Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 11 No. 1 (2024)

Extract and fraction of cashew nut testa ameliorate the hyperglycemic mice induced by Streptozotocin and high-fat diet

  • Huy Duc Van
  • Ly Thi Thao Nguyen
  • Nhan Lu Chinh Phan
  • Thuy Thi Thanh Dao
  • Long Thanh Le
  • Nhu Thi Ngoc Nguyen
  • Huynh Ton Ngoc Nguyen
  • Loan Thi Tung Dang ▸
DOI
https://doi.org/10.14719/pst.2697
Submitted
1 June 2023
Published
24-10-2023 — Updated on 02-01-2024
Versions

Abstract

Drug strategy is a standard method for treating type 2 diabetes mellitus (T2D), a non-communicable disease with increasing prevalence, which may cause side effects. Therefore, natural compounds with limited adverse effects have come back into vogue for treating T2D. This study aims to evaluate the effects on rehabilitating hyperglycemic mice of cashew nut testa (husk) extract and fraction known as potential bio-substances for improvement in T2D. First, the hyperglycemic mice were induced with a high-fat diet (HFD) for 4 weeks and then were injected with streptozotocin (STZ, dozen for injection was 40 mg/kg/week) for 2 weeks. Next, the confirmed hyperglycemic mice were treated with pioglitazone (HG+PG group), total extract (HG+TE group), and saponin-rich fraction (HG+SRF group) for 3 weeks. Then, the evaluation was based on body mass; blood glucose (BG) level; BG tolerance, lipid profile, pancreatic histology and the expression IRS-1 in the pancreas. The results showed that body mass and BG level significantly increased in hyperglycemic mice. After substance treatment, there was no change in body mass in TE and SRF groups. However, BG level of HG+TE group mice significantly decreased compared to hyperglycemic mice and only BG tolerance of HG+SRF group was improved. Besides, HG+TE and HG+SRF groups modulated the triglyceride, HDL and LDL close to those expressed in normal mice. In addition, histological images of the pancreas revealed the restoration in both HG+TE and HG+SRF groups. Simultaneously, the IRS-1 expression in HG+TE group pancreas was restored to its expression in normal mice. These results demonstrate that the TE and SRF of cashew nut testa could ameliorate BG, lipid profile and pancreatic IRS-1 expression and restore the damaged pancreas and islets in hyperglycemic mice.

References

  1. American Diabetes A. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2009;32 Suppl 1(Suppl 1):S62-S67. https://doi.org/10.2337/dc09-S062
  2. Rayburn WF. Diagnosis and classification of diabetes mellitus: Highlights from the American diabetes association. J Reprod Med. 1997;42(9):585-86.
  3. Atkinson MA. The pathogenesis and natural history of type 1 diabetes. Cold Spring Harb Perspect Med. 2012;2(11). https://doi.org/10.1101/cshperspect.a007641
  4. Wu Y, Ding Y, Tanaka Y, Zhang W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci. 2014;11(11):1185-200. https://doi.org/10.7150/ijms.10001
  5. King AJ. The use of animal models in diabetes research. Br J Pharmacol. 2012;166(3):877-94. https://doi.org/10.1111/j.1476-5381.2012.01911.x
  6. Al-Goblan AS, Al-Alfi MA, Khan MZ. Mechanism linking diabetes mellitus and obesity. Diabetes Metab Syndr Obes. 2014;7:587-91. https://doi.org/10.2147/DMSO.S67400
  7. Mugharbel KM, Al-Mansouri MA. Prevalence of obesity among type 2 diabetic patients in Al-khobar primary health care centers. J Family Community Med. 2003;10(2):49-53. https://doi.org/10.4103/2230-8229.97856
  8. Menting JG, Whittaker J, Margetts MB, Whittaker LJ, Kong GK, Smith BJ et al. How insulin engages its primary binding site on the insulin receptor. Nature. 2013;493(7431):241-45. https://doi.org/10.1038/nature11781
  9. Qi Q, Bray GA, Smith SR, Hu FB, Sacks FM, Qi L. Insulin receptor substrate 1 gene variation modifies insulin resistance response to weight-loss diets in a 2-year randomized trial: The Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial. Circulation. 2011;124(5):563-71. https://doi.org/10.1161/CIRCULATIONAHA.111.025767
  10. Marushchak M, Krynytska I. Insulin receptor substrate 1 gene and glucose metabolism characteristics in type 2 diabetes mellitus with comorbidities. Ethiop J Health Sci. 2021;31(5):1001-10.
  11. Yiannakouris N, Cooper JA, Shah S, Drenos F, Ireland HA, Stephens JW et al. IRS1 gene variants, dysglycaemic metabolic changes and type-2 diabetes risk. Nutr Metab Cardiovasc Dis. 2012;22(12):1024-30. https://doi.org/10.1016/j.numecd.2011.05.009
  12. Yousef AA, Behiry EG, Allah WMA, Hussien AM, Abdelmoneam AA, Imam MH et al. IRS-1 genetic polymorphism (r.2963G>A) in type 2 diabetes mellitus patients associated with insulin resistance. Appl Clin Genet. 2018;11:99-106. https://doi.org/10.2147/TACG.S171096
  13. Barry Hitchen KN, Victor A Gault, Julian C Leslie. Behavioural evaluation of mouse models of type 2 diabetes. Learning and Motivation. 2021;74. https://doi.org/10.1016/j.lmot.2021.101730
  14. Winzell MS, Ahren B. The high-fat diet-fed mouse: A model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes. 2004;53 Suppl 3:S215-S19. https://doi.org/10.2337/diabetes.53.suppl_3.S215
  15. Skovso S. Modeling type 2 diabetes in rats using high fat diet and streptozotocin. J Diabetes Investig. 2014;5(4):349-58. https://doi.org/10.1111/jdi.12235
  16. Jaiswal YS, Tatke PA, Gabhe SY, Vaidya AB. Antidiabetic activity of extracts of Anacardium occidentale Linn. leaves on n-streptozotocin diabetic rats. J Tradit Complement Med. 2017;7(4):421-27. https://doi.org/10.1016/j.jtcme.2016.11.007
  17. Sokeng SD, Lontsi D, Moundipa PF, Jatsa HB, Watcho P, Kamtchouing P. Hypoglycemic effect of Anacardium occidentale L. methanol extract.and fractions on streptozotocin-induced diabetic rats. Global Journal of Pharmacology. 2007;1(1):1-5.
  18. Mohan V, Gayathri R, Jaacks LM, Lakshmipriya N, Anjana RM, Spiegelman D et al. Cashew nut consumption increases HDL cholesterol and reduces systolic blood pressure in Asian Indians with type 2 diabetes: A 12-week randomized controlled trial. J Nutr. 2018;148(1):63-69. https://doi.org/10.1093/jn/nxx001
  19. Ojezele MO, Agunbiade S. Phytochemical constituents and medicinal properties of different extracts of Anacardium occidentale and Psidium guajava. Asian Journal of Biomedical and Pharmaceutical Sciences. 2013;3(16):20-23.
  20. Okonkwo TJ, Okorie O, Okonta JM, Okonkwo CJ. Sub-chronic hepatotoxicity of Anacardium occidentale (Anacardiaceae) inner stem bark extract in rats. Indian J Pharm Sci. 2010;72(3):353-57. https://doi.org/10.4103/0250-474X.70482
  21. Barky AE, SAH, A-EA, yAHTM. Saponins and their potential role in diabetes mellitus. Diabetes Management. 2017;7(1):148-58.
  22. Kim JJ, Xiao H, Tan Y, Wang ZZ, Paul Seale J, Qu X. The effects and mechanism of saponins of Panax notoginseng on glucose metabolism in 3T3-L1 cells. Am J Chin Med. 2009;37(6):1179-89. https://doi.org/10.1142/S0192415X09007582
  23. Kwon DY, Kim YS, Ryu SY, Choi YH, Cha MR, Yang HJ et al. Platyconic acid, a saponin from Platycodi radix, improves glucose homeostasis by enhancing insulin sensitivity in vitro and in vivo. Eur J Nutr. 2012;51(5):529-40. https://doi.org/10.1007/s00394-011-0236-x
  24. Bhavsar SK, Foller M, Gu S, Vir S, Shah MB, Bhutani KK et al. Involvement of the PI3K/AKT pathway in the hypoglycemic effects of saponins from Helicteres isora. J Ethnopharmacol. 2009;126(3):386-96. https://doi.org/10.1016/j.jep.2009.09.027
  25. Abu F, Mat Taib CN, Mohd Moklas MA, Mohd Akhir S. Antioxidant properties of crude extract, partition extract and fermented medium of Dendrobium sabin flower. 2017;2017. https://doi.org/10.1155/2017/2907219
  26. Odell GV, editor. Isolation and purification of the saponins of Glottidium vesicarium. In: Proceedings of the Oklahoma Academy of Science; 1966.
  27. Guideline P-BTJTH. OECD guideline for the testing of chemicals. 2001;601:858.
  28. Dang LT-T, Bui AN-T, Le-Thanh Nguyen C, Truong NC, Bui AT-V, Kim NP et al., editors. Intravenous infusion of human adipose tissue-derived mesenchymal stem cells to treat type 1 diabetic mellitus in mice: An evaluation of grafted cell doses. Stem Cells: Biology and Engineering; 2018. https://doi.org/10.1007/5584_2017_127
  29. Nguyen V, Tran G, Le T, Phan UJJT. The effect of different free fatty acid fractions from hydrolyzed virgin coconut oil on changes of lipid profile and liver morphology induced by high fat diet: An in vivo study. 2022;84:145-52. https://doi.org/10.11113/jurnalteknologi.v84.17653
  30. Tran TPN, Nguyen T-T, Tran G-BJTLSR. Anti-arthritis effect of ethanol extract of Sacha inchi (Plukenetia volubilis L.) leaves against complete freund’s adjuvant-induced arthritis model in mice (early view); 2023.
  31. Barnes AS. The epidemic of obesity and diabetes: Trends and treatments. Tex Heart Inst J. 2011;38(2):142-44.
  32. Zhang M, Lv XY, Li J, Xu ZG, Chen L. The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Exp Diabetes Res. 2008;2008:704045. https://doi.org/10.1155/2008/704045
  33. Glastras SJ, Chen H, Teh R, McGrath RT, Chen J, Pollock CA et al. Mouse models of diabetes, obesity and related kidney disease. PLoS One. 2016;11(8):e0162131. https://doi.org/10.1371/journal.pone.0162131
  34. Furman BL. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc. 2021;1(4):e78. https://doi.org/10.1002/cpz1.78
  35. Stott NL, Marino JS. High fat rodent models of type 2 diabetes: From rodent to human. Nutrients. 2020;12(12). https://doi.org/10.3390/nu12123650
  36. Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S, Woods SC et al. Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol. 2018;14(3):140-62. https://doi.org/10.1038/nrendo.2017.161
  37. Sone H, Kagawa Y. Pancreatic beta cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice. Diabetologia. 2005;48(1):58-67. https://doi.org/10.1007/s00125-004-1605-2
  38. Schnedl WJ, Ferber S, Johnson JH, Newgard CB. STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells. Diabetes. 1994;43(11):1326-33. https://doi.org/10.2337/diabetes.43.11.1326
  39. Cardinal JW, Margison GP, Mynett KJ, Yates AP, Cameron DP, Elder RH. Increased susceptibility to streptozotocin-induced beta-cell apoptosis and delayed autoimmune diabetes in alkylpurine-DNA-N-glycosylase-deficient mice. Mol Cell Biol. 2001;21(16):5605-13. https://doi.org/10.1128/MCB.21.16.5605-5613.2001
  40. Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: A model for type 2 diabetes and pharmacological screening. Pharmacol Res. 2005;52(4):313-20. https://doi.org/10.1016/j.phrs.2005.05.004
  41. Barry Hitchen KN, Victor A. Gault, Julian C Leslie. Behavioural evaluation of mouse models of type 2 diabetes. Learning and Motivation. 2021;74. https://doi.org/10.1016/j.lmot.2021.101730
  42. Hauner H. The mode of action of thiazolidinediones. Diabetes Metab Res Rev. 2002;18 Suppl 2:S10-S15. https://doi.org/10.1002/dmrr.249
  43. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem. 1995;270(22):12953-56. https://doi.org/10.1074/jbc.270.22.12953
  44. Souza SC, Yamamoto MT, Franciosa MD, Lien P, Greenberg AS. BRL 49653 blocks the lipolytic actions of tumor necrosis factor-alpha: A potential new insulin-sensitizing mechanism for thiazolidinediones. Diabetes. 1998;47(4):691-95. https://doi.org/10.2337/diabetes.47.4.691
  45. Karunakaran U, Elumalai S, Moon JS, Won KC. Pioglitazone-induced AMPK-glutaminase-1 prevents high glucose-induced pancreatic beta-cell dysfunction by glutathione antioxidant system. Redox Biol. 2021;45:102029. https://doi.org/10.1016/j.redox.2021.102029
  46. Wu Z, Xie Y, Morrison RF, Bucher NL, Farmer SR. PPARgamma induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPalpha during the conversion of 3T3 fibroblasts into adipocytes. J Clin Invest. 1998;101(1):22-32. https://doi.org/10.1172/JCI1244
  47. Nyirenda J, Zombe K, Kalaba G, Siabbamba C, Mukela I. Exhaustive valorization of cashew nut shell waste as a potential bioresource material. Sci Rep. 2021;11(1):11986. https://doi.org/10.1038/s41598-021-91571-y
  48. Lu JM, Wang YF, Yan HL, Lin P, Gu W, Yu J. Antidiabetic effect of total saponins from Polygonatum kingianum in streptozotocin-induced daibetic rats. J Ethnopharmacol. 2016;179:291-300. https://doi.org/10.1016/j.jep.2015.12.057
  49. Liu Y, Mu S, Chen W, Liu S, Cong Y, Liu J et al. Saponins of Momordica charantia increase insulin secretion in INS-1 pancreatic beta-cells via the PI3K/Akt/FoxO1 signaling pathway. Endocrinol Diabetes Nutr (Engl Ed). 2021;68(5):329-37. https://doi.org/10.1016/j.endien.2021.08.004

Downloads

Download data is not yet available.