Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Phytochemical analysis, and antioxidant and antibacterial activities of Alstonia scholaris from Mizoram, India

DOI
https://doi.org/10.14719/pst.2826
Submitted
28 July 2023
Published
15-12-2023
Versions

Abstract

The Devil’s tree (Alstonia scholaris (L.) R.Br.), a member of the Apocynaceae family, is recognised in various traditional systems for its efficacy in treating several diseases. In the Mizo traditional medicines of India, the bark extract is utilised as a remedy for bacterial and parasitic infections, among other ailments. To validate the therapeutic claim of the Mizo people, a methanolic extract of the bark was prepared and its chemical composition was analysed. The extract was found to contain alkaloids, carbohydrates, flavonoids, glycosides, phytosterols, saponins, tannins, and reducing sugars. The antioxidant components of the extract were quantified, revealing a phenolic content of 13.563±0.09 mg/g quercetin equivalent, a flavonoid content of 31.64±2.50 mg/g gallic acid equivalent, and a total antioxidant of 10.48±0.84 mg/g ascorbic equivalent. These findings underscore the plant’s cellular protective capacity. Furthermore, the antioxidant activities were assessed using 2,2-diphenyl-1-1-picryldrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. The plant extract exhibited significant antioxidant properties, with a half-maximal inhibitory concentration (IC50) value of 11.01 against free radicals generated from the DPPH reaction. Notably, the extract demonstrated broad-spectrum antibacterial activity against Gram-negative bacteria, including Escherichia coli and Salmonella typhi, as well as Gram-positive species such as Bacillus cereus, Enterococcus faecalis and Staphylococcus aureus. This study establishes A. scholaris as a medicinal plant with promising antimicrobial and pharmacological properties, containing chemical components that can be harnessed for therapeutic purposes.

References

  1. Urban-Chmiel R, Marek A, St?pie?-Py?niak D, Wieczorek K, Dec M, Nowaczek A, Osek J. Antibiotic resistance in bacteria—A review. Antibiotics. 2022;11(8):1079. https://doi.org/10.3390/antibiotics11081079
  2. Chinemerem Nwobodo D, Ugwu MC, Oliseloke Anie C, Al-Ouqaili MT, Chinedu Ikem J, Victor Chigozie U, Saki M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J Clin Lab Anal. 2022;36(9):e24655. https://doi.org/10.1002/jcla.24655
  3. Bouyahya A, Chamkhi I, Balahbib A, Rebezov M, Shariati MA, Wilairatana P, Mubarak MS, Benali T, El Omari N. Mechanisms, anti-quorum-sensing actions and clinical trials of medicinal plant bioactive compounds against bacteria: A comprehensive review. Molecules. 2022;27(5):1484. https://doi.org/10.3390/molecules27051484
  4. Javaid A, Chaudhury FA, Khan IH, Ferdosi MFH. Potential health-related phytoconstituents in leaves of Chenopodium quinoa. Adv Life Sci. 2022;9(4):574-78.
  5. Javaid A, Khan IH, Ferdosi MFH, Manzoor M, Anwar A. Medically important compounds in Ipomoea carnea flowers. Pak J Weed Sci Res. 2023;29(2):115-21.
  6. Bhatia P, Sharma A, George AJ, Anvitha D, Kumar P, Dwivedi VP, Chandra NS. Antibacterial activity of medicinal plants against ESKAPE: An update. Heliyon. 2021;7(2):e06310. https://doi.org/10.1016/j.heliyon.2021.e06310
  7. Chhajed M, Jain A, Pagariya A, Dwivedi S, Jain N, Taile V. Alstonia scholaris Linn. R. Br.: An assessment of its botany, conventional utilizaton, phytochemistry and pharmacology. Pharmacogn Rev. 2023;17(33):184-203. https://dx.doi.org/10.5530/097627870302
  8. Bhatt MD, Kunwar RM, Basnyat B, Bussmann RW, Paniagua-Zambrana NY. Alstonia scholaris (L.) R. Br. A Pocynaceae. Ethnobotany of the Himalayas. Cham (Switzerland): Springer. 2020;1-9. https://doi.org/10.1007/978-3-030-45597-2_17-2
  9. Singh H, Bhushan S, Arora R, Buttar HS, Arora S, Singh B. Alternative treatment strategies for neuropathic pain: Role of Indian medicinal plants and compounds of plant origin – A review. Biomed Pharmacother. 2017;92:634-50. https://doi.org/10.1016/j.biopha.2017.05.079
  10. Baliga MS. Review of the phytochemical, pharmacological and toxicological properties of Alstonia scholaris Linn. R. Br (Saptaparna). Chin J Integr Med. 2012;28:1-4. https://doi.org/10.1007/s11655-011-0947-0
  11. Khyade MS, Kasote DM, Vaikos NP. Alstonia scholaris (L.) R. Br. and Alstonia macrophylla Wall. ex G. Don: A comparative review on traditional uses, phytochemistry and pharmacology. J Ethnopharmacol. 2014;153:1-8. https://doi.org/10.1016/j.jep.2014.01.025
  12. Pandey K, Shevkar C, Bairwa K, Kate AS. Pharmaceutical perspective on bioactives from Alstonia scholaris: Ethnomedicinal knowledge, phytochemistry, clinical status, patent space and future directions. Phytochem Rev. 2020;19:191-233. https://doi.org/10.1007/s11101-020-09662-z
  13. Shafique S, Akram W, Anjum T, Ahmad A, Shafique S. Comparative studies on phytochemistry, antibacterial and antifungal properties of Alstonia scholaris and Millettia pinnata. Australas Plant Dis Notes. 2014;9:1-5. https://doi.org/10.1007/s13314-014-0132-3
  14. Jabeen K, Javaid A. Antifungal activity of aqueous and organic solvent extracts of allelopathic trees against Ascochyta rabiei. Allelopathy J. 2008;22(1):231-38.
  15. Javaid A, Shafique S, Bajwa R, Shafique S. Parthenium management through aqueous extracts of Alstonia scholaris. Pak J Bot. 2010;42(5):3651-57.
  16. Shang JH, Cai XH, Zhao YL, Feng T, Luo XD. Pharmacological evaluation of Alstonia scholaris: Anti-tussive, anti-asthmatic and expectorant activities. J Ethnopharmacol. 2010;129(3):293-98. https://doi.org/10.1016/j.jep.2010.03.029
  17. Bhardwaj S, Gakhar SK. Ethnomedicinal plants used by the tribals of Mizoram to cure cuts and wounds. Indian J Tradit Knowl. 2005;4:75-80. https://nopr.niscpr.res.in/handle/123456789/8497
  18. Sharma HK, Chhangte L, Dolui AK. Traditional medicinal plants in Mizoram, India. Fitoterapia. 2001;72:146-61. https://doi.org/10.1016/S0367-326X(00)00278-1
  19. Bora U, Sahu A, Saikia AP, Ryakala VK, Goswami P. Medicinal plants used by the people of Northeast India for curing malaria. Phytother Res. 2007;21:800-04. https://doi.org/10.1002/ptr.2178
  20. Evans WC, Trease GC. Trease and Evans’ Pharmacognosy. 16th ed. London (UK): Balliere Tindal. 2009; pp. 356, 378.
  21. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Amer J Enol Vitic. 1965;16(3):144-58. https://doi.org/10.5344/ajev.1965.16.3.144
  22. Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999;64(4):555-59. https://doi.org/10.1016/S0308-8146(98)00102-2
  23. Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal Biochem. 1999;269(2):337-41. https://doi.org/10.1006/abio.1999.4019
  24. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199-200. https://doi.org/10.1038/1811199a0
  25. Oyaizu M. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet. 1986;44(6):307-15. https://doi.org/10.5264/eiyogakuzashi.44.307
  26. Devillers J, Steiman R, Seigle-Murandi F. The usefulness of the agar-well diffusion method for assessing chemical toxicity to bacteria and fungi. Chemosphere. 1989;19(10-11):1693-700. https://doi.org/10.1016/0045-6535(89)90512-2
  27. Makkar R, Behl T, Bungau S, Zengin G, Mehta V, Kumar A, Uddin MS, Ashraf GM, Abdel-Daim MM, Arora S, Oancea R. Nutraceuticals in neurological disorders. Int J Mol Sci. 2020;21(12):4424. https://doi.org/10.3390/ijms21124424
  28. Taroncher M, Vila-Donat P, Tolosa J, Ruiz MJ, Rodríguez-Carrasco Y. Biological activity and toxicity of plant nutraceuticals: An overview. Curr Opin Food Sci. 2021;42:113-18. https://doi.org/10.1016/j.cofs.2021.05.008
  29. Süntar I. Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochem Rev. 2020;19(5):1199-209. https://doi.org/10.1007/s11101-019-09629-9
  30. Huang W, Wang Y, Tian W, Cui X, Tu P, Li J, Shi S, Liu X. Biosynthesis investigations of terpenoid, alkaloid and flavonoid antimicrobial agents derived from medicinal plants. Antibiotics. 2022;11(10):1380. https://doi.org/10.3390/antibiotics11101380
  31. Ali SS, Ahsan H, Zia MK, Siddiqui T, Khan FH. Understanding oxidants and antioxidants: Classical team with new players. J Food Biochem. 2020;44(3):e13145. https://doi.org/10.1111/jfbc.13145
  32. Hajam YA, Rani R, Ganie SY, Sheikh TA, Javaid D, Qadri SS, Pramodh S, Alsulimani A, Alkhanani MF, Harakeh S, Hussain A. Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives. Cells. 2022;11(3):552. https://doi.org/10.3390/cells11030552
  33. Nwozo OS, Effiong EM, Aja PM, Awuchi CG. Antioxidant, phytochemical and therapeutic properties of medicinal plants: A review. Int J Food Prop. 2023;26(1):359-88. https://doi.org/10.1080/10942912.2022.2157425
  34. Moon JK, Shibamoto T. Antioxidant assays for plant and food components. J Agric Food Chem. 2009;57(5):1655-66. https://doi.org/10.1021/jf803537k
  35. Mohammadnezhad P, Valdés A, Álvarez-Rivera G. Bioactivity of food by-products: An updated insight. Curr Opin Food Sci. 2023;52:101065. https://doi.org/10.1016/j.cofs.2023.101065
  36. Vaou N, Stavropoulou E, Voidarou C, Tsigalou C, Bezirtzoglou E. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms. 2021;9(10):2041. https://doi.org/10.3390/microorganisms9102041
  37. Mulat M, Pandita A, Khan F. Medicinal plant compounds for combating the multi-drug resistant pathogenic bacteria: A review. Curr Pharm Biotechnol. 2019;20(3):183-96. https://doi.org/10.2174/1872210513666190308133429
  38. Chen K, Wu W, Hou X, Yang Q, Li Z. A review: Antimicrobial properties of several medicinal plants widely used in Traditional Chinese Medicine. Food Qual Saf. 2021;5:fyab020. https://doi.org/10.1093/fqsafe/fyab020
  39. Sanders FR, Goslings JC, Mathôt RA, Schepers T. Target site antibiotic concentrations in orthopedic/trauma extremity surgery: is prophylactic cefazolin adequately dosed? A systematic review and meta-analysis. Acta Orthop. 2019;90(2):97-104. https://doi.org/10.1080/17453674.2019.1577014
  40. Agathokleous E, Wang Q, Iavicoli I, Calabrese EJ. The relevance of hormesis at higher levels of biological organization: Hormesis in microorganisms. Curr Opin Toxicol. 2022;29:1-9. https://doi.org/10.1016/j.cotox.2021.11.001

Downloads

Download data is not yet available.