Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 9 No. sp3 (2022)

Impact of Elevated Temperature and Carbon dioxide on Seed Physiology and Yield

DOI
https://doi.org/10.14719/pst.2059
Submitted
12 August 2022
Published
12-01-2023 — Updated on 09-04-2023
Versions

Abstract

Food security is of utmost priority to humankind. This is the implication of various interconnected factors that lead to climate change. Elevated temperature and carbon dioxide levels are just 2 of these. The nutrient is an inseparable aspect of food. The change in climate is posing threat not only to the amount of available food but also to the nutrients laden in the food items. Seeds are the miniature form of plants and are a reflection of their future health and nutritional status. The changes in environmental factors predominantly challenge the growth and development of a seed. This review is an attempt to understand the impact of elevated CO2 and temperature on seed germination, the nutritional status of the seed and the yield in form of total seed production. It gives a direction for analysis and future studies that may use the latest available tools like gene editing to tackle and counteract the retarding effect of climate change on these parameters of seed, thereby offering a climate resilient agriculture.

References

  1. Koubour?s CG, Metz?dak?s TI, Vas?lakak?s DM. Impact of temperature on olive (Olea europaea L.) pollen performance in relation to relative humidity and genotype. Env?ron Exp Bot. 2009; 67: 209-14. https://doi.org/10.1016/j.envexpbot.2009.06.002
  2. IPCC, 2007: Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, SD Qin, M Manning, Z Chen, M Marquis, KB Averyt, M Tignor, HL Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  3. Heidari Z, Kamkar B, Sinaki JM. Influence of temperature on seed germination response of fennel. Adv Plants Agric Res. 2014;1(5):207-13. doi: 10.15406/apar.2014.01.00032
  4. Huang Z, Zhang XS, Zheng GH, Gutterman Y. Influence of light, temperature, salinity and storage on seed germination of Haloxylonammodendron. J Arid Environ. 2003; 55:453-64. https://doi.org/10.1016/S0140-1963(02)00294-X
  5. Tlig T, Gorai M, Neffati M. Germination responses of Diplotaxisharrato temperature and salinity. Flora. 2008; 203:421-28. https://doi.org/10.1016/j.flora.2007.07.002
  6. Wahid A, Gelani S, Ashraf M, Foolad MR 2007. Heat tolerance in plants: An overview. Environ Exp Bot. 2007;61:199-223. http://dx.doi.org/10.1016/j.envexpbot.2007.05.011
  7. Machado EC, Medina CL, Gomes MMA, Habermann G. Variaçãosazonal da fotossíntese, condutânciaestomática e potencial da águanafolha de laranjeira ‘valência’. Scientia Agricola. 2002;59(1):53-58. https://doi.org/10.1590/S0103-90162002000100007
  8. Finch-Savage WE, Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol. 2006;171(3):501-23.doi: 10.1111/j.1469-8137.2006.01787.x
  9. Begcy K, Sandhu J, Walia H. Transient heat stress during early seed development primes germination and seedling establishment in rice. Front Pl Sci. 2018; 9: 1768. doi: 10.3389/fpls.2018.01768
  10. Iloh AC, Omatta G, Ogbadu GH, Onyenekwe PC. Effects of elevated temperature on seed germination and seedling growth on three cereal crops in Nigeria Sci Res Essays. 2014; 9(18):806-13. DOI: 10.5897/SRE2014.5968
  11. Opio P, Photchanachai S. Heat stress influences dormancy in peanut seeds (Arachis hypogea L.) cv. KhonKaen 84-88.
  12. South-WestJ Hort Biol Environ. 2016;7(2): 127-37.
  13. Guo C, Shen Y, Fenghou SF. Effect of temperature, light and storage time on the seed germination of Pinus bungeana Zucc. ex Endl.: The role of seed-covering layers and abscisic acid changes. Forests. 2020;11:300-16. https://doi.org/10.3390/f11030300
  14. Kim DH, Han SH. Direct effects on seed germination of 17 tree species under elevated temperature and CO2 conditions. Open Life Sci. 2018;13:137-48. https://doi.org/10.1515/biol-2018-0019
  15. Han SH, Koo YB, Kim CS, Oh CY, Song JH. Viability determination of Pinus rigida seeds using artificially accelerated aging. Kor J Agri For Meteorol. 2006; 8: 10-14.
  16. Corbineau F, Picard MA, Côme D. Effects of temperature, oxygen and osmotic pressure on germination of carrot seeds: evaluation of seed quality. Acta Hortic. 1994;354: 9-16. https://doi.org/10.17660/ActaHortic.1994.354.1
  17. Bano S, Ashraf M, Akram NA. Salt stress regulates enzymatic and nonenzymatic antioxidative defense system in the edible part of carrot [Daucus carota (L.)]. J Plant Interact. 2014;9(1):324-29. https://doi.org/10.1080/17429145.2013.832426
  18. Kahouli B, Borgi Z,Hannachi C. Effect of sodium chloride on the germination of the seeds of a collection of carrot accessions (Daucus carota L.) cultivated in the region of Sidi Bouzid. J Stress Physiol Biochem. 2014;10(3):28-36.
  19. Vieira JV, Cruz CD, Nascimento WM, Miranda JEC. Selection of carrot progenies based on seed characteristics. Hort Bras. 2005;23(1):44-47. https://doi.org/10.1590/S0102-05362005000100009
  20. Silva-Correia J, Freitas S, Tavares RM, Lino-Neto T, Azevedo H. Phenotypic analysis of the Arabidopsis heat stress response during germination and early seedling development. Plant Methods. 2014; 10(7):1-11. https://doi.org/10.1186/1746-4811-10-7
  21. Tamura N, Yoshida T, Tanaka A, Sasaki R, Bando A, Toh S, Lepiniec L, Kawakami N. Isolation and characterization of high temperature-resistant germination mutants of Arabidopsis thaliana. Plant Cell Physiol. 2006;47:1081-94. https://doi.org/10.1093/pcp/pcj078
  22. Yuan X, Wen B. Seed germination response to high temperature and water stress in three invasive Asteraceae weeds from Xishuangbanna, SW China. Plos One. 2018;13(1): e0191710. doi: 10.1371/journal.pone.0191710
  23. Balkaya A. Modelling the effect of temperature on the germination speed in some legume crops. J Agron. 2004;3:179-83. https://doi.org/10.3923/ja.2004.179.183
  24. Piramila BHM, Prabha AL, Nandagopalan V, Stanley AL. Effect of heat treatment on germination, seedling growth and some biochemical parameters of dry seeds of black gram. Int J Pharm Phytopharmacol Res. 2012;1(4):194-202.
  25. Corbineau F, Bagniol S, Come D. Sunflower (Helianthus annuus L.) seed dormancy and its regulation by ethylene. Israel J Bot. 1990;39:313-25.
  26. Ziska LH, Bunce JA. The influence of elevated CO2 and temperature on seed germination and emergence from soil. Filed Crops Res. 1993;34:147-57. https://doi.org/10.1016/0378-4290(93)90003-6
  27. Corbineau F, Come D. Control of seed germination and dormancy by the gaseous environment. In: Kigel J, Galili G (Editors). Seed Development and Germination, New York, Basel, Hong Kong, Marcel Dekker, Inc., 1995.
  28. Gan Y, Angadi SV, Cutforth HW, Potts D, Angadi VV, Mc-Donald CL. Canola and mustard response to short period of high temperature and water stress at different developmental stages. Can J Plant Sci. 2004;84:697-704. https://doi.org/10.4141/P03-109
  29. Jalota SK, Ray SS, Panigrahy S. Effects of elevated CO2 and temperature on productivity of three main cropping systems in punjab state of India—a simulation analysis. In: ISPRS Archives XXXVIII-8/W3 Workshop Proceedings: Impact of Climate Change on Agriculture 2009: 138-42.
  30. Butterly C, Armstrong R, Chen D, Tang C. Carbon and nitrogen partitioning of wheat and field pea grown with two nitrogen levels under elevated CO2. Plant and Soil. 2015; 391: 367-82. DOI 10.1007/s11104-015-2441-5
  31. Saha S, Sehgal VK, Chakraborty D, Singh MP. Growth Behavior of kabuli Chickpea under Elevated Atmospheric CO2. J Agri Phy. 2013; 13:55-61.
  32. Li Y, Yu Z, Liu X, Mathesius U, Wang G, Tang C, Wu J, Liu J, Zhang S, Jin J. Elevated CO2 increases nitrogen fixation at the reproductive phase contributing to various yield responses of soybean cultivars. Front Plant Sci. 2017; 14(8):1546. doi: 10.3389/fpls.2017.01546. https://doi.org/10.3389/fpls.2017.01546
  33. Rogers A, Ainsworth EA. Leakey ADB. Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Pl Physiol. 2009; 151(3): 1009-16. https://doi.org/10.1104/pp.109.144113
  34. Parvin S, Uddin S, Bourgault M, Roessner U, Tausz Posch S, Armstrong R, O'Leary G, Fitzgerald G, Tausz M. Water availability moderates N2 fixation benefit from elevated [CO2]: A 2 year free air CO2 enrichment study on lentil (Lens culinaris MEDIK.) in a water limited agroecosystem. Plant Cell Environ. 2018;41(10):2418-34. https://doi.org/10.1111/pce.13360
  35. Liu X, Jian J, Guanghu W,Herbert SJ. Soybean yield physiology and development of high- yielding practices in Northeast China. Field Crops Res. 2008;105:157-71. https://doi.org/10.1016/j.fcr.2007.09.003
  36. Huxley PA, Summerfied RJ, Hughes P. Growth and development of soybean CV-TK5 as affected by tropical day lengths, day/night temperatures and nitrogen nutrition. Ann Apply Biol. 1976; 82:117-33. https://doi.org/10.1111/j.1744-7348.1976.tb01679.x
  37. Sionit N, Strain BR, Flint EP. Interaction of temperature and CO2 enrichment on soybean: Growth and dry matter partitioning. CanJ Plant Sci.1987;67:59-67. https://doi.org/10.4141/cjps87-007
  38. Dornbos DL, Mullen REJr. Influence of stress during soybean seed fill on seed weight, germination and seedling growth rate. J Pl Sc. 1991;71:373-83. https://doi.org/10.4141/cjps91-052
  39. Mann JD, Jaworski EG. Comparison of stresses which may limit soybean yields. Crop Sci.1970;10:620-24. https://doi.org/10.2135/cropsci1970.0011183X001000060003x
  40. Nemeskéri E. Study of heat tolerance during germination in grain legumes. ISTA Seed Symp. Abstracts. Budapest, Hungary, May 17th –19. 2004; 85-86.
  41. Prasad PVV, Boote KJ, Allen LHJr, Thomas JMG. Effects of elevated temperature and carbon dioxide on seed-set and yield of kidney bean (Phaseolus vulgaris L.). Glob. Change Biol. 2002;8:710-21. https://doi.org/10.1046/j.1365-2486.2002.00508.x
  42. Saeidi M, Abdoli M. Effect of drought stress during grain filling on yield and its components, gas exchange variables and some physiological traits of wheat cultivars. J Agric Sci Technol. 2015;17(4):885-98.
  43. Sehgal A, Sita K, Siddique KH, Kumar R, Bhogireddy S, Varshney RK, Hanumantha Rao B, Nair RM, Prasad PV, Nayyar H. Drought or/and heat-stress efects on seed flling in food crops: impacts on functional biochemistry, seed yields and nutritional quality. Front Plant Sci. 2018;9:1705. https://doi.org/10.3389/fpls.2018.01705
  44. Belmehdi O, El Harsal A, Benmoussi M, Laghmouchi Y, Senhaji NS, Abrini J. Effect of light, temperature, salt stress and pH on seed germination of medicinal plant Origanum elongatum (Bonnet) Emb. & Maire. Biocatal Agric Biotech. 2018;16:126-31. https://doi.org/10.1016/j.bcab.2018.07.032
  45. Sita K, Sehgal A, Kumar J, Kumar S, Singh S, Siddique KH, Nayyar H. Identifcation of high-temperature tolerant lentil (Lens culinaris Medik.) genotypes through leaf and pollen traits. Front Plant Sci. 2017; 8:744. https://doi.org/10.3389/fpls.2017.00744
  46. Kaushal N, Bhandari K, Siddique KH, Nayyar H. Food crops face rising temperatures: an overview of responses, adaptive mechanisms and approaches to improve heat tolerance. Cogent Food Agric. 2016; 2(1):1134380 https://doi.org/10.1080/23311932.2015.1134380
  47. Carter DR, Peterson KM. Effects of a CO2-enriched atmosphere on the growth and competitive interaction of a C3 and a C4 grass. Oecologia. 1983;58(2):188-93. https://doi.org/10.1007/BF00399215
  48. St. Omer L, Hovath SM. Elevated carbon dioxide concentrations and whole plant senescence. Ecol. 1983; 64(5):1311-14. https://doi.org/10.2307/1937842
  49. Garbutt K, Bazzaz FA. The effects of elevated CO2 on plants: III. Flower, fruit and seed production and abortion. New Phytol. 1984;98(3):433-46. https://doi.org/10.1111/j.1469-8137.1984.tb04136.x
  50. Reekie EG, Bazzaz FA. Phenology and growth in four annual species grown in ambient and elevated CO2. Canad J Bot. 1991; 69(11):2475-81. https://doi.org/10.1139/b91-307
  51. Nascimento WM, Vieira JV, Silva GO, Reitsma KR, Cantliffe DJ. Carrot seed germination at high temperature: Effect of genotype and association with ethylene production. Hort Sc. 2008; 43 (5): 1538-43. https://doi.org/10.21273/HORTSCI.43.5.1538
  52. Toh S, Imamura A, Watanabe A, Nakabayashi K, Okamoto M, Jikumaru Y, Iuchi S. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol. 2008;146(3):1368-85. https://doi.org/10.1104/pp.107.113738
  53. Piskurewicz U, Ture?ková V, Lacombe E, Lopez-Molina L. Far-red light inhibits germination through DELLA-dependent stimulation of ABA synthesis and ABI3 activity. The EMBO Journal. 2009;28(15):2259-71. https://doi.org/10.1038/emboj.2009.170
  54. Smykal P, Mas?n J, Hrdy I, Konopasek I, Zarsky V. Chaperone activity of tobacco HSP18, a small heat-shock protein is inhibited by ATP. The Plant J. 2000;23:703-13. https://doi.org/10.1046/j.1365-313x.2000.00837.x
  55. Hurkman WJ, McCue KF, Altenbach SB, Korn A, Tanaka CK, Kothari KM, Johnson EL, Bechtel DB, Wilson JD, Anderson OD, Frances M. DuPont. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Pl. Sc. 2003;164:873-81. doi:10.1016/S0168-9452(03)00076-1
  56. Yamakawa H, Hakata M. Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation. Plant Cell Physiol. 2010;51(5):795-809. https://doi.org/10.1093/pcp/pcq034
  57. Yang H, Gu X, Ding M, Lu W, Lu D. Heat stress during grain filling affects activities of enzymes involved in grain protein and starch synthesis in waxy maize. Sci Rep. 2018;8: 15665. https://doi.org/10.1038/s41598-018-33644-z
  58. Asthir B, Bala S, Bains NS. Nitric oxide alleviates oxidative damage induced by high temperature stress in wheat. Ind J Exp Biol. 2012;50:372-78.
  59. Chakraborty S, Newton AC. Climate change, plant diseases and food security: an overview. Pl Path. 2011;60(1):2-14. https://doi.org/10.1111/j.1365-3059.2010.02411.x
  60. Li Y, Yu Z, Jin J, Zhang Q, Wang G, Liu C, Wu J, Wang C, Liu X. Impact of Elevated CO2 on Seed Quality of Soybean at the Fresh Edible and Mature Stages. Front Plant Sci. 2018;9: 1413. 10.3389/fpls.2018.01413. https://doi.org/10.3389/fpls.2018.01413
  61. Janni M, Gullì M, Maestri E, Marmiroli M, Valliyodan B, Nguyen HT, Marmiroli N. Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. J Expt Bot. 2020;71(13):3780-3802.https://doi.org/10.1093/jxb/eraa034
  62. Uddling J, Broberg MC, Feng Z, Pleijel H. Crop quality under rising atmospheric CO2. Current Opinion in Plant Biology. 2018;45:262-67. https://doi.org/10.1016/j.pbi.2018.06.001
  63. Giri A, Armstrong B, Rajashekar CB. Elevated carbon dioxide level suppresses nutritional quality of lettuce and spinach. Amer J Plant Sci. 2016;7(1):246. https://doi.org/10.4236/ajps.2016.71024
  64. Parvin S, Uddin S, Tausz-Posch S, Armstrong R, Fitzgerald G, Tausz M. Grain mineral quality of dryland legumes as affected by elevated CO2 and drought: a FACE study on lentil (Lens culinaris) and faba bean (Vicia faba). Crop and Pasture Science. 2019;70(3):244-53. https://doi.org/10.1071/CP18421
  65. Broberg MC, Högy P, Pleijel H. CO2-induced changes in wheat grain composition: meta-analysis and response functions. Agronomy. 2017;7(2):32. https://doi.org/10.3390/agronomy7020032
  66. Prasad PVV, Pisipati SR, Mutava RN, Tunistra MR. Sensitivity of grain sorghum to high temperatures stress during reproductive development. Crop Sci. 2008;48:1911-17. https://doi.org/10.2135/cropsci2008.01.0036
  67. Valdés-López O, Batek J, Gomez-Hernandez N. Soybean roots grown under heat stress show global changes in their transcriptional and proteomic profiles. Front Pl Sci 2016;7: 517. https://doi.org/10.3389/fpls.2016.00517
  68. Sehgal A, Kumari S, Jitendra K, Kumar S, Singh S, Siddique KHM, Nayyar H. Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of Lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Front Plant Sci. 2017;8: https://doi.org/10.3389/fpls.2017.01776.
  69. Snider JL, Oosterhuis DM, Skulman BW, Kawakami EM. Heat stress?induced limitations to reproductive success in Gossypium hirsutum. Physiol Plant. 2009;137(2):125-38. https://doi.org/10.1111/j.1399-3054.2009.01266.x
  70. Saini HS. Effects of water stress on male gametophyte development in plants. Sex Plant Repro.1997;10:67-73. https://doi.org/10.1007/s004970050069
  71. Li X, Lawas LM, Malo R, Glaubitz U, Erban A, Mauleon R et al. Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress. Plant Cell Environ. 2015;38(10):2171-92. https://doi.org/10.1111/pce.12545
  72. Goetz M, Guivar?h A, Hirsche J, Bauerfeind MA, González MC, Hyun TK et al. Metabolic control of tobacco pollination by sugars and invertases. Plant Physiol.2017;173(2):984-97. https://doi.org/10.1104/pp.16.01601
  73. Ruan YL. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Ann Rev Plant Biol. 2014;65:33-67. https://doi.org/10.1146/annurev-arplant-050213-040251
  74. Kumar S, Thakur M, Mitra R, Basu S, Anand A. Sugar metabolism during pre-and post-fertilization events in plants under high temperature stress. Plant Cell Rep. 2021;1-19. https://doi.org/10.1007/s00299-021-02795-1
  75. Thompson M, Gamage D, Hirotsu N, Martin A, Seneweera S. Effects of elevated carbon dioxide on photosynthesis and carbon partitioning: a perspective on root sugar sensing and hormonal crosstalk. Front in Physiology. 2017;578. https://doi.org/10.3389/fphys.2017.00578
  76. Jagadish SV, Way DA, Sharkey TD. Scaling plant responses to high temperature from cell to ecosystem. Plant Cell Environ. 2021;44 (7):1987-91. 10.1111/pce.14082, 44, 7. doi.org/10.1111/pce.14082
  77. Jiang N, Yu P, Fu W, Li G, Feng B, Chen T, Li H, Tao L, Fu G. Acid invertase confers heat tolerance in rice plants by maintaining energy homoeostasis of spikelets. Plant Cell Environ. 2020;43(5):1273-87. https://doi.org/10.1111/pce.13733
  78. Commuri PD, Jones RJ. High temperatures during endosperm cell division in maize: a genotypic comparison under in vitro and field conditions. Crop Sci. 2001;41(4): 1122-30. https://doi.org/10.2135/cropsci2001.4141122x
  79. Talwar S, Bamel K, Prabhavathi, Mal A. Effect of High Temperature on Reproductive Phases of Plants- A Review’. Nature Environ Pol Techn. 2022 (In press). https://doi.org/10.46488/NEPT.2022.v21i04.043
  80. Talwar S, Tayal P, Kumar S, Bamel K, Prabhavathi V. Climate Change: A Threat to Biodiversity. In: Proceedings of National Conference on “Climate Change: Impacts, Adaptation, Mitigation Scenario and Future challenges in Indian Perspective”. 2015;84-93.
  81. Walck JL, Hidayati SN, Dixon KW, Thompson K, Poschlod P. Climate change and plant regeneration from seed. Glob Change Biol. 2011;17:2145-61. https://doi.org/10.1111/j.1365-2486.2010.02368.x
  82. Bamel K, Rani N, Bamel JS, Gahlot S, Singh RN, Pathak SK. Current approaches and future perspectives in methods for crop yield estimation, Bull Environ Pharmacol Life Sci. 2022;1:243-47.
  83. Rani N, Bamel K, Shukla A, Singh N. Analysis of Five Mathematical Models for Crop Yield Prediction. South Asian J Experimental Biol. 2022;12(1):46-54. https://doi.org/10.38150/sajeb.12(1).p46-54

Downloads

Download data is not yet available.