Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Intercropping strategies for abiotic stress tolerance and nutrient acquisition

DOI
https://doi.org/10.14719/pst.3976
Submitted
25 May 2024
Published
04-06-2025
Versions

Abstract

Abiotic stresses, including drought, extreme temperatures, salinity, and nutrient deficiencies, significantly reduce global crop productivity, posing major challenges to food security, particularly in arid and semiarid regions. Climate change intensifies these stresses, emphasizing the need for resilient agricultural systems. Intercropping has emerged as a sustainable strategy to mitigate these impacts by enhancing soil moisture retention, regulating root-zone temperatures, and optimizing nutrient acquisition. For instance, legume-cereal systems like maize-pigeon pea improve drought resilience, while peanut-maize intercropping enhances iron (Fe) and phosphorus (P) nutrition in calcareous soils. Agroforestry practices, such as wheat intercropped with alfalfa, increase water use efficiency and reduce soil salinity. These approaches offer practical solutions for smallholder farmers to adapt to climate change while improving crop tolerance to abiotic stresses. This study evaluates various intercropping systems to identify optimal practices tailored to specific environmental conditions, supporting food security and sustainable agricultural practices. By promoting agricultural sustainability, intercropping provides a pathway to mitigate the effects of climate change and secure global food production.

References

  1. 1. KhokharVoytas A, Shahbaz M, Maqsood MF, Zulfiqar U, Naz N, Iqbal UZ, et al. Genetic modification strategies for enhancing plant resilience to abiotic stresses in the context of climate change. Funct Integr Genomics. 2023;23:283. https://doi.org/10.1007/s10142-023-01202-0
  2. 2. Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E. Cytokinin‐mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water‐stress. Plant Biotechnol J. 2011;9(7):747-58. https://doi.org/10.1111/j.1467-7652.2010.00584.x
  3. 3. Ali S, Liu Y, Ishaq M, Shah T, Abdullah, Ilyas A, et al. Climate change and its impact on the yield of major food crops: evidence from Pakistan. Foods. 2017;6(6):39. https://doi.org/10.3390/foods6060039
  4. 4. Maach M, Baghour M, Akodad M, Gálvez FJ, Sánchez ME, Aranda MN, et al. Overexpression of LeNHX4 improved yield, fruit quality and salt tolerance in tomato plants (Solanum lycopersicum L.). Mol Biol Rep. 2020;47:4145–53. https://doi.org/10.1007/s11033-020-05499-z
  5. 5. Maach M, Rodríguez-Rosales MP, Venema K, Akodad M, Moumen A, Skalli A, et al. Improved yield, fruit quality, and salt resistance in tomato co-overexpressing LeNHX2 and SlSOS2 genes. Physiol Mol Biol Plants. 2021;27:703–12. https://doi.org/10.1007/s12298-021-00974-8
  6. 6. Bijalwan P, Jeddi K, Saini I, Sharma M, Kaushik P, Hessini K. Mitigation of saline conditions in watermelon with mycorrhiza and silicon application. Saudi J Biol Sci. 2021;28:3678–84. https://doi.org/10.1016/j.sjbs.2021.05.019
  7. 7. Alharbi S, Felemban A, Abdelrahim A, Al-Dakhil M. Agricultural and Technology-based strategies to improve water-use efficiency in arid and semiarid areas. Water. 2024;16(13):1842. https://doi.org/10.3390/w16131842
  8. 8. Benos L, Tagarakis AC, Dolias G, Berruto R, Kateris D, Bochtis D. Machine learning in agriculture: A comprehensive updated review. Sensors. 2021;21(11):3758. https://doi.org/10.3390/s21113758
  9. 9. Fuentes-Peñailillo F, Gutter K, Vega R, Silva GC. Transformative technologies in digital agriculture: Leveraging Internet of Things, remote sensing, and artificial intelligence for smart crop management. J Sens Actuator Netw. 2024;13(4):39. https://doi.org/10.3390/jsan13040039
  10. 10. De França e Silva NR, Chaves ME, Luciano AC, Sanches ID, de Almeida CM, Adami M. Sugarcane yield estimation using satellite remote sensing data in empirical or mechanistic modeling: A systematic review. Remote Sens. 2024;16(5):863. https://doi.org/10.3390/rs16050863
  11. 11. Da Silva Morales Ú, Rotta MA, Fornari DC, Streit Jr DP. Aquaculture sustainability assessed by emergy synthesis: The importance of water accounting. Agriculture. 2022;12(11):1947. https://doi.org/10.3390/agriculture12111947
  12. 12. Alam SM, Naqvi SS, Ansari RA. Impact of soil pH on nutrient uptake by crop plants. Handbook of plant and crop stress. 1999 May 19;2:51-60.
  13. 13. Turner NC. Techniques and experimental approaches for the measurement of plant water status. Plant Soil. 1981;58:339–66. https://doi.org/10.1007/BF02180062
  14. 14. Marschner H. Marschner’s mineral nutrition of higher plants. 3rd ed. London: Academic Press; 2012. 651 p.
  15. 15. Hillel D. Soil and water: physical principles and processes. New York: Academic Press; 1971
  16. 16. Richards LA. Diagnosis and improvement of saline and alkali soils. Washington (DC): US Department of Agriculture; 1954. Agricultural Handbook No. 60. p. 7–53.
  17. 17. Abrol IP, Yadav JSP, Massoud FI. Salt-affected soils and their management. Rome: Food and Agriculture Organization of the United Nations; 1988. Report No.: FAO Soils Bulletin 39.
  18. 18. Khan A, Khan AA, Samreen S, Irfan M. Assessment of sodium chloride (NaCl) induced salinity on the growth and yield parameters of Cichorium intybus L. Nat Environ Pollut Technol. 2023;22(2):845-852. https://doi.org/10.46488/NEPT.2023.v22i02.026
  19. 19. Savva AP, Frenken K. Irrigation manual: planning, development, monitoring and evaluation of irrigated agriculture with farmer participation. Vol. II, Module 7 [Internet]. Harare: Food and Agriculture Organization of the United Nations, Sub-Regional Office for East and Southern Africa; 2002 [accessed on 2025 Jan 1]. Available from: https://www.fao.org/4/ai596e/ai596e.pdf.
  20. 20. Qureshi AS, McCornick PG, Qadir M, Aslam Z. Managing salinity and waterlogging in the Indus Basin of Pakistan. Agric Water Manag. 2008;95(1):1–10. https://doi.org/10.1016/j.agwat.2007.09.014
  21. 21. Savci S. Investigation of effect of chemical fertilizers on environment. APCBEE Procedia. 2012;1:287–92. https://doi.org/10.1016/j.apcbee.2012.03.047
  22. 22. Ghassemi F, Jakeman AJ, Nix HA. Salinization of land and water resources: human causes, extent, management and case studies. Sydney: University of New South Wales Press; 1995..
  23. 23. Global Soil Partnership, Sustainable soil management highlights [Internet]. Food and Agriculture Organization of the United Nations.2021 [cited 2025 Jan 1]. Available from: https://www.fao.org/global-soil-partnership/resources/highlights/detail/en/c/1445579/.
  24. 24. NOAA National Centers for Environmental Information. Monthly global drought narrative for October 2024 [Internet]. Published November 2024 [cited 2025 Apr 14]. Available from: https://www.ncei.noaa.gov/access/monitoring/monthly-report/global-drought/202410.
  25. 25. Baghour M, Moreno DA, Víllora G, López-Cantarero I, Hernández J, Castilla N, et al. Root-zone temperature influences the distribution of Cu and Zn in potato-plant organs. J Agric Food Chem. 2002;50(1):140-6. https://doi.org/10.1021/jf010375j
  26. 26. Baghour M, Ben Chekroun K, Manuel Ruiz Sáez J, Romero L. Root-zone temperature affects the phytoextraction of iron in contaminated soil. J Plant Nutr. 2016;39(1):51-8. https://doi.org/10.1080/01904167.2015.1009105
  27. 27. Hussain S, Wang J, Asad Naseer M, Saqib M, Siddiqui MH, Ihsan F, et al. Water stress memory in wheat/maize intercropping regulated photosynthetic and antioxidative responses under rainfed conditions. Sci Rep. 2023;13:13688. https://doi.org/10.1038/s41598-023-40644-1
  28. 28. Paut R, Sabatier R, Tchamitchian M. Reducing risk through crop diversification: An application of portfolio theory to diversified horticultural systems. Agric Syst. 2019;168:123-30. https://doi.org/10.1016/j.agsy.2018.11.002
  29. 29. Sun B, Gao Y, Yang H, Zhang W, Li Z. Performance of alfalfa rather than maize stimulates system phosphorus uptake and overyielding of maize/alfalfa intercropping via changes in soil water balance and root morphology and distribution in a light chernozemic soil. Plant Soil. 2019;439:145–61. https://doi.org/10.1007/s11104-018-3888-y
  30. 30. Wu J, Bao X, Zhang J, Lu B, Sun N, Wang Y, et al. Facilitation between intercropped species increases micronutrient acquisition and controls rust disease on maize. Field Crops Res. 2024;307:109241. https://doi.org/10.1016/j.fcr.2023.109241
  31. 31. Li L, Zhang L, Zhang F. Crop mixtures and the mechanisms of overyielding. In: Levin SA, editor. Encyclopedia of biodiversity. 2nd ed. Academic Press; 2013. p. 382–95. https://doi.org/10.1016/B978-0-12-384719-5.00363-4
  32. 32. Bargaz A, Noyce GL, Fulthorpe R, Carlsson G, Furze JR, Jensen ES, et al. Species interactions enhance resilience against abiotic stress.Appl Soil Ecol.2017;120:179-188. https://doi.org/10.1016/j.apsoil.2017.08.011
  33. 33. Li X, Song Z, Hu Y, Qiao J, Chen Y, Wang S, et al. Drought intensity and post-drought precipitation determine vegetation recovery in a desert steppe in Inner Mongolia, China. Sci Total Environ. 2024;906:167449. https://doi.org/10.1016/j.scitotenv.2023.167449
  34. 34. Meißner A, Granzow S, Wemheuer F, Pfeiffer B. The cropping system matters – Contrasting responses of winter faba bean (Vicia faba L.) genotypes to drought stress. J Plant Physiol. 2021;263:153463. https://doi.org/10.1016/j.jplph.2021.153463
  35. 35. Renwick LLR, Kimaro AA, Hafner JM, Rosenstock TS, Gaudin ACM. Maize-pigeonpea intercropping outperforms monocultures under drought. Front Sustain Food Syst. 2020;4:562663. https://doi.org/10.3389/fsufs.2020.562663
  36. 36. Yin W, Chai Q, Zhao C, Yu A, Fan Z, Hu F, et al. Water utilization in intercropping: A review. Agric Water Manag. 2020;241:106335. https://doi.org/10.1016/j.agwat.2020.106335
  37. 37. Ai P, Ma Y, Hai Y. Influence of jujube/cotton intercropping on soil temperature and crop evapotranspiration in an arid area. Agric Water Manag. 2021;256:107118. https://doi.org/10.1016/j.agwat.2021.107118
  38. 38. Ghosh PK, Mohanty M, Bandyopadhyay KK, Painuli DK, Misra AK. Growth, competition, yield advantage and economics in soybean/pigeonpea intercropping system in semi-arid tropics of India: I. Effect of subsoiling. Field Crops Res. 2006;96(1):80-89. https://doi.org/10.1016/j.fcr.2005.05.009
  39. 39. Caviglia OP, Sadras VO, Andrade FH. Yield and quality of wheat and soybean in sole- and double-cropping. Agron J. 2011;103(4):1081–1089. https://doi.org/10.2134/agronj2011.0019
  40. 40. Mu L, Su K, Zhou T, Yang H. Yield performance, land and water use, economic profit of irrigated spring wheat/alfalfa intercropping in the inland arid area of northwestern China. Field Crops Res. 2023;303:109-116. https://doi.org/10.1016/j.fcr.2023.109116
  41. 41. Wu K, Fullen MA, An T, Fan Z, Zhou F, Xue G, et al. Above- and below-ground interspecific interaction in intercropped maize and potato: A field study using the ‘target’ technique. Field Crops Res. 2012;139:63-70. https://doi.org/10.1016/j.fcr.2012.10.002
  42. 42. Zancarini A, Lépinay C, Burstin J, Duc G, Lemanceau P, Moreau D, et al. Combining molecular microbial ecology with ecophysiology and plant genetics for a better understanding of plant–microbial communities' interactions in the rhizosphere. In: de Bruijn FJ, editor. Molecular microbial ecology of the rhizosphere. Vol. 1 & 2. Hoboken (NJ): Wiley Blackwell; 2013. p. 69–86. https://doi.org/10.1002/9781118297674.ch7
  43. 43. Baghour M, Akodad M, Dariouche A, Maach M, El Haddaji H, Moumen A, et al. Gibberellic Acid and Indole Acetic Acid Improves Salt Tolerance in Transgenic Tomato Plants Overexpressing LeNHX4 Antiporter. Gesunde Pflanzen. 2023;75:687–693. https://doi.org/10.1007/s10343-022-00734-y
  44. 44. Kresnatita S, Ariffin H, Hariyono D, Sitawati. A cauliflower-sweet corn intercropping system in high-temperature conditions. Rev Chapingo Ser Hortic. 2020;26(1):15-27. https://doi.org/10.5154/r.rchsh.2019.09.014
  45. 45. Assadi NM, Bijanzadeh E. Influence of relay intercropping of barley with chickpea on biochemical characteristics and yield under water stress. PLOS ONE. 2023;18(6):e0273272. https://doi.org/10.1371/journal.pone.0273272
  46. 46. Guo Z, Luo C, Dong Y, Dong K, Zhu J, Ma L. Effect of nitrogen regulation on the epidemic characteristics of intercropping faba bean rust disease primarily depends on the canopy microclimate and nitrogen nutrition. Field Crops Res. 2021;274:108339. https://doi.org/10.1016/j.fcr.2021.108339
  47. 47. Zhou Z. Influence of intercropping on soil temperature and crop yield: A study in Jujube-Cotton intercropping systems. Agric Syst. 2022;18(3):1100-1109. https://doi.org/10.7717/peerj.17587/supp-2
  48. 48. Lv Q, Chi B, He N, Zhang D, Dai J, Zhang Y, et al. Cotton-Based Rotation, Intercropping, and Alternate Intercropping Increase Yields by Improving Root–Shoot Relations. Agronomy. 2023;13(2):413. https://doi.org/10.3390/agronomy13020413
  49. 49. Maitra S, Hossain A, Brestic M, Skalicky M, Ondrisik P, Gitari H, et al. Intercropping—A low input agricultural strategy for food and environmental security. Agronomy. 2021;11(2):343. https://doi.org/10.3390/agronomy11020343
  50. 50. Zafaranieh M, Valizadeh J. Investigating light absorption and some canopy properties in monocultures and intercropping culture of safflower and chickpea. Int J Agric Innov Res. 2015;3(4):1182-1187. https://doi.org/10.5555/20153142234
  51. 51. Li S, Zhao J, Li J, Shao R, Li H, Fang W, et al. Inter- and mixed cropping of different varieties improves high-temperature tolerance during flowering of summer maize. Sustainability. 2022;14:6993. https://doi.org/10.3390/su14126993
  52. 52. Liu SB, Chai Q, Huang GB. Relationships among soil respiration, soil temperature, and dry matter accumulation for wheat-maize intercropping in an arid environment. Can J Plant Sci. 2013;93(4):715-724. https://doi.org/10.4141/cjps2012-274
  53. 53. Ghani MI, Ali A, Atif MJ, Ali M, Amin B, Anees M, et al. Soil amendment with raw garlic stalk: A novel strategy to stimulate growth and the antioxidative defense system in monocropped eggplant in the north of China. Agronomy. 2019;9(2):89. https://doi.org/10.3390/agronomy9020089
  54. 54. Wang M, Wu C, Cheng Z, Meng H. Growth and physiological changes in continuously cropped eggplant (Solanum melongena L.) upon relay intercropping with garlic (Allium sativum L.). Front Plant Sci. 2015;6:262. https://doi.org/10.3389/fpls.2015.00262
  55. 55. Ahmad S, Ghafoor A, Akhtar ME, Khan MZ. Implication of gypsum rates to optimize hydraulic conductivity for variable-texture saline-sodic soils reclamation. Land Degrad Dev. 2016;27(3):550-560. http://dx.doi.org/10.1002/ldr.2413
  56. 56. Singh YP, Mishra VK, Sharma DK, Singh G, Arora S, Dixit H, et al. Harnessing productivity potential and rehabilitation of degraded sodic lands through jatropha-based intercropping sequences. Agric Ecosyst Environ. 2016;233:121–129. https://doi.org/10.3389/fpls.2015.00262
  57. 57. Jurado C, Díaz-Vivancos P, Gregorio BE, Acosta-Motos JR, Hernández JA. Effect of halophyte-based management in physiological and biochemical responses of tomato plants under moderately saline greenhouse conditions. Plant Physiol Biochem. 2024;206:108-228. https://doi.org/10.1016/j.plaphy.2023.108228
  58. 58. Ahmad R, Zaheer SH. Responses of Sporobolus arabicus and Sesbania aegyptica as affected by density, salinity of irrigation water, and intercropping. Pak J Bot. 1994;26:115. https://doi.org/10.5555/19950709605
  59. 59. Shi X, Guo P, Ren J, Zhang H, Dong Q, Zhao X, et al. A salt stress tolerance effect study in peanut based on peanut/sorghum intercropping system. Sci Agric Sin. 2022;55:2927–2937. https://doi.org/10.3864/j.issn.0578-1752.2022.15.005
  60. 60. Guo T, Yao X, Wu K, Guo A, Yao Y. Response of the rhizosphere soil microbial diversity to different nitrogen and phosphorus application rates in a hulless barley and pea mixed-cropping system. Appl Soil Ecol.2024;195:105262 https://doi.org/10.1016/j.apsoil.2023.105262
  61. 61. Arora P, Bidalia A, Rao KS. Growth and photosynthetic response of wheat and mustard plants to intercropping. Phytomorphology. 2016;66:35-44.
  62. 62. Slatni T, Selmi A, Kalboussi N, Zemni H, Echadly A, Espin GB, et al. Intercropping salt-sensitive Solanum lycopersicum L. and salt-tolerant Arthrocaulon macrostachyum in salt-affected agricultural soil under open field conditions: physiological, hormonal, metabolic and agronomic responses. Environ Exp Bot. 2024;228:106013. https://doi.org/10.1016/j.envexpbot.2024.106013
  63. 63. Wang S, Liu J, Liu Y, Tian C. Enhanced soybean growth and the associated ion balance, nutrient accumulation, and rhizosphere bacterial community when intercropped with Suaeda salsa in saline soils. Agronomy. 2024;14(10):2181. https://doi.org/10.3390/agronomy14102181
  64. 64. Atzori G, Guidi Nissim W, Mancuso S, Palm E. Intercropping salt-sensitive Lactuca sativa L. and salt-tolerant Salsola soda L. in a saline hydroponic medium: an agronomic and physiological assessment. Plants. 2022;11(21):2924. https://doi.org/10.3390/plants11212924
  65. 65. Ghaffarian MR, Yadavi A, Movahhedi Dehnavi M, Dabbagh Mohammadi Nassab A, Salehi M. Improvement of physiological indices and biological yield by intercropping of Kochia (Kochia scoparia), Sesbania (Sesbania aculeata) and Guar (Cyamopsis tetragonoliba) under the salinity stress of irrigation water. Physiol Mol Biol Plants. 2020;26:1319-1330. https://doi.org/10.1007/s12298-020-00833-y
  66. 66. Sekar J, Saharan K, Raju K, Singh U, Vaiyapuri PR. Consequences of bioinoculants and intercropping approach to alleviate plant drought and salinity stress for sustainable agriculture. In: Akhtar M, editor. Salt stress, microbes, and plant interactions: mechanisms and molecular approaches. Singapore: Springer; 2019. p. 161–82. https://doi.org/10.1007/978-981-13-8805-7_8
  67. 67. Simon NS, Mmateko KP, Bob OJ. Maize-legume intercropping system improved soil quality under irrigated and rainfed conditions. Res Crops. 2024;25(4):553-559. https://doi.org/10.31830/2348-7542.2024.ROC-1117
  68. 68. Wang S, Ge S, Mai W, Tian C. Nitrogen promotes the salt-gathering capacity of Suaeda salsa and alleviates nutrient competition in the intercropping of Suaeda salsa/Zea mays L. Int J Mol Sci. 2022;23(24):15495. https://doi.org/10.3390/ijms232415495
  69. 69. Shi X, Zhou Y, Guo P, Ren J, Zhang H, Dong Q, et al. Peanut/sorghum intercropping drives specific variation in peanut rhizosphere soil properties and microbiomes under salt stress. Land Degrad Dev. 2023;34(3):736-750. https://doi.org/10.1002/ldr.4490
  70. 70. Simpson CR, Franco JG, King SR, Volder A. Intercropping halophytes to mitigate salinity stress in watermelon. Sustainability. 2018;10(3):681. https://doi.org/10.3390/su10030681
  71. 71. Castagna A, Mariottini G, Gabriele M, Longo V, Souid A, Dauvergne X, et al. Nutritional composition and bioactivity of Salicornia europaea L. plants grown in monoculture or intercropped with tomato plants in salt-affected soils. Horticulturae. 2022;8(9):828. https://doi.org/10.3390/horticulturae8090828
  72. 72. Jurado-Mañogil C, Barbara-Espin G, Hernández JA, Díaz-Vivancos P. Comparative metabolomic analysis between tomato and halophyte plants under intercropping conditions. Physiol Plant. 2023;175(4):e13971. https://doi.org/10.1111/ppl.13971
  73. 73. Shi X, Zhou Y, Zhao X, Guo P, Ren J, Zhang H, et al. Soil metagenome and metabolome of peanut intercropped with sorghum reveal a prominent role of carbohydrate metabolism in salt-stress response. Environ Exp Bot. 2023;209:105274. https://doi.org/10.1016/j.envexpbot.2023.105274
  74. 74. Chai Q, Nemecek T, Liang C, Zhao C, Yu A, Coulter JA, et al. Integrated farming with intercropping increases food production while reducing environmental footprint. Proc Natl Acad Sci USA. 2021;118(38):e2106382118. https://doi.org/10.1073/pnas.2106382118
  75. 75. Wang W, Chen Y, Zhang F, Zhang W, Liu J, Wang J, et al. Cotton-maize intercropping increases rhizosphere soil phosphorus bioavailability by regulating key phosphorus cycling genes in northwest China. Appl Soil Ecol. 2023;182:104734. https://doi.org/10.1016/j.apsoil.2022.104734
  76. 76. Ngwene B, Neugart S, Baldermann S, Ravi B, Schreiner M. Intercropping induces changes in specific secondary metabolite concentration in Ethiopian kale (Brassica carinata) and African nightshade (Solanum scabrum) under controlled conditions. Front Plant Sci. 2017;8:1700. https://doi.org/10.3389/fpls.2017.01700
  77. 77. Inal A, Gunes A. Interspecific root interactions and rhizosphere effects on salt ions and nutrient uptake between mixed-grown peanut/maize and peanut/barley in original saline-sodic-boron toxic soil. J Plant Physiol. 2008;165(5):490–503. https://doi.org/10.1016/j.jplph.2007.01.016
  78. 78. Guo X, Xiong H, Shen H, Qiu W, Ji C, Zhang Z, et al. Dynamics in the rhizosphere and iron-uptake gene expression in peanut induced by intercropping with maize: role in improving iron nutrition in peanut. Plant Physiol Biochem. 2014;76:36–43. https://doi.org/10.1016/j.plaphy.2013.12.019
  79. 79. Dai J, Qiu W, Wang N, Nakanishi H, Zuo Y. Comparative transcriptomic analysis of the roots of intercropped peanut and maize reveals novel insights into peanut iron nutrition. Plant Physiol Biochem. 2018;127:516–524. https://doi.org/10.1016/j.plaphy.2018.04.024
  80. 80. Zhou Q, Chen J, Xing Y, et al. Influence of intercropping Chinese milk vetch on the soil microbial community in the rhizosphere of rape. Plant Soil. 2019;440:85–96. https://doi.org/10.1007/s11104-019-04040-x
  81. 81. Zheng Y, Zhang F, Li L. Iron availability as affected by soil moisture in intercropped peanut and maize. J Plant Nutr. 2003;26:2425–2437. https://doi.org/10.1081/PLN-120025470
  82. 82. Chi B, Liu J, Dai J, Li Z, Zhang D, Xu S, et al. Alternate intercropping of cotton and peanut increases productivity by increasing canopy photosynthesis and nutrient uptake under the influence of rhizobacteria. Field Crops Res. 2023;302:109059. https://doi.org/10.1016/j.fcr.2023.109059
  83. 83. Jensen ES, Carlsson G, Hauggaard-Nielsen H. Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: a global-scale analysis. Agron Sustain Dev. 2020;40:5. https://doi.org/10.1007/s13593-020-0607-x

Downloads

Download data is not yet available.