Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Bioinformatics and computational tools for post-sequencing data analysis in DNA barcoding studies - A review

DOI
https://doi.org/10.14719/pst.6418
Submitted
30 November 2024
Published
25-06-2025
Versions

Abstract

DNA barcoding is a significant and valuable method for identifying species and it is one of the key fields of biodiversity and evolutionary research. It changed biodiversity studies with computational techniques and next-generation sequencing. Post-sequencing data analysis is an essential stage encompassing many critical procedures to ensure precise identification of organisms and their classification. Processing generated mass-sequenced information is a significant problem in any barcoding studies. Various analysis methods are employed for inferring organismal taxonomy, such as tree-based, similarity-based, composition-based and hybrid methods. This study will review the diversity of these computational methods for post-sequence data analysis in DNA barcoding studies. Tree-based techniques (e.g.: MrBayes and RAxML) illustrate evolutionary relationships among species, similarity-based techniques (e.g.: SOrt-ITEMS and BLAST) assist in identifying species by sequence similarities and composition-based techniques (e.g.: Phymm and NBC) categorize species according to their nucleotide composition. These methods are combined in hybrid approaches (e.g.: PhyScimm and RITA) to provide an in-depth investigation. Computational tools for post-sequence analysis use graphical user, command line or web-based interfaces with supervised, unsupervised, or semi-supervised machine learning approaches. Operating systems such as Linux, UNIX, Windows and macOS are used to analyze DNA barcoding data, while Java, R, Python, C/C++ and Perl are the most widely used programming languages. This review emphasizes how crucial it is to incorporate such bioinformatics and computational techniques to improve the robustness and consistency of DNA barcoding studies and provide an adequate set of tools for advanced biodiversity research.

References

  1. 1. Trivedi S, Aloufi AA, Ansari AA, Ghosh SK. Role of DNA barcoding in marine biodiversity assessment and conservation: an update. Saudi J Biol Sci. 2016;23(2):161–71. https://doi.org/10.1016/j.sjbs.2015.01.001
  2. 2. Nair VD, Aseema P, Saini KC. DNA barcoding: an effective molecular tool for species identification, molecular authentication and phylogeny studies in plant science research. Plant Sci Today. 2024;11(4):204–18. https://doi.org/10.14719/pst.3183
  3. 3. Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci. 2003;270(1512):313–21. https://doi.org/10.1098/rspb.2002.2218
  4. 4. Abdi G, Singh S, Selvakumar S, Dhar SK, Mudgal G, Swaminathan P, et al. DNA barcoding and its applications. In: Singh V (ed.) Advances in Genomics. Singapore: Springer Nature Singapore; 2024. p. 91–117. https://doi.org/10.1007/978-981-97-3169-5_5
  5. 5. Lahaye R, van ber bank M, Bogarin D, Warner J, Pupulin F, Gigot G, et al. DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci. 2008;105(8):2923–28. https://doi.org/10.1073/pnas.0709936105
  6. 6. Tan MP, Wong LL, Razali SA, Afiqah-Aleng N, Mohd Nor SA, Sung YY, et al. Applications of next-generation sequencing technologies and computational tools in molecular evolution and aquatic animals conservation studies: a short review. Evol Bioinforma. 2019;15:1176934319892284. https://doi.org/10.1177/1176934319892284
  7. 7. Antil S, Abraham JS, Sripoorna S, Maurya S, Dagar J, Makhija S, et al. DNA barcoding, an effective tool for species identification: a review. Mol Biol Rep. 2023;50(1):761–75. https://doi.org/10.1007/s11033-022-08015-7
  8. 8. Tanabe AS, Toju H. Two new computational methods for universal DNA barcoding: a benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plants. Fontaneto D (ed) PLoS ONE. 2013;8(10):e76910. https://doi.org/10.1371/journal.pone.0076910
  9. 9. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. Blast+: architecture and applications. BMC Bioinformatics. 2009;10(1):421. https://doi.org/10.1186/1471-2105-10-421
  10. 10. Kumar S, Stecher G, Suleski M, Sanderford M, Sharma S, Tamura K. Mega12: Molecular Evolutionary genetic analysis version 12 for adaptive and green computing. Mol Biol Evol. 2024;41(12):msae263. https://doi.org/10.1093/molbev/msae263
  11. 11. Hakimzadeh A, Abdala Asbun A, Albanese D, Bernard M, Buchner D, Callahan B, et al. A pile of pipelines:an overview of the bioinformatics software for metabarcoding data analyses. Mol Ecol Resour. 2024;24(5):e13847. https://doi.org/10.1111/1755-0998.13847
  12. 12. Yao H, Song J, Liu C, Luo K, Han J, Li Y, et al. Use of the ITS2 region as the universal DNA barcode for plants and animals. PLoS ONE. 2010;5(10):e13102. https://doi.org/10.1371/journal.pone.0013102
  13. 13. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci. 2012;109(16):6241–46. https://doi.org/10.1073/pnas.1117018109.
  14. 14. Comtet T, Sandionigi A, Viard F, Casiraghi M. DNA (meta)barcoding of biological invasions: a powerful tool to elucidate invasion processes and help manage aliens. Biol Invasions. 2015;17(3):905–22. https://doi.org/10.1007/s10530-015-0854-y
  15. 15. DeSalle R, Goldstein P. Review and interpretation of trends in DNA barcoding. Front Ecol Evol. 2019;7:302. https://doi.org/10.3389/fevo.2019.00302
  16. 16. Letsiou S, Madesis P, Vasdekis E, Montemurro C, Grigoriou ME, Skavdis G, et al. DNA barcoding as a plant identification method. Appl Sci. 2024;14(4):1415. https://doi.org/10.3390/app14041415
  17. 17. Thielecke L, Aranyossy T, Dahl A, Tiwari R, Roeder I, Geiger H, et al. Limitations and challenges of genetic barcode quantification. Sci Rep. 2017;7(1):43249. https://doi.org/10.1038/srep43249
  18. 18. Thomas T, Gilbert J, Meyer F. Metagenomics - A guide from sampling to data analysis. Microb Inform Exp. 2012;2(1):3. https://doi.org/10.1186/2042-5783-2-3
  19. 19. Tripathi LK, Nailwal TK. Metagenomics: applications of functional and structural approaches and meta-omics. In: Recent Advancements in Microbial Diversity. Elsevier; 2020. p. 471–505. https://doi.org/10.1016/B978-0-12-821265-3.00020-7
  20. 20. Sohpal VK, Dey A, Singh A. MEGA biocentric software for sequence and phylogenetic analysis:a review. Int J Bioinforma Res Appl. 2010;6(3):230. https://doi.org/10.1504/IJBRA.2010.034072
  21. 21. Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42. https://doi.org/10.1093/sysbio/sys029
  22. 22. Stamatakis A. Using RAxML to infer phylogenies. Curr Protoc Bioinforma. 2015;51(1). https://doi.org/10.1002/0471250953.bi0614s51
  23. 23. Minh BQ, Lanfear R, Ly-Trong N, Trifinopoulos J, Schrempf D, Schmidt HA. IQ-TREE version 2.2.0: Tutorials and Manual Phylogenomic software by maximum likelihood. 2022. http://www.iqtree.org/
  24. 24. Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Bio. 2007;7(1):214. https://doi.org/10.1186/1471-2148-7-214
  25. 25. Bazinet AL, Cummings MP. A comparative evaluation of sequence classification programs. BMC Bioinformatics. 2012;13(1):92. https://doi.org/10.1186/1471-2105-13-92
  26. 26. Stark M, Berger SA, Stamatakis A, Von Mering C. MLTreeMap - accurate maximum likelihood placement of environmental DNA sequences into taxonomic and functional reference phylogenies. BMC Genomics. 2010;11(1):461. https://doi.org/10.1186/1471-2164-11-461
  27. 27. Matsen FA, Kodner RB, Armbrust EV. pplacer: linear time maximum likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics. 2010;11(1):538. https://doi.org/10.1186/1471-2105-11-538
  28. 28. Monzoorul Haque M, Ghosh TS, Komanduri D, Mande SS. SORT-ITEMS: Sequence orthology-based approach for improved taxonomic estimation of metagenomic sequences. Bioinformatics. 2009;25(14):1722–30. https://doi.org/10.1093/bioinformatics/btp317
  29. 29. Ye J, McGinnis S, Madden TL. BLAST: improvements for better sequence analysis. Nucleic Acids Res. 2006;34(Web Server issue):W6–W9. https://doi.org/10.1093/nar/gkl164
  30. 30. Horton M, Bodenhausen N, Bergelson J. MARTA: a suite of Java-based tools for assigning taxonomic status to DNA sequences. Bioinformatics. 2010;26(4):568–69. https://doi.org/10.1093/bioinformatics/btp682
  31. 31. Patil KR, Roune L, McHardy AC. The PhyloPythiaS web server for taxonomic assignment of metagenome sequences. PLoS ONE. 2012;7(6):e38581. https://doi.org/10.1371/journal.pone.0038581
  32. 32. Diaz NN, Krause L, Goesmann A, Niehaus K, Nattkemper TW. TACOA – Taxonomic classification of environmental genomic fragments using a kernelised nearest neighbour approach. BMC Bioinformatics. 2009;10(1):56. https://doi.org/10.1186/1471-2105-10-56
  33. 33. Lan Y, Wang Q, Cole JR, Rosen GL. Using the RDP classifier to predict taxonomic novelty and reduce the search space for finding novel organisms. PLoS ONE. 2012;7(3):e32491. https://doi.org/10.1371/journal.pone.0032491
  34. 34. Brady A, Salzberg SL. Phymm and Phymmbl: metagenomic phylogenetic classification with interpolated Markov models. Nat. Methods. 2009;6(9):673–76. https://doi.org/10.1038/nmeth.1358
  35. 35. Rosen GL, Reichenberger ER, Rosenfeld AM. NBC: the Naïve Bayes Classification tool web server for taxonomic classification of metagenomic reads. Bioinformatics. 2011;27(1):127–29. https://doi.org/10.1093/bioinformatics/btq619
  36. 36. Nalbantoglu OU, Way SF, Hinrichs SH, Sayood K. RAIphy: Phylogenetic classification of metagenomics samples using iterative refinement of relative abundance index profiles. BMC Bioinformatics. 2011;12(1):41. https://doi.org/10.1186/1471-2105-12-41
  37. 37. Gerlach W, Stoye J. Taxonomic classification of metagenomic shotgun sequences with CARMA3. Nucleic Acids Res. 2011;39(14):e91–e91. https://doi.org/10.1093/nar/gkr225
  38. 38. Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data. Genome Res. 2007;17(3):377–86. https://doi.org/10.1101/gr.5969107
  39. 39. Sedlar K, Kupkova K, Provaznik I. Bioinformatics strategies for taxonomy-independent binning and visualization of sequences in shotgun metagenomics. Comput Struct Biotechnol J. 2017;15:48–55. https://doi.org/10.1016/j.csbj.2016.11.005
  40. 40. Schreiber F, Gumrich P, Daniel R, Meinicke P. Treephyler:fast taxonomic profiling of metagenomes. Bioinformatics. 2010;26(7):960–61. https://doi.org/10.1093/bioinformatics/btq070
  41. 41. Ghosh TS, Haque MM, Mande SS. DiScRIBinATE:a rapid method for accurate taxonomic classification of metagenomic sequences. BMC Bioinformatics. 2010;11(S7):S14. https://doi.org/10.1186/1471-2105-11-S7-S14
  42. 42. Peabody MA, Van Rossum T, Lo R, Brinkman FSL. Evaluation of shotgun metagenomics sequence classification methods using in silico and in vitro simulated communities. BMC Bioinformatics. 2015;16(1):362. https://doi.org/10.1186/s12859-015-0788-5
  43. 43. Mohammed MH, Ghosh TS, Reddy RM, Reddy CVSK, Singh NK, Mande SS. INDUS - a composition-based approach for rapid and accurate taxonomic classification of metagenomic sequences. BMC Genomics. 2011;12(S3):S4. https://doi.org/10.1186/1471-2164-12-S3-S4
  44. 44. Mohammed MH, Ghosh TS, Singh NK, Mande SS. SPHINX—an algorithm for taxonomic binning of metagenomic sequences. Bioinformatics. 2011;27(1):22–30. https://doi.org/10.1093/bioinformatics/btq608
  45. 45. Parks DH, MacDonald NJ, Beiko RG. Classifying short genomic fragments from novel lineages using composition and homology. BMC Bioinformatics. 2011;12(1):328. https://doi.org/10.1186/1471-2105-12-328
  46. 46. Kelley DR, Salzberg SL. Clustering metagenomic sequences with interpolated Markov models. BMC Bioinformatics. 2010;11(1):544. https://doi.org/10.1186/1471-2105-11-544
  47. 47. MacDonald NJ, Parks DH, Beiko RG. Rapid identification of high-confidence taxonomic assignments for metagenomic data. Nucleic Acids Res. 2012;40(14):e111. https://doi.org/10.1093/nar/gks335
  48. 48. Reddy RM, Mohammed MH, Mande SS. TWARIT: an extremely rapid and efficient approach for phylogenetic classification of metagenomic sequences. Gene. 2012;505(2):259–65. https://doi.org/10.1016/j.gene.2012.06.014
  49. 49. Alam M, Abbas K, Usmani N, Mustafa M, Husain A. A comprehensive review on DNA barcoding for species identification across diverse taxa. Munis Entomol Zool J. 2024;19.
  50. 50. Kapli P, Yang Z, Telford MJ. Phylogenetic tree building in the genomic age. Nat Rev Genet. 2020;21(7):428–44. https://doi.org/10.1038/s41576-020-0233-0
  51. 51. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2016;33(7):1870–74. https://doi.org/10.1093/molbev/msw054
  52. 52. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol. 2018;35(6):1547–49. https://doi.org/10.1093/molbev/msy096
  53. 53. Kumar S, Tamura K, Nei M. MEGA:Molecular Evolutionary Genetics Analysis software for microcomputers. Bioinformatics. 1994;10(2):189–91. https://doi.org/10.1093/bioinformatics/10.2.189
  54. 54. Huelsenbeck JP, Ronquist F. MRBAYES:Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17(8):754–55. https://doi.org/10.1093/bioinformatics/17.8.754
  55. 55. Heritage S. MBASR:Workflow-simplified ancestral state reconstruction of discrete traits with MrBayes in the R environment. 2021. https://doi.org/10.1101/2021.01.10.426107
  56. 56. Berger SA, Krompass D, Stamatakis A. Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst Biol. 2011;60(3):291–302. https://doi.org/10.1093/sysbio/syr010
  57. 57. Anisimova M, Gascuel O. Approximate likelihood-ratio test for branches:a fast, accurate, and powerful alternative. Syst Biol. 2006;55(4):539–52. https://doi.org/10.1080/10635150600755453
  58. 58. Felsenstein J. Evolutionary trees from DNA sequences:a maximum likelihood approach. J Mol Evol. 1981;17(6):368–76. https://doi.org/10.1007/BF01734359
  59. 59. Felsenstein J. Confidence limits on phylogenies:An approach using the bootstrap. Evolution. 1985;39(4):783. https://doi.org/10.2307/2408678
  60. 60. Stamatakis A. RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–13. https://doi.org/10.1093/bioinformatics/btu033
  61. 61. Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE:a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–74. https://doi.org/10.1093/molbev/msu300
  62. 62. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, et al. IQ-TREE 2:New models and efficient methods for phylogenetic inference in the genomic era. Teeling E (ed.) Mol Biol Evol. 2020;37(5):1530–34. https://doi.org/10.1093/molbev/msaa015
  63. 63. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by fast computing machines. J Chem Phys. 1953;21(6):1087–92. https://doi.org/10.1063/1.1699114
  64. 64. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. Penny D (ed.) PLoS Biol. 2006;4(5):e88. https://doi.org/10.1371/journal.pbio.0040088
  65. 65. Prabhakara S, Acharya R. A two-way Bayesian mixture model for clustering in metagenomics. In:Loog M, Wessels L, Reinders MJT, De Ridder D (eds.) Pattern Recognition in Bioinformatics. Berlin, Heidelberg:Springer Berlin Heidelberg; 2011. p. 25–36. https://doi.org/10.1007/978-3-642-24855-9_3
  66. 66. Ander C, Schulz-Trieglaff OB, Stoye J, Cox AJ. metabeetl:high-throughput analysis of heterogeneous microbial populations from shotgun DNA sequences. BMC Bioinformatics. 2013;14(S5):S2. https://doi.org/10.1186/1471-2105-14-S5-S2
  67. 67. Stark M. MLTreeMap - maximum likelihood placement of environmental DNA sequence reads into curated reference phylogenies. PhD [Dissertation]; Zurich:University of Zurich. 2011. https://doi.org/10.5167/UZH-59539
  68. 68. Land TA, Fizzano P, Kodner RB. Measuring cluster stability in a large-scale phylogenetic analysis of functional genes in metagenomes using PPLACER. IEEE/ACM Trans Comput Biol Bioinform. 2016;13(2):341–49. https://doi.org/10.1109/TCBB.2015.2446470
  69. 69. Wedell E, Cai Y, Warnow T. Scalable and accurate phylogenetic placement using pplacer-XR. In:Martín-Vide C, Vega-Rodríguez MA, Wheeler T (eds.) Algorithms for Computational Biology. Cham: Springer International Publishing; 2021. p. 94–105. https://doi.org/10.1007/978-3-030-74432-8_7
  70. 70. Koning E, Phillips M, Warnow T. ppIacerDC:a new scalable phylogenetic placement method. In: Proceedings of the 12th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics. Gainesville, Florida: ACM; 2021. p. 1–9. https://doi.org/10.1145/3459930.3469516
  71. 71. Mande SS, Mohammed MH, Ghosh TS. Classification of metagenomic sequences: methods and challenges. Brief Bioinform. 2012;13(6):669–81. https://doi.org/10.1093/bib/bbs054
  72. 72. Wang J, McLenachan PA, Biggs PJ, Winder LH, Schoenfeld BIK, Narayan VV, et al. Environmental bio-monitoring with high-throughput sequencing. Brief Bioinform. 2013;14(5):575–88. https://doi.org/10.1093/bib/bbt032
  73. 73. McGinnis S, Madden TL. BLAST:at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004;32:W20–W25. https://doi.org/10.1093/nar/gkh435
  74. 74. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10. https://doi.org/10.1016/S0022-2836(05)80360-2
  75. 75. Abdelsalam NA, Elshora H, El-Hadidi M. Interactive web-based services for metagenomic data analysis and comparisons. In:Mitra S (ed.) Metagenomic Data Analysis. New York, NY: Springer US; 2023. p. 133–74. https://doi.org/10.1007/978-1-0716-3072-3_7
  76. 76. McHardy AC, Martín HG, Tsirigos A, Hugenholtz P, Rigoutsos I. Accurate phylogenetic classification of variable-length DNA fragments. Nat Methods. 2007;4(1):63–72. https://doi.org/10.1038/nmeth976
  77. 77. Patil KR, Haider P, Pope PB, Turnbaugh PJ, Morrison M, Scheffer T, et al. Taxonomic metagenome sequence assignment with structured output models. Nat Methods. 2011;8(3):191–92. https://doi.org/10.1038/nmeth0311-191
  78. 78. Gregor I, Dröge J, Schirmer M, Quince C, McHardy AC. PhyloPythiaS : a self-training method for the rapid reconstruction of low-ranking taxonomic bins from metagenomes. PeerJ. 2016;4:e1603. https://doi.org/10.7717/peerj.1603
  79. 79. Hou T, Liu Y, Xue J, Li M, Liu F. Taxonomic classification of DNA fragments of metagenome with a novel model. In:2016 35th Chinese Control Conference (CCC). Chengdu, China:IEEE; 2016. p. 9325–30. https://doi.org/10.1109/ChiCC.2016.7554840
  80. 80. Tao H, Yun L, Fu L, Ke W, Jian X. Binning DNA fragment of metagenome using a novel model. In:The 27th Chinese Control and Decision Conference (2015 CCDC). Qingdao, China:IEEE; 2015. p. 4760–65. https://doi.org/10.1109/CCDC.2015.7162767
  81. 81. Somervuo P, Koskela S, Pennanen J, Henrik Nilsson R, Ovaskainen O. Unbiased probabilistic taxonomic classification for DNA barcoding. Bioinformatics. 2016;32(19):2920–27. https://doi.org/10.1093/bioinformatics/btw346
  82. 82. Richardson RT, Bengtsson‐Palme J, Johnson RM. Evaluating and optimizing the performance of software commonly used for the taxonomic classification of DNA metabarcoding sequence data. Mol Ecol Resour. 2017;17(4):760–69. https://doi.org/10.1111/1755-0998.12628
  83. 83. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian Classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261–67. https://doi.org/10.1128/AEM.00062-07
  84. 84. Bell KL, Loeffler VM, Brosi BJ. An rbcL reference library to aid in the identification of plant species mixtures by DNA metabarcoding. Appl Plant Sci. 2017;5(3):1600110. https://doi.org/10.3732/apps.1600110
  85. 85. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods. 2012;9(8):811–14. https://doi.org/10.1038/nmeth.2066
  86. 86. Rosen GL, Polikar R, Caseiro DA, Essinger SD, Sokhansanj BA. Discovering the unknown:Improving detection of novel species and genera from short reads. BioMed Res Int. 2011;2011(1):495849. https://doi.org/10.1155/2011/495849
  87. 87. Rosen G, Garbarine E, Caseiro D, Polikar R, Sokhansanj B. Metagenome fragment classification using N ‐mer frequency profiles. Adv Bioinforma. 2008;2008(1):205969. https://doi.org/10.1155/2008/205969
  88. 88. Rosen GL, Lim TY. NBC update:The addition of viral and fungal databases to the Naïve Bayes classification tool. BMC Res Notes. 2012;5(1):81. https://doi.org/10.1186/1756-0500-5-81
  89. 89. Matsushita N, Seno S, Takenaka Y, Matsuda H. Metagenome fragment classification based on multiple motif-occurrence profiles. PeerJ. 2014;2:e559. https://doi.org/10.7717/peerj.559
  90. 90. Karagöz MA, Nalbantoglu OU. Taxonomic classification of metagenomic sequences from Relative Abundance Index profiles using deep learning. Biomed Signal Process Control. 2021;67:102539. https://doi.org/10.1016/j.bspc.2021.102539
  91. 91. Gerlach W, Jünemann S, Tille F, Goesmann A, Stoye J. Webcarma: a web application for the functional and taxonomic classification of unassembled metagenomic reads. BMC Bioinformatics. 2009;10(1):430. https://doi.org/10.1186/1471-2105-10-430
  92. 92. Krause L, Diaz NN, Goesmann A, Kelley S, Nattkemper TW, Rohwer F, et al. Phylogenetic classification of short environmental DNA fragments. Nucleic Acids Res. 2008;36(7):2230–39. https://doi.org/10.1093/nar/gkn038
  93. 93. Liu B, Gibbons T, Ghodsi M, Pop M. MetaPhyler: Taxonomic profiling for metagenomic sequences. In:2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Hong Kong, China:IEEE; 2010. p. 95–100. https://doi.org/10.1109/BIBM.2010.5706544
  94. 94. Ander C. Bioinformatic methods for the analysis and comparison of metagenomes and metatranscriptomes. PhD [dissertation]. Bielefeld University, Germany; 2014. Available from: https://core.ac.uk/download/pdf/211842477.pdf
  95. 95. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology: a tool for the unification of biology. Nat Genet. 2000;25(1):25–29. https://doi.org/10.1038/75556
  96. 96. Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. https://doi.org/10.1093/nar/28.1.27
  97. 97. Overbeek R. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 2005;33(17):5691–5702. https://doi.org/10.1093/nar/gki866
  98. 98. Beier S, Tappu R, Huson DH. Functional analysis in metagenomics using MEGAN 6. In: Charles TC, Liles MR, Sessitsch A (eds.) Functional Metagenomics: Tools and Applications. Cham: Springer International Publishing; 2017. p. 65–74. https://doi.org/10.1007/978-3-319-61510-3_4
  99. 99. Huson DH, Mitra S. Introduction to the analysis of environmental sequences: metagenomics with MEGAN. In: Anisimova M (ed) Evolutionary Genomics. Totowa, NJ:Humana Press; 2012. p. 415–29. https://doi.org/10.1007/978-1-61779-585-5_17
  100. 100.Brady A, Salzberg S. Phymmbl expanded: confidence scores, custom databases, parallelisation and more. Nat Methods. 2011;8(5):367–367. https://doi.org/10.1038/nmeth0511-367
  101. 101.Dutta A, Tandon D, Mh M, Bose T, Mande SS. Binpairs:utilization of Illumina paired-end information for improving efficiency of taxonomic binning of metagenomic sequences. Melcher U (ed) PLoS ONE. 2014;9(12):e114814. https://doi.org/10.1371/journal.pone.0114814
  102. 102.Gadhe UG. Metagenomic sequence analysis using a hybrid approach. College of engineering, pune-5; 2013. Available from: https://www.coep.org.in/page_assets/341/Metagenomic_Sequence_Analysis_using_Hybrid_Approach.pdf
  103. 103.Hug LA, Beiko RG, Rowe AR, Richardson RE, Edwards EA. Comparative metagenomics of three Dehalococcoides-containing enrichment cultures:the role of the non-dechlorinating community. BMC Genomics. 2012;13(1):327. https://doi.org/10.1186/1471-2164-13-327

Downloads

Download data is not yet available.