00344-016-9604-3
- Egamberdieva D, Shurigin V, Alaylar B, Ma H, Müller MEH, Wirth S, et al. The effect of biochars and endophytic bacteria on growth and root rot disease incidence of Fusarium infested narrow-leafed lupin (Lupinus angustifolius L.). Microorganisms. 2020;8:496. https://doi.org/10.3390/microorganisms8040496
- Leghari SJ, Wahocho NA, Laghari GM, Laghari AH, Bhabhan GM, Talpur KA, et al. Role of nitrogen for plant growth and development: A review. Adv Environ Biol. 2016; 10:209-218
- Galloway JN, Cowling EB. Reactive nitrogen and the world: 200 years of change. AMBIO: A Journal of the Human Environment. 2002;31:64-71. https://doi.org/10.1579/0044-7447-31.2.64
- Muangthong A, Youpensuk S, Rerkasem B. Isolation and characterisation of endophytic nitrogen fixing bacteria in sugarcane. Trop Life Sci Res. 2015;26:41-51
- Gao FK, Dai CC, Liu XZ. Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Microbiol Res. 2010;4:1346-1351
- Gao D, Tao Y. Current molecular biologic techniques for characterizing environmental microbial community. Front Environ Sci Eng. 2012;6:82-97. https://doi.org/10.1007/s11783-011-0306-6
- Yadav AN. Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. ASMI. 2018;1:01-05. https://doi.org/10.31080/ASMI.2018.01.0044
- Glick BR, Penrose DM, Li J. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol. 1998;190:63-68. https://doi.org/10.1006/jtbi.1997.0532
Downloads
Download data is not yet available.