Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Elucidating role of long non-coding RNAs of Tamarindus indica Linn. in post-transcriptional gene regulation

DOI
https://doi.org/10.14719/pst.3057
Submitted
30 October 2023
Published
18-01-2025
Versions

Abstract

Tamarindus indica Linn., commonly known as tamarind, is a rich source of carbohydrates, proteins, lipids, fatty acids, vitamins, minerals and bioactive compounds. It is well established that long non-coding RNAs (lncRNAs) plays an important role in transcriptional, post-transcriptional and epigenetic regulation. Despite the availability of tamarind genome information, a handful of studies have been done on its non-coding genome, especially lncRNAs. In this study, we have computationally predicted lncRNAs from the coding DNA sequences of T. indica and analysed the sequences. We experimentally validated seven randomly chosen lncRNAs by performing quantitative Real Time Polymerase Chain Reaction (qRT-PCR). 320 lncRNAs have been predicted and sequence analysis of these predicted, lncRNAs reveals the presence of different motifs and tandem repeats. Along with the experimental validation of 7 randomly chosen lncRNAs, functional analysis of the predicted lncRNAs and their targets elucidated their roles in various biological pathways. We believe prediction and validation of the lncRNAs along with their interaction with mRNAs will enhance our knowledge about the non-coding genome of tamarind and their involvement in post transcriptional gene regulation, medicinal properties, metabolic engineering, stress tolerance and genome editing.

References

  1. Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006 Apr 15;15:17-29. doi: 10.1093/hmg/ddl046.
  2. Wang HLV, Chekanova JA. Long noncoding RNAs in plants. Adv Exp Med Biol. 2017;1008:133-54. doi: 10.1007/978-981-10-5203-3_5.
  3. Chen X, Sun Y, Cai R, Wang G, Shu X, Pang W. Long noncoding RNA: multiple players in gene expression. BMB Rep. 2018 Jun;51(6):280-89. doi: 10.5483/BMBRep.2018.51.6.025.
  4. Yu T, Zhu H. Long non-coding RNAs: Rising regulators of plant reproductive development. Agronomy. 2019 Feb;9(2):53. doi: 10.3390/agronomy9020053.
  5. Nejat N, Mantri N. Emerging roles of long non-coding RNAs in plant response to biotic and abiotic stresses. Crit Rev Biotechnol. 2018 Jan 2;38(1):93-105. doi: 10.1080/07388551.2017.1312270.
  6. Nithin C, Thomas A, Basak J, Bahadur RP. Genome-wide identification of miRNAs and lncRNAs in Cajanus cajan. BMC Genomics. 2017 Nov 15;18(1):878. doi: 10.1186/s12864-017-4232-2.
  7. Rai MI, Alam M, Lightfoot DA, Gurha P, Afzal AJ. Classification and experimental identification of plant long non-coding RNAs. Genomics. 2019 Sep 1;111(5):997-1005. doi: 10.1016/j.ygeno.2018.04.014.
  8. Yamada M. Functions of long intergenic non-coding (linc) RNAs in plants. J Plant Res. 2017 Jan 1;130(1):67-73. doi: 10.1007/s10265-016-0894-0.
  9. Heo JB, Sung S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science. 2011 Jan 7;331(6013):76-79. doi: 10.1126/science.1197349.
  10. Wang H, Chung PJ, Liu J, Jang IC, Kean MJ, Xu J, et al. Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis. Genome Res. 2014 Mar;24(3):444-53. doi: 10.1101/gr.165555.113.
  11. Ietswaart R, Wu Z, Dean C. Flowering time control: another window to the connection between antisense RNA and chromatin. Trends Genet TIG. 2012 Sep;28(9):445-53. doi: 10.1016/j.tig.2012.06.002.
  12. Fedak H, Palusinska M, Krzyczmonik K, Brzezniak L, Yatusevich R, Pietras Z, et al. Control of seed dormancy in Arabidopsis by a cis-acting noncoding antisense transcript. Proc Natl Acad Sci. 2016 Nov 29;113(48):E7846-55. doi: 10.1073/pnas.1608827113.
  13. Wu HJ, Wang ZM, Wang M, Wang XJ. Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. Plant Physiol. 2013 Apr;161(4):1875-84. doi: 10.1104/pp.113.215962.
  14. Doughari JH. Antimicrobial activity of Tamarindus indica Linn. Trop J Pharm Res. 2006;5(2):597-603. doi: 10.4314/tjpr.v5i2.14637.
  15. A CF, G N, A-H A. A review of explored uses and study of nutritional potential of tamarind (Tamarindus indica L.) in Northern Ghana. Afr J Food Sci. 2020 Oct 31;14(9):285-94. doi: 10.5897/AJFS2018.1744.
  16. Caluwé ED, Halamová K, Damme PV. Tamarindus indica L. – A review of traditional uses, phytochemistry and pharmacology. Afr Focus. 2010 Feb 8;23(1). doi: 10.21825/af.v23i1.5039.
  17. Kumar CS, Bhattacharya S. Tamarind seed: Properties, processing and utilization. Crit Rev Food Sci Nutr. 2008 Jan 2;48(1):1-20. doi: 10.1080/10408390600948600.
  18. Komakech R, Kim YG, Matsabisa GM, Kang Y. Anti-inflammatory and analgesic potential of Tamarindus indica Linn. (Fabaceae): a narrative review. Integr Med Res. 2019 Sep;8(3):181-86. doi: 10.1016/j.imr.2019.07.002.
  19. Krishna RN, Anitha R, Ezhilarasan D. Aqueous extract of Tamarindus indica fruit pulp exhibits anti-hyperglycaemic activity. Avicenna J Phytomedicine. 2020 Oct;10(5):440-47. PMCID: PMC7508317.
  20. Bhadoriya SS, Mishra V, Raut S, Ganeshpurkar A, Jain SK. Anti-Inflammatory and antinociceptive activities of a hydroethanolic extract of Tamarindus indica leaves. Sci Pharm. 2012 Sep;80(3):685-700. doi: 10.3797/scipharm.1110-09.
  21. Bhadoriya SS, Ganeshpurkar A, Narwaria J, Rai G, Jain AP. Tamarindus indica: Extent of explored potential. Pharmacogn Rev. 2011;5(9):73-81. doi: 10.4103/0973-7847.79102.
  22. Ullah N, Azam Khan M, Khan T, Ahmad W. Protective potential of Tamarindus indica against gentamicin-induced nephrotoxicity. Pharm Biol. 2014; doi: 10.3109/13880209.2013.840318.
  23. Sandesh P, Velu V, Singh RP. Antioxidant activities of tamarind (Tamarindus indica) seed coat extracts using in vitro and in vivo models. J Food Sci Technol. 2014 Sep 1;51(9):1965-73. doi: 10.1007/s13197-013-1210-9.
  24. Li C, Wang M, Qiu X, Zhou H, Lu S. Noncoding RNAs in medicinal plants and their regulatory roles in bioactive compound production. Curr Pharm Biotechnol. 2020 May 29; 22(3):341-59. doi: 10.2174/1389201021666200529101942.
  25. Li D, Shao F, Lu S. Identification and characterization of mRNA-like noncoding RNAs in Salvia miltiorrhiza. Planta. 2015 May 1;241(5):1131-43. doi: 10.1007/s00425-015-2246-z.
  26. Zhao X, Li J, Lian B, Gu H, Li Y, Qi Y. Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA. Nat Commun. 2018 Nov 29;9(1):1-12. doi: 10.1038/s41467-018-07500-7.
  27. Boerner S, McGinnis KM. Computational identification and functional predictions of long noncoding RNA in Zea mays. PLOS ONE. 2012 Aug 16;7(8):e43047. doi: 10.1371/journal.pone.0043047.
  28. Lv Y, Liang Z, Ge M, Qi W, Zhang T, Lin F, et al. Genome-wide identification and functional prediction of nitrogen-responsive intergenic and intronic long non-coding RNAs in maize (Zea mays L.). BMC Genomics. 2016 May 11;17(1):350. doi: 10.1186/s12864-016-2650-1.
  29. Golicz AA, Singh MB, Bhalla PL. The long intergenic noncoding RNA (LincRNA) landscape of the soybean genome. Plant Physiol. 2018 Mar 1;176(3):2133-47. doi: 10.1104/pp.17.01657.
  30. Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet TIG. 2000 Jun;16(6):276-77. doi: 10.1016/s0168-9525(00)02024-2.
  31. Kang YJ, Yang DC, Kong L, Hou M, Meng YQ, Wei L, et al. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 2017 Jul 3;45(W1):W12-6. doi: 10.1093/nar/gkx428.
  32. Wang L, Park HJ, Dasari S, Wang S, Kocher JP, Li W. CPAT: Coding-potential assessment tool using an alignment-free logistic regression model. Nucleic Acids Res. 2013 Apr 1;41(6):e74-e74. doi: 10.1093/nar/gkt006.
  33. Bailey TL. DREME: motif discovery in transcription factor ChIP-seq data. Bioinforma Oxf Engl. 2011 Jun 15;27(12):1653-59. doi: 10.1093/bioinformatics/btr261.
  34. Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999 Jan 15;27(2):573-80. doi: 10.1093/nar/27.2.573.
  35. Li J, Ma W, Zeng P, Wang J, Geng B, Yang J, et al. LncTar: a tool for predicting the RNA targets of long noncoding RNAs. Brief Bioinform. 2015 Sep 1;16(5):806-12. doi: 10.1093/bib/bbu048.
  36. Chowdhury MR, Chatterjee C, Ghosh D, Mukherjee J, Shaw S, Basak J. Deciphering miRNA-lncRNA-mRNA interaction through experimental validation of miRNAs, lncRNAs and miRNA targets on mRNAs in Cajanus cajan. Plant Biol. 2024;26(4):560-67. doi: 10.1111/plb.13639.
  37. Roy Chowdhury M, Bahadur RP, Basak J. Genome-wide prediction of cauliflower miRNAs and lncRNAs and their roles in post-transcriptional gene regulation. Planta. 2021 Sep 14;254(4):72. doi: 10.1007/s00425-021-03689-y.
  38. Devi B, Boruah T. Tamarind (Tamarindus indica). In: Nayik GA, Gull A, editors. Antioxidants in Fruits: Properties and Health Benefits. Singapore: Springer; 2020. p. 317-32. doi: 10.1007/978-981-15-7285-2_16.
  39. Mulichak AM, Theisen MJ, Essigmann B, Benning C, Garavito RM. Crystal structure of SQD1, an enzyme involved in the biosynthesis of the plant sulfolipid headgroup donor UDP-sulfoquinovose. Proc Natl Acad Sci USA. 1999 Nov 9;96(23):13097-102. doi: 10.1073/pnas.96.23.13097.
  40. Tanahashi T, Sumikawa N, Kato M, Hasebe M. Diversification of gene function: homologs of the floral regulator FLO/LFY control the first zygotic cell division in the moss Physcomitrella patens. Development. 2005 Apr 1;132(7):1727-36. doi: 10.1242/dev.01709.
  41. Nelson ADL, Forsythe ES, Devisetty UK, Clausen DS, Haug-Batzell AK, Meldrum AMR, et al. A genomic analysis of factors driving lincRNA diversification: Lessons from plants. G3 GenesGenomesGenetics. 2016 Jul 15;6(9):2881-91. doi: 10.1534/g3.116.030338.

Downloads

Download data is not yet available.