Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 11 No. sp4 (2024): Recent Advances in Agriculture by Young Minds - I

Exploring the potential of seaweed extract in paddy seed presoaking: A pathway to improve crop performance

DOI
https://doi.org/10.14719/pst.5981
Submitted
19 October 2024
Published
31-12-2024 — Updated on 27-08-2025
Versions

Abstract

Paddy (Oryza sativa L.) is a globally important staple crop, and achieving high yield is closely linked to effective seed treatments. In this study, seeds of improved kavuni CO 57 were treated with seaweed extracts (SE) from Sargassum myricocystum (brown algae) and Kappaphycus alvarezii (red algae) at various concentrations to assess their impact on seed performance. The treated seeds were evaluated for physiological and biochemical improvements. Notably, seeds soaked in a 0.5% methanol extract of S. myricocystum (T6) showed significant improvements compared to the control group, including a higher germination rate (94%), increased root length (19.51 cm), enhanced shoot length (9.29 cm), higher dry matter production (0.155 g/seedling), and a marked increase in seedling vigour index (2707).
Biochemical analysis revealed significant enhancements in enzyme activities, with α-amylase (2.41 mg maltose min-1), catalase (3.15 μmol H2O2 (hydrogen peroxide) reduced min-1 g-1), and peroxidase (0.332 moles tetra guaiacol min-1 g-1) all exhibiting higher levels in treated seeds. Additionally, Gas Chromatography-Mass Spectrometry (GC-MS) analysis identified key secondary metabolites in the treated seeds, with hexadecanoic acid (21.14%) and octadecanoic acid (10.86%) as dominant compounds. These compounds, known for their antimicrobial, antiviral, antibacterial, and antifungal properties, suggest enhanced resilience in the treated plants. Overall, the findings highlight the potential of SE as a sustainable alternative to conventional seed treatments, offering a promising approach for enhancing crop growth and yield in organic and sustainable agricultural systems.

References

  1. 1. Muthayya S, Sugimoto JD, Montgomery S, Maberly GF. An overview of global rice production, supply, trade, and consumption. Ann N Y Acad Sci. 2014;1324(1):7-14. https://doi.org/10.1111/nyas.12540
  2. 2. Lernoud J, Willer H. Organic Agriculture Worldwide: Key results from the FiBL survey on organic agriculture worldwide 2019. Research Institute of Organic Agriculture (FIBL), part. 2019;1.
  3. 3. Lori M, Symnaczik S, Mäder P, De Deyn G, Gattinger A. Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression. PloS one. 2017;12 (7):e0180442. https://doi.org/10.1371/journal.pone.0180442
  4. 4. Van Bueren EL, Jones SS, Tamm L, Murphy KM, Myers JR, Leifert C, Messmer MM. The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: A review. NJAS-Wagen J Life Sci. 2011;58(3-4):193-205. https://doi.org/10.1016/j.njas.2011.08.001
  5. 5. Crowder DW, Jabbour R. Relationships between biodiversity and biological control in agroecosystems: Current status and future challenges. Bio Control. 2014;75:8-17. https://doi.org/10.1016/j.biocontrol.2013.10.010
  6. 6. Paparella S, Araújo SS, Rossi G, Wijayasinghe MA, Carbonera D, Balestrazzi A. Seed priming: State of the art and new perspectives. Plant Cell Rep. 2015;34:1281-93. https://doi.org/10.1007/s00299-015-1784-y
  7. 7. Hussain S, Khan F, Hussain HA, Nie L. Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Front Plant Sci. 2016;7:116. https://doi.org/10.3389/fpls.2016.00116
  8. 8. Li C, Nonogaki H, Barrero. Seed Dormancy, Germination and Pre -Harvest Sprouting. Frontiers Media SA-2019. https://doi.org/10.3389/978-2-88963-898-2
  9. 9. Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D. Seed germination and vigor. Annu Rev Plant Biol. 2012;63(1):507-33. https://doi.org/10.1146/annurev-arplant-042811-105550
  10. 10. Basra SM, Farooq M, Tabassam R, Ahmad N. Physiological and biochemical aspects of pre-sowing seed treatments in fine rice (Oryza sativa L.). SST. 2005;33(3):623-8. https://doi.org/10.15258/sst.2005.33.3.16
  11. 11. Battacharyya D, Babgohari MZ, Rathor P, Prithiviraj B. Seaweed extracts as biostimulants in horticulture. Sci Hortic. 2015;196:39-48. https://doi.org/10.1016/j.scienta.2015.09.012
  12. 12. de Carvalho ME, de Camargo PR, Gallo LA, Junior MV. Seaweed extract provides development and production of wheat. Agrarian. 2014;7(23):166-70. http://dx.doi.org/10.5281/zenodo.51607
  13. 13. Kumar G, Sahoo D. Effect of seaweed liquid extract on growth and yield of Triticum aestivum var. Pusa Gold. J Appl Phycol. 2011;23:251-55. https://doi.org/10.1007/s10811-011-9660-9
  14. 14. Kocira A, Świeca M, Kocira S, Złotek U, Jakubczyk A. Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima). Saudi J Biol Sci. 2018;25(3):563-71. https://doi.org/10.1016/j.sjbs.2016.01.039
  15. 15. Ertani A, Francioso O, Tinti A, Schiavon M, Pizzeghello D, Nardi S. Evaluation of seaweed extracts from Laminaria and Ascophyllum nodosum spp. as biostimulants in Zea mays L. using a combination of chemical, biochemical and morphological approaches. Front Plant Sci. 2018;9:428. https://doi.org/10.3389/fpls.2018.00428
  16. 16. Udhaya A, Radhamani S, Ravichandhran V, Janaki P, Manonmani S. Evaluation of integrated nutrient management practices on growth, yield parameters and yield of improved traditional rice in the western zone of Tamil Nadu. J Appl Nat Sci. 2024;16(3):1233-9. https://doi.org/10.31018/jans.v16i3.5784
  17. 17. Tanna B, Yadav S, Patel MK, Mishra A. Metabolite profiling, biological and molecular analyses validate the nutraceutical potential of green seaweed Acrosiphonia orientalis for human health. Nutrients. 2024;16(8):1222. https://doi.org/10.3390/nu16081222
  18. 18. Godlewska K, Michalak I, Tuhy Ł, Chojnacka K. Plant growth biostimulants based on different methods of seaweed extraction with water. Biomed Res Int. 2016;2016(1):5973760. https://doi.org/10.1155/2016/597376
  19. 19. International Seed Testing Association (ISTA). Germination percentage. 2019.
  20. 20. Abdul‐Baki AA, Anderson JD. Vigor determination in soybean seed by multiple criteria 1. Crop Sci. 1973;13(6):630-33. https://doi.org/10.2135/cropsci1973.0011183X001300060013x
  21. 21. ISTA 2013. International rules for seed testing. Seed Sci. & Technol. 2013;27:25-30.
  22. 22. Paul AK, Mukherji S, Sircar SM. Metabolic changes in rice seeds during storage. 1970.
  23. 23. Luck H. Methods in Enzymatic Analysis. II Edition, Bergmeyer Publication.1974:885-90.
  24. 24. Malik CP, Singh M. Plant enzymology and histo-enzymology. Kalyani Publishers. New Delhi; 1980.
  25. 25. Quéro A, Molinié R, Mathiron D, Thiombiano B, Fontaine JX, Brancourt D et al. Metabolite profiling of developing Camelina sativa seeds. Metabolomics. 2016;12:1-4. https://doi.org/10.1007/s11306-016-1135-1
  26. 26. Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, et al. Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul. 2009;28:386-99. https://doi.org/10.1007/s00344-009-9103-x
  27. 27. Craigie JS. Seaweed extract stimuli in plant science and agriculture. J Appl Phycol. 2011;23:371-93. https://doi.org/10.1007/s10811-010-9560-4
  28. 28. Stirk WA, Van Staden J. Plant growth regulators in seaweeds: Occurrence, regulation and functions. In Adv Bot Res. 2014;71:125-59.
  29. 29. El Boukhari ME, Barakate M, Bouhia Y, Lyamlouli K. Trends in seaweed extract based biostimulants: Manufacturing process and beneficial effect on soil-plant systems. Plants. 2020;9(3):359. https://doi.org/10.3390/plants9030359
  30. 30. Shukla PS, Borza T, Critchley AT, Prithiviraj B. Carrageenans from red seaweeds as promoters of growth and elicitors of defense response in plants. Front Mar Sci. 2016;3:81. https://doi.org/10.3389/fmars.2016.00081
  31. 31. Colla G, Hoagland L, Ruzzi M, Cardarelli M, Bonini P, Canaguier R, Rouphael Y. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front Plant Sci. 2017;8:2202. https://doi.org/10.3389/fpls.2017.02202
  32. 32. Moe LA. Amino acids in the rhizosphere: From plants to microbes. Am J Bot. 2013;100(9):1692-705. https://doi.org/10.3732/ajb.1300033
  33. 33. Cotas J, Leandro A, Monteiro P, Pacheco D, Figueirinha A, Gonçalves AM, et al. Seaweed phenolics: From extraction to applications. Marine drugs. 2020;18(8):384. https://doi.org/10.3390/md18080384
  34. 34. Sathya R, Kanaga N, Sankar P, Jeeva S. Antioxidant properties of phlorotannins from brown seaweed Cystoseira trinodis (Forsskål) C. Agardh. Arab J Chem. 2017;10:S2608-14. https://doi.org/10.1016/j.arabjc.2017.01.002
  35. 35. Sharma HS, Fleming C, Selby C, Rao JR, Martin T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J Appl Phycol. 2014;26:465-90. https://doi.org/10.1007/s10811-013-0101-9
  36. 36. Lu Y, Xu J. Phytohormones in microalgae: A new opportunity for microalgal biotechnology. Trends Plant Sci. 2015;20(5):273-82. https://doi.org/10.1016/j.tplants.2015.01.006
  37. 37. Goni O, Fort A, Quille P, McKeown PC, Spillane C, O’Connell S. Comparative transcriptome analysis of two Ascophyllum nodosum extract biostimulants: Same seaweed but different. J Agric Food Chem. 2016;64(14):2980-89. https://doi.org/10.1021/acs.jafc.6b00621
  38. 38. Rani A, Saini KC, Fartyal M, Jaitak V, Bast F. A concise review on the bioactive potential of the genus Gracilaria (Rhodophyta). The Nucleus. 2024;68:161-77. http://dx.doi.org/10.1007/s13237-024-00471-9
  39. 39. Latique S, Chernane H, Mansori M, El Kaoua M. Seaweed liquid fertilizer effect on physiological and biochemical parameters of bean plant (Phaesolus vulgaris variety Paulista) under hydroponic system. Eur Sci J. 2013.
  40. 40. Begum M, Bordoloi BC, Singha DD, Ojha NJ. Role of seaweed extract on growth, yield and quality of some agricultural crops: A review. Agri Rev. 2018;39(4):321-26. https://doi.org/10.18805/ag. R-1838
  41. 41. Ambika S, Sujatha K. Organic seed treatment with seaweed nano powders weed nano powders on physiological quality and enzyme activities in aged seeds of pigeon pea. The Bioscan. 2016;11(Supplement 1):353-58.
  42. 42. Rathore SS, Chaudhary DR, Boricha GN, Ghosh A, Bhatt BP, Zodape ST, Patolia JS. Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. S Afr J Bot. 2009;75(2):351-55. https://doi.org/10.1016/j.sajb.2008.10.009
  43. 43. Kavipriya R, Dhanalakshmi PK, Jayashree S, Thangaraju N. Seaweed extract as a biostimulant for legume crop, green gram. J Ecobiotechnol. 2011;3(8).
  44. 44. Garai S, Brahmachari K, Sarkar S, Kundu R, Pal M, Pramanick B. Crop growth and productivity of rainy maize-garden pea copping sequence as influenced by Kappaphycus and Gracilaria Saps at alluvial soil of West Bengal, India. Curr J Appl Sci Technol. 2019;36(2):1-11. http://dx.doi.org/10.9734/cjast/2019/v36i230227
  45. 45. Deepana P, Bama KS, Santhy P, Devi TS. Effect of seaweed extract on rice (Oryza sativa var. ADT53) productivity and soil fertility in Cauvery delta zone of Tamil Nadu, India. J Appl & Nat Sci. 2021;13(3):1111-20. https://doi.org/10.31018/jans.v13i3.2906
  46. 46. Pramanick B, Brahmachari K, Ghosh A. Effect of seaweed saps on growth and yield improvement of green gram. Afr J Agric Res. 2013;8(13):1180-86. https://doi.org/10.5897/AJAR12.1894
  47. 47. Godlewska A, Ciepiela GA. Yield performance and content of selected organic compounds in Trifolium pratense treated with various biostimulants against the background of nitrogen fertilisation. Legume Research-An International Journal. 2020;43(6):850-55. http://dx.doi.org/10.18805/LR-522
  48. 48. Ghafarizadeh A, Gilani A. Synergistic effect of seaweed extract and urea fertilizer on growth and biochemical parameters of Triticum aestivum at vegetative stage. Eur Online J Nat Soc. 2017;6(4):545.
  49. 49. Bharath B, Nirmalraj S, Mahendrakumar M, Perinbam K. Biofertilizing efficiency of Sargassum polycystum extract on growth and biochemical composition of Vigna radiata and Vigna mungo. Asian Pac J Reprod. 2018;7(1):27-32. http://dx.doi.org/10.4103/2305-0500.220982
  50. 50. Mikhedkina EI, Melnik II, Tsygankov AV, Kozhich DT, Vasyleiko MV. Synthesis of ethyl 3, 5-dimethyl-4-(aryliminomethyl)-1hpyrrole-2-carboxylates and their reactions with thioglycolic acid. CNCH-2018. 2018:113.
  51. 51. Epifano F, Genovese S, Menghini L, Curini M. Chemistry and pharmacology of oxyprenylated secondary plant metabolites. Phytochemistry. 2007;68(7):939-53. https://doi.org/10.1016/j.phytochem.2007.01.019
  52. 52. Ratnayake WN, Ackman RG. Fatty alcohols in capelin, herring and mackerel oils and muscle lipids: II. A comparison of fatty acids from wax esters with those of triglycerides. Lipids. 1979;14(9):804-10. https://doi.org/10.1007/bf02533519
  53. 53. Linton RE, Jerah SL, Ahmad IB. The effect of combination of octadecanoic acid, methyl ester and ribavirin against measles virus. IJSTR. 2013;2(10):181-84.

Downloads

Download data is not yet available.