Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Analysis of Vegetation and Plant Diversity in High Conservation Value Areas in Oil Palm Plantations

DOI
https://doi.org/10.14719/pst.2924
Submitted
4 September 2023
Published
27-11-2023
Versions

Abstract

The expansion of oil palm plantations is often rumored to impact the destruction of forests and other ecosystems with high conservation value (HCV). This study aimed to analyze the vegetation and plant diversity in the HCV area of oil palm plantations. The research was conducted on an oil palm plantation in Seruyan District, Central Kalimantan Province, Indonesia with an HCV area of 5379 ha. The research was carried out using the grid transect method on various types of vegetation, divided into four plots: seedlings, saplings, poles and trees. Parameters observed included the number of species, the number of individuals and the level of plant diversity. The results showed that the research location had good vegetation and plant diversity in the HCV area. There were 25 plant species from 17 families with a total of 355 plants. The number of species found in the seedling plots was 11 species (6 families) with a total of 38 plants; in the sapling plots was 16 species (12 families) with a total of 159 plants; in the pole plots was 14 species (11 families) with a total of 43 plants, and in the tree plots was 13 species (10 families) 115 plants. There was variation in the number of species and families in each plot. The overall plant diversity index was low. The diversity index of plants in the plots of seedlings, saplings, poles and trees (and the average) was in the low category.

References

  1. Mustajab R. Luas kebun kelapa sawit Indonesia hampir 15 juta hektare pada; 2022. Available from: https://dataindonesia.id/sektor-riil/detail/luas-kebun-sawit-indonesia-hampir-15-juta-hektare-pada-2022
  2. Krishna VV, Kubitza C. Impact of oil palm expansion on the provision of private and community goods in rural Indonesia. Ecol Econo. 2021;179:106829. http://doi.org/10.1016/j.ecolecon.2020.106829
  3. Abdul-Hamid AQ, Ali MH, Osman LH, Tseng ML, Lim MK. Industry 4.0 quasi-effect between circular economy and sustainability: Palm oil industry. Int J Prod Econ. 2022;253:108616. Available from: http://doi.org/10.1016/j.ijpe.2022.108616
  4. Rajakal JP, Hwang JZH, Hassim MH, Andiappan V, Tan QT, Ng DKS. Integration and optimisation of palm oil sector with multiple-industries to achieve circular economy. Sustain Prod Consum. 2023;40:318-36. http://doi.org/10.1016/j.spc.2023.06.022
  5. Foong SY, Chan YH, Lock SSM, Chin BLF, Yiin CL, Cheah KW et al. Microwave processing of oil palm wastes for bioenergy production and circular economy: Recent advancements, challenges and future prospects. Bioresour Technol. 2023;369:128478. https://doi.org/10.1016/j.biortech.2022.128478
  6. Cheah WY, Siti-Dina RP, Leng STK, Er AC, Show PL. Circular bioeconomy in palm oil industry: Current practices and future perspectives. Environ Technol Innov. 2023;30:103050. https://doi.org/10.1016/j.eti.2023.103050
  7. Waudby H, Zein SH. A circular economy approach for industrial scale biodiesel production from palm oil mill effluent using microwave heating: Design, simulation, techno-economic analysis and location comparison. Process Safety and Environmental Protection. 2021;148:1006-18. http://doi.org/10.1016/j.psep.2021.02.011
  8. Dermawan A, Hospes O, Termeer CJAM. Between zerodeforestation and zero-tolerance from the state: Navigating strategies of palm oil companies of Indonesia. For Policy Econ. 2022;136:102690. https://doi.org/10.1016/j.forpol.2022.102690
  9. Lieke SD, Spiller A, Busch G. Can consumers understand that there is more to palm oil than deforestation?. Sustain Prod Consum. 2023;39:495-505. https://doi.org/10.1016/j.spc.2023.05.037
  10. Leijten F, Lantz C Baldos U, Johnson JA, Sim S, Verburg PH. Projecting global oil palm expansion under zero-deforestation commitments: Direct and indirect land use change impacts. iScience. 2023;26(6):106971. https://doi.org/10.1016/j.isci.2023.106971
  11. Cisneros E, Kis-Katos K, Nuryartono N. Palm oil and the politics of deforestation in Indonesia. J Environ Econ Manage. 2021;108:102453. https://doi.org/10.1016/j.jeem.2021.102453
  12. Li X, Zhang X, Yang H. Estimating the opportunity costs of avoiding oil palm-based deforestation in Indonesia: Implications for REDD+. Chinese JPop, Res and Environ. 2020;18(1):9-15. http://doi.org/10.1016/j.cjpre.2021.04.010
  13. Papilo P, Marimin M, Hambali E, Machfud M, Yani M, Asrol M et al. Palm oil-based bioenergy sustainability and policy in Indonesia and Malaysia: A systematic review and future agendas. Heliyon. 2022;8(10):e10919-e10919. https://doi.org/10.1016/j.heliyon.2022.e10919
  14. da Silva CFA, de Andrade MO, dos Santos AM, de Melo SN. Road network and deforestation of indigenous lands in the Brazilian Amazon. Transp Res D Transp Environ. 2023;119:103735. https://doi.org/10.1016/j.trd.2023.103735
  15. Bose P. Equitable land-use policy? Indigenous peoples’ resistance to mining-induced deforestation. Land use policy. 2023;129:106648. https://doi.org/10.1016/j.landusepol.2023.106648
  16. Camino M, Aceves PAV, Alvarez A, Chianetta P, de la Cruz LM, Alonzo K et al. Indigenous Lands with secure landtenure can reduce forestloss in deforestation hotspots. Global Environmental Change. 2023;81:102678. https://doi.org/10.1016/j.gloenvcha.2023.102678
  17. Silva JG da, Almeida RB de, Carvalho LV. An economic analysis of a zero-deforestation policy in the Brazilian Amazon. Ecological Economics. 2023;203:107613. https://doi.org/10.1016/j.ecolecon.2022.107613
  18. Fortin D, Cimon-Morin J. Public opinion on the conflict between the conservation of at-risk species and the extraction of natural resources: The case of caribou in the boreal forest. Sci TotEnviron. 2023;897:165433. https://doi.org/10.1016/j.scitotenv.2023.165433
  19. Pardo LE, Roque F de O, Campbell MJ, Younes N, Edwards W, Laurance WF. Identifying critical limits in oil palm cover for the conservation of terrestrial mammals in Colombia. Biol Conserv. 2018;227:65-73. https://doi.org/10.1016/j.biocon.2018.08.026
  20. Ancrenaz M, Oram F, Nardiyono N, Silmi M, Jopony ME, Voigt M, Seaman DJ, Sherman J, Lackman I, Traeholt C, Wich SA. Importance of small forest fragments in agricultural landscapes for maintaining orangutan metapopulations. Fron Forests and Gl Change. 2021;4:560944. https://doi.org/10.3389/ffgc.2021.560944
  21. Sharma S, MacKenzie RA, Tieng T, Soben K, Tulyasuwan N, Resanond A et al. The impacts of degradation, deforestation and restoration on mangrove ecosystem carbon stocks across Cambodia. Sci Tot Environ. 2020;706:135416. https://doi.org/10.1016/j.scitotenv.2019.135416
  22. Silva RM da, Lopes AG, Santos CAG. Deforestation and fires in the Brazilian Amazon from 2001 to 2020: Impacts on rainfall variability and land surface temperature. J Environ Manage. 2023;326:116664. https://doi.org/10.1016/j.jenvman.2022.116664
  23. Chaddad F, Mello FAO, Tayebi M, Safanelli JL, Campos LR, Amorim MTA et al. Impact of mining-induced deforestation on soil surface temperature and carbon stocks: A case study using remote sensing in the Amazon rainforest. J South Am Earth Sci. 2022;119:103983. https://doi.org/10.1016/j.jsames.2022.103983
  24. Davari M, Gholami L, Nabiollahi K, Homaee M, Jafari HJ. Deforestation and cultivation of sparse forest impacts on soil quality (case study: West Iran, Baneh). Soil Tillage Res. 2020;198:104504. https://doi.org/10.1016/j.still.2019.104504
  25. Dietz J, Treydte AC, Lippe M. Exploring the future of Kafue National Park, Zambia: Scenario-based land use and land cover modelling to understand drivers and impacts of deforestation. Land Use Policy. 2023;126:106535. https://doi.org/10.1016/j.landusepol.2023.106535
  26. Khodadadi M, Alewell C, Mirzaei M, Ehssan-Malahat E, Asadzadeh F, Strauss P et al. Understanding deforestation impacts on soil erosion rates using 137Cs, 239+240Pu and 210Pbex and soil physicochemical properties in western Iran. J Environ Radioact. 2023;257:107078. https://doi.org/10.1016/j.jenvrad.2022.107078
  27. Nordhaus I, Toben M, Fauziyah A. Impact of deforestation on mangrove tree diversity, biomass and community dynamics in the Segara Anakan lagoon, Java, Indonesia: A ten-year perspective. Estuar Coast Shelf Sci. 2019;227:106300. https://doi.org/10.1016/j.ecss.2019.106300
  28. Peña-Arancibia JL, Bruijnzeel LA, Mulligan M, van Dijk AIJM. Forests as sponges and pumps: Assessing the impact of deforestation on dry-season flows across the tropics. J Hydrol (Amst). 2019;574:946-63. https://doi.org/10.1016/j.jhydrol.2019.04.064
  29. Rico-Straffon J, Wang Z, Panlasigui S, Loucks CJ, Swenson J, Pfaff A. Forest concessions and eco-certifications in the Peruvian Amazon: Deforestation impacts of logging rights and logging restrictions. J Environ Econ Manage. 2023;118:102780. https://doi.org/10.1016/j.jeem.2022.102780
  30. Gatti RC, Velichevskaya A. Certified “sustainable” palm oil took the place of endangered Bornean and Sumatran large mammals habitat and tropical forests in the last 30 years. Sci Total Environ. 2020;742:140712. https://doi.org/10.1016/j.scitotenv.2020.140712
  31. Rocha MH, Capaz RS, Silva Lora EE, Horta Nogueira LA, Vicente Leme MM, Grillo Reno ML et al. Life cycle assessment (LCA) for biofuels in Brazilian conditions: AF meta-analysis. Renewable& Sustainable Energy Reviews. 2014;7:435-59. https://doi.org/10.1016/j.rser.2014.05.036
  32. Konczal AA, Derks J, de Koning JHC, Winkel G. Integrating nature conservation measures in European forest management – An exploratory study of barriers and drivers in 9 European countries. J Environ Manage. 2023;325:116619. https://doi.org/10.1016/j.jenvman.2022.116619
  33. Rajarajeswari C, Anbalagan C. Integration of the green and lean principles for more sustainable development: A case study. Mater Today Proc. 2023. https://doi.org/10.1016/j.matpr.2023.03.275
  34. Ashiagbor G, Asante WA, Forkuo EK, Acheampong E, Foli E. Monitoring cocoa-driven deforestation: The contexts of encroachment and land use policy implications for deforestation free cocoa supply chains in Ghana. Applied Geography. 2022;147:102788. https://doi.org/10.1016/j.apgeog.2022.102788
  35. Zovko K, Å eri? L, Perkovi? T, Belani H, Å oli? P. IoT and health monitoring wearable devices as enabling technologies for sustainable enhancement of life quality in smart environments. J Clean Prod. 2023;413:137506. https://doi.org/10.1016/j.jclepro.2023.137506
  36. Contini G, Peruzzini M, Bulgarelli S, Bosi G. Developing key performance indicators for monitoring sustainability in the ceramic industry: The role of digitalization and industry 4.0 technologies. J Clean Prod. 2023;414:137664. https://doi.org/10.1016/j.jclepro.2023.137664
  37. Chibueze Izah S, Omozemoje Aigberua A, Lal Srivastav A. Microbial fuel cells: Potentially sustainable technology for bioelectricity production using palm oil mill effluents. Artificial Intelligence for Renewable Energy systems. 2022;105-29. https://doi.org/10.1016/B978-0-323-90396-7.00014-6
  38. Castellanos-Navarrete A. Oil palm dispersal into protected wetlands: Human–environment dichotomies and the limits to governance in southern Mexico. Land Use Policy. 2021;103:105304. https://doi.org/10.1016/j.landusepol.2021.105304
  39. Sakai K, Hassan MA, Vairappan CS, Shirai Y. Promotion of a green economy with the palm oil industry for biodiversity conservation: A touchstone toward a sustainable bioindustry. J Biosci Bioeng. 2022;133(5):414-24. Available from: http://doi.org/10.1016/j.jbiosc.2022.01.001
  40. Nicholas KM, Fanzo J, MacManus K. Palm oil in Myanmar: A spatiotemporal study of how industrial farming affects biodiversity loss and the sustainable diet. Ann Glob Health. 2017;83(1):188. https://doi.org/10.1016/j.aogh.2017.03.473
  41. Ayompe LM, Schaafsma M, Egoh BN. Towards sustainable palm oil production: The positive and negative impacts on ecosystem services and human wellbeing. J Clean Prod. 2021;278:123914. Available from: https://doi.org/10.1016/j.jclepro.2020.123914
  42. Hamzah A, Salleh SNM, Sarmani S. Enhancing biodegradation of crude oil in soil using fertilizer and empty fruit bunch of oil palm. Sains Malays. 2014;43(9):1327-32.
  43. Adman B, Muslim, Muslim T, Arifin Z, Priyono, Rengku MT et al. Kawasan wana patra lestari gunung sepuluh timur PT pertamina RU V. Yassir I, editor. Balikpapan: Balai Penelitian Teknologi Konservasi Sumber Daya Alam. 2018;1-132. p.
  44. Uddin ABMN, Hossain F, Reza ASMA, Nasrin MS, Alam AHMK. Traditional uses, pharmacological activities and phytochemical constituents of the genus Syzygium: A review. Vol. 10, Food Science and Nutrition. John Wiley and Sons Inc. 2022; p. 1789-819. https://doi.org/10.1002/fsn3.2797
  45. Usmadi D, Witono JR, Siregar M, Purnomo DW. Keanekaragaman dan status konservasi tumbuhan di hutan in situ kebun raya tanjung puri tabalong, kalimantan selatan. In: Pros Sem Nas Masy Biodiv Indon. 2018;304-09.
  46. Atmoko T, Gunawan W, Emilia F, Mukhlisi, Prayana A, Arifin Z. Budaya masyarakat dayak benuaq dan potensi flora hutan lembonah. Sutedjo, editor. Balikpapan: Balai Penelitian Teknologi Konservasi Sumber Daya Alam. 2016;1-108 p.
  47. Basrowi M, Qayim I, Raffiudin R. Pemodelan habitat potensial tumbuhan lebah apis dorsata di membalong, Belitung. Jurnal Ilmu Pertanian Indonesia. 2022;27(4):562-73. https://doi.org/10.18343/jipi.27.4.562
  48. Patomihardjo T, Hermawan E, Wira Pradana E, Widiastuti Y. Flora riparian dan hutan rawa gambut untuk restorasi area dengan nilai konservasi tinggi (NKT) terdegradasi. Buchori D, Patomihardjo T, ed. Zoological Society of London (ZSL) Indonesia Programme. 2020;1-277 p.
  49. Renner SS. The subfamily kibessioideae, its tribe pternandreae and its sole genus, pternandra. Systematics, Evolution and Ecology of Melastomataceae. 2022;193-95. https://doi.org/10.1007/978-3-030-99742-7_7
  50. Fitri ZA, Hazlan NHN, Norafida NAN, Nizam MohdS, Latiff A. A preliminary checklist of flowering plants in pangkor selatan forest reserve, Perak, Peninsular Malaysia. Am J Agric Forest. 2021;9(4):258. https://doi.org/10.11648/j.ajaf.20210904.23
  51. Harvey J. Groote Eylandt Mining Company (GEMCO). South32 Australia Regionç; 2016.
  52. Phuspa MM, Kissinger, Asyari M. Karakteristik vegetasi sekitar jenis balangeran (Shorea balangeran korth) di taman hutan raya sultan adam mandiangin kabupaten banjar provinsi kalimantan selatan. Jurnal Sylva Scienteae. 2021;4(6):1092-101. https://doi.org/10.20527/jss.v4i6.4612
  53. Tarsius, Hardiansyah G, Husni H. Keanekaragaman jenis vegetasi tingkat pohon di hutan adat gunung soka dusun padang sebatik kecamatan air besar kabupaten landak. Jurnal Hutan Lestari. 2019;7(1):559-68. https://doi.org/10.26418/jhl.v7i1.32712
  54. Istikorini Y, Sari OY. Identification of endophytic fungi of balangeran (Shorea balangeran Korth.) by morphological characterization. Jurnal Sylva Lestari. 2022;10(2):211-22. https://doi.org/10.23960/jsl.v10i2.547
  55. Indriani F, Siregar UJ, Matra DD, Siregar IZ. Ecological aspects and genetic diversity of Shorea balangeran in two forest types of Muara Kendawangan Nature Reserve, West Kalimantan, Indonesia. Biodiversitas. 2019;20(2):482-88. https://doi.org/10.13057/biodiv/d200226
  56. Shipley JR, Gossner MM, Rigling A, Krumm F. Conserving forest insect biodiversity requires the protection of key habitat features. Trends Ecol Evol. 2023; https://doi.org/10.1016/j.tree.2023.05.015
  57. Fahrig L, Arroyo-Rodríguez V, Bennett JR, Boucher-Lalonde V, Cazetta E, Currie DJ et al. Is habitat fragmentation bad for biodiversity?. Biol Conserv. 2019;230:179-86. http://doi.org/10.1016/j.biocon.2018.12.026
  58. Al-Amin AQ, Azam MN, Kari F, Leal Filho W. Assessing the scenario concerning environmental sustainability in Malaysia. Scientific Research and Essays. 2011;6(1):103-09.
  59. Xu X, Xie Y, Qi K, Luo Z, Wang X. Detecting the response of bird communities and biodiversity to habitat loss and fragmentation due to urbanization. Sci Total Environ. 2018;624:1561-76. https://doi.org/10.1016/j.scitotenv.2017.12.143
  60. Ramalho WP, With KA, de Sousa Mesquita G, de Arruda FV, Guerra V, Ferraz D et al. Habitat fragmentation rather than habitat amount or habitat split reduces the diversity and abundance of ground-dwelling anurans within forest remnants of the Brazilian Cerrado. J Nat Conserv. 2022;69:126259. http://doi.org/10.1016/j.jnc.2022.126259
  61. Fletcher RJ, Didham RK, Banks-Leite C, Barlow J, Ewers RM, Rosindell J et al. Is habitat fragmentation good for biodiversity?. Biol Conserv. 2018;226:9-15. https://doi.org/10.1016/j.biocon.2018.07.022
  62. Banks-Leite C, Ewers RM, Folkard-Tapp H, Fraser A. Countering the effects of habitat loss, fragmentation and degradation through habitat restoration. One Earth. 2020;3(6):672-76. https://doi.org/10.1016/j.oneear.2020.11.016
  63. Rogan JE, Lacher TE. Impacts of habitat loss and fragmentation on terrestrial biodiversity. Reference Module in Earth Systems and Environmental Sciences. 2018; https://doi.org/10.1016/B978-0-12-409548-9.10913-3
  64. Pardini R, Nichols E, Püttker T. Biodiversity response to habitat loss and fragmentation. Encyclopedia of the Anthropocene. 2018;1(5):229-39. https://doi.org/10.1016/B978-0-12-809665-9.09824-4
  65. Synes NW, Ponchon A, Palmer SCF, Osborne PE, Bocedi G, Travis JMJ et al. Prioritising conservation actions for biodiversity: Lessening the impact from habitat fragmentation and climate change. Biol Conserv. 2020;252:108819. https://doi.org/10.1016/j.biocon.2020.108819
  66. Padalia H, Bahuguna U. Spatial modelling of congruence of native biodiversity and potential hotspots of forest invasive species (FIS) in central Indian landscape. J Nat Conserv. 2017;36:29-37. https://doi.org/10.1016/j.jnc.2017.02.001
  67. Piiroinen R, Fassnacht FE, Heiskanen J, Maeda E, Mack B, Pellikka P. Invasive tree species detection in the Eastern Arc Mountains biodiversity hotspot using one class classification. Remote Sens Environ. 2018;218:119-31. https://doi.org/10.1016/j.rse.2018.09.018
  68. Mancuso FP, D’Agostaro R, Milazzo M, Badalamenti F, Musco L, Mikac B et al. The invasive seaweed Asparagopsis taxiformis erodes the habitat structure and biodiversity of native algal forests in the Mediterranean Sea. Mar Environ Res. 2022;173:105515. https://doi.org/10.1016/j.marenvres.2021.105515
  69. Gross M. How to stop species invasions. Current Biology. 2022;32(24):R1325-28. https://doi.org/10.1016/j.cub.2022.11.065
  70. Mou AT, Uddin MT, Rahman MH. Empirical assessment of species vulnerability for biodiversity conservation: A case study on Chalan beel of Bangladesh. Heliyon. 2023;9(4):e15251. https://doi.org/10.1016/j.heliyon.2023.e15251
  71. Alharbi W, Petrovskii S. Effect of complex landscape geometry on the invasive species spread: Invasion with stepping stones. J Theor Biol. 2019;464:85-97. https://doi.org/10.1016/j.jtbi.2018.12.019
  72. Shabani F, Ahmadi M, Kumar L, Solhjouy-fard S, Shafapour Tehrany M, Shabani F et al. Invasive weed species’ threats to global biodiversity: Future scenarios of changes in the number of invasive species in a changing climate. Ecol Indic. 2020;116:106436. https://doi.org/10.1016/j.ecolind.2020.106436
  73. Steinhagen S, Hoffmann S, Pavia H, Toth GB. Molecular identification of the ubiquitous green algae Ulva reveals high biodiversity, crypticity and invasive species in the Atlantic-Baltic Sea region. Algal Res. 2023;73:103132. https://doi.org/10.1016/j.algal.2023.103132
  74. Demeter L, Molnár ÁP, Bede-Fazekas Á, Öllerer K, Varga A, Szabados K et al. Controlling invasive alien shrub species, enhancing biodiversity and mitigating flood risk: A win–win–win situation in grazed floodplain plantations. J Environ Manage. 2021;295:113053. https://doi.org/10.1016/j.jenvman.2021.113053
  75. Hale SS, Buffum HW, Hughes MM. Six decades of change in pollution and benthic invertebrate biodiversity in a southern New England estuary. Mar Pollut Bull. 2018;133:77-87. https://doi.org/10.1016/j.marpolbul.2018.05.019
  76. Wang X, Teng Y, Wang X, Xu Y, Li R, Sun Y et al. Effects of combined pollution of organic pollutants and heavy metals on biodiversity and soil multifunctionality in e-waste contaminated soil. J Hazard Mater. 2022;440:129727. https://doi.org/10.1016/j.jhazmat.2022.129727
  77. Barton MG, Henderson I, Border JA, Siriwardena G. A review of the impacts of air pollution on terrestrial birds. Sci Total Environ. 2023;873:162136. https://doi.org/10.1016/j.scitotenv.2023.162136
  78. Zhang W, Shen J, Wang J. Linking pollution to biodiversity and ecosystem multifunctionality across benthic-pelagic habitats of a large eutrophic lake: A whole-ecosystem perspective. Environmental Pollution. 2021;285:117501. https://doi.org/10.1016/j.envpol.2021.117501
  79. Dulsat-Masvidal M, Ciudad C, Infante O, Mateo R, Lacorte S. Water pollution threats in important bird and biodiversity areas from Spain. J Hazard Mater. 2023;448:130938.http://doi.org/10.1016/j.jhazmat.2023.130938
  80. Abdelhady AA, Khalil MM, Ismail E, Mohamed RSA, Ali A, Snousy MG et al. Potential biodiversity threats associated with the metal pollution in the Nile–Delta ecosystem (Manzala lagoon, Egypt). Ecol Indic. 2019;98:844-53. https://doi.org/10.1016/j.ecolind.2018.12.002
  81. Soto-Navarro J, Jordá G, Compa M, Alomar C, Fossi MC, Deudero S. Impact of the marine litter pollution on the Mediterranean biodiversity: A risk assessment study with focus on the marine protected areas. Mar Pollut Bull. 2021;165:112169. https://doi.org/10.1016/j.marpolbul.2021.112169
  82. Farooq U, Ashfaq K, Rustamovna RD, Al-Naimi AA. Impact of air pollution on corporate investment: New empirical evidence from BRICS. Borsa Istanbul Review. 2023;23(4):876-86. https://doi.org/10.1016/j.bir.2023.03.004
  83. Feckler A, Wolfram J, Schulz R, Bundschuh M. Reducing pollution to levels not harming biodiversity and ecosystem functions – one perspective on the post-2020 Global Biodiversity Framework. Curr Opin Environ Sci Health. 2023;100495. https://doi.org/10.1016/j.coesh.2023.100495
  84. Shannon L, Coll M. Assessing the changing biodiversity of exploited marine ecosystems. Curr Opin Environ Sustain. 2017;29:89-97. https://doi.org/10.1016/j.cosust.2018.01.008
  85. Katic PG, Cerretelli S, Haggar J, Santika T, Walsh C. Mainstreaming biodiversity in business decisions: Taking stock of tools and gaps. Biol Conserv.2023;277:109831. https://doi.org/10.1016/j.biocon.2022.109831
  86. Duchesne T, Rault PA, Quistinic P, Dufrêne M, Lourdais O. Combining forest exploitation and heathland biodiversity: Edges structure drives microclimates quality and reptile abundance in a coniferous plantation. For Ecol Manage. 2023;544:121188. https://doi.org/10.1016/j.foreco.2023.121188
  87. Pröbstl F, Paulsch A, Zedda L, Nöske N, Cardona Santos EM, Zinngrebe Y. Biodiversity policy integration in five policy sectors in Germany: How can we transform governance to make implementation work?. Earth System Governance. 2023;16:100175. https://doi.org/10.1016/j.esg.2023.100175
  88. Bush J, Doyon A. Tackling intersecting climate change and biodiversity emergencies: Opportunities for sustainability transitions research. Environ Innov Soc Transit. 2021;41:57-59. https://doi.org/10.1016/j.eist.2021.09.010
  89. Muluneh MG, Worku BB. Contributions of urban green spaces for climate change mitigation and biodiversity conservation in Dessie city, Northeastern Ethiopia. Urban Clim. 2022;46:101294. http://doi.org/10.1016/j.uclim.2022.101294
  90. Dueñas A, Jiménez-Uzcátegui G, Bosker T. The effects of climate change on wildlife biodiversity of the Galapagos islands. Climate Change Ecology. 2021 Dec 1;2:100026. https://doi.org/10.1016/j.ecochg.2021.100026
  91. He X, Ziegler AD, Elsen PR, Feng Y, Baker JCA, Liang S et al. Accelerating global mountain forest loss threatens biodiversity hotspots. One Earth. 2023;6(3):303-15. Available from: http://doi.org/10.1016/j.oneear.2023.02.005
  92. Dai Q, Cao Y, Chu ML, Larson ER, Suski CD. Agricultural conservation may not help Midwestern US freshwater biodiversity in a changing climate. Sci Total Environ. 2023;872:162143. https://doi.org/10.1016/j.scitotenv.2023.162143
  93. Fonseca A, Santos JA, Mariza S, Santos M, Martinho J, Aranha J et al. Tackling climate change impacts on biodiversity towards integrative conservation in Atlantic landscapes. Glob Ecol Conserv. 2022;38:e02216. https://doi.org/10.1016/j.gecco.2022.e02216
  94. Farooqi TJA, Irfan M, Portela R, Zhou X, Shulin P, Ali A. Global progress in climate change and biodiversity conservation research. Glob Ecol Conserv. 2022;38:e02272. https://doi.org/10.1016/j.gecco.2022.e02272
  95. Manes S, Grey KA, Debnath A, Costello MJ, Vale MM. Imperiled by climate change: Global biodiversity rich-spots. Imperiled: The Encyclopedia of Conservation: 2022;1-3:609-21. https://doi.org/10.1016/B978-0-12-821139-7.00162-8
  96. Wu H, Yu L, Shen X, Hua F, Ma K. Maximizing the potential of protected areas for biodiversity conservation, climate refuge and carbon storage in the face of climate change: A case study of Southwest China. Biol Conserv. 2023;284:110213. https://doi.org/10.1016/j.biocon.2023.110213
  97. Talukder B, Ganguli N, Matthew R, vanLoon GW, Hipel KW, Orbinski J. Climate change-accelerated ocean biodiversity loss & associated planetary health impacts. The Journal of Climate Change and Health. 2022;6:100114. https://doi.org/10.1016/j.joclim.2022.100114
  98. Bohan DA, Richter A, Bane M, Therond O, Pocock MJO. Farmer-led agroecology for biodiversity with climate change. Trends Ecol Evol. 2022;37(11):927-30. https://doi.org/10.1016/j.tree.2022.07.006
  99. Filho WL, Nagy GJ, Setti AFF, Sharifi A, Donkor FK, Batista K et al. Handling the impacts of climate change on soil biodiversity. Sci Total Environ. 2023;869:161671. https://doi.org/10.1016/j.scitotenv.2023.161671

Downloads

Download data is not yet available.