Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Comprehensive review of selected traditional medicinal plants used by Jambi local communities as potential antibacterial agents

DOI
https://doi.org/10.14719/pst.6829
Submitted
20 December 2024
Published
12-07-2025 — Updated on 21-07-2025
Versions

Abstract

The increasing antibiotic resistance in bacteria leads to the urgent need for alternative antibacterial agents. The discovery of potential antibacterial agents in plants has been conducted according to the information about traditional medicines used by communities and the local wisdom passed down from generations. Jambi local communities in Indonesia used traditional concoctions from various medicinal plants to treat diseases caused by pathogenic bacteria, such as skin infections, abscesses, diarrhea and mouth ulcers. Prominent medicinal plants widely used by Jambi local communities include Calamus manan, Helminthostachys zeylanica and Zingiber montanum. This comprehensive review examines the traditional uses, phytochemistry and antibacterial activity of selected Jambi medicinal plants. Furthermore, this review highlights the significant contributions and current updates in this research area surrounding the ethnobotany, phytochemistry and pharmacology of medicinal plants in Jambi. However, this review also emphasizes the need for further research due to the preliminary results of current updates, such as compound isolation and purification and the antibacterial mechanism of actions of those compounds. In conclusion, the current phytochemical and pharmacological studies supported the traditional use of Jambi medicinal plants and confirmed its efficacy significantly. This review aims to support the future development of antibacterial agents from medicinal plants.

References

  1. 1. Fukuda K. Antimicrobial resistance: global report on surveillance. Geneva: World Health Organisation. 2014:256.
  2. 2. Basak S, Singh P, Rajurkar M. Multidrug-resistant and extensively drug-resistant bacteria: A study. J Pathog. 2016;2016(1):4065603. https://doi.org/10.1155/2016/4065603
  3. 3. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–81. https://doi.org/10.1111/j.1469-0691.2011.03570.x
  4. 4. Ventola CL. The antibiotic resistance crisis: causes and threats. P T. 2015;40(4):277–83.
  5. 5. Okwu MU, Olley M, Akpoka AO, Izevbuwa OE. Methicillin-resistant Staphylococcus aureus (MRSA) and anti-MRSA activities of extracts of some medicinal plants: A brief review. AIMS Microbiol. 2019;5(2):117–37. https://doi.org/10.3934/microbiol.2019.2.117
  6. 6. Pramono E. The commercial use of traditional knowledge and medicinal plants in Indonesia. In: Multi-Stakeholder Dialogue on Trade, Intellectual Property and Biological Resources in Asia, 2002; BRAC Centre for Development Management, Rajendrapur, Bangladesh.
  7. 7. Mitra R, Mitchell, Gray C, Orbell J, Coulepis T, Muralitharan MS. Medicinal Plants of Indonesia. Asia Pac Biotech News. 2007;11(11):726–43. https://doi.org/10.1017/CBO9780511753312.026
  8. 8. Pribadi ER. Pasokan dan permintaan tanaman obat Indonesia serta arah penelitian dan pengembangannya. [Supply and demand of Indonesian medicinal plants and the direction of their research and development]. Perspektif. 2009;8(1):52–64. https://doi.org/10.21082/p.v8n1.2009
  9. 9. Hariyadi B. Obat rajo obat ditawar: medicinal plants and traditional medicine of Serampas - Jambi. Biospecies. 2011;4(2):29–35. https://doi.org/10.22437/biospecies.v4i2.524
  10. 10. Setyowati FM. Hubungan keterikatan masyarakat kubu dengan sumberdaya tumbuh- tumbuhan di Cagar Biosfer Bukit Duabelas, Jambi. Biodiversitas. 2003;4(1):47–54. https://doi.org/10.13057/biodiv/d040110
  11. 11. Mairida D, Muhadiono M, Hilwan I. Ethnobotanical study of rattans on Suku Anak Dalam Community in Bukit Duabelas National Park. Biosaintifika. 2016;8(1):64. https://doi.org/10.15294/biosaintifika.v8i1.5164
  12. 12. Hariyadi B, Ticktin T. Uras: medicinal and ritual plants of Serampas, Jambi Indonesia. Ethnobot Res Appl. 2012;10:133–49. https://doi.org/10.17348/era.10.0.133-149
  13. 13. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev. 1999;12(4):564–82. https://doi.org/10.1128/CMR.12.4.564
  14. 14. Silva LN, Zimmer KR, Macedo AJ, Trentin DS. Plant natural products targeting bacterial virulence factors. Chemical Rev. 2016;116(16):9162–236. https://doi.org/10.1021/acs.chemrev.6b00184
  15. 15. Shreaz S, Wani WA, Behbehani JM, Raja V, Irshad M, Karched M, et al. Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia. 2016;112:116–31. https://doi.org/10.1016/j.fitote.2016.05.016
  16. 16. Dewick PM. Medicinal natural products: A biosynthetic approach: 3rd ed. Chichester: Wiley; 2009. https://doi.org/10.1002/9780470742761
  17. 17. Malini M, Abirami G, Hemalatha V, Annadurai G. Antimicrobial activity of ethanolic and aqueous extracts of medicinal plants against waste water pathogens. Int J Res Pure Appl Microbiol. 2013; 3(2):40–42.
  18. 18. Sen A, Batra A. Evaluation of antimicrobial activity of different solvent extracts of medicinal plant: Melia Azedarach L. Int J Curr Pharm Res. 2012;4(2):67–73.
  19. 19. Stalikas CD. Extraction, separation and detection methods for phenolic acids and flavonoids. J Sep Sci. 2007;30(18):3268–95. https://doi.org/10.1002/jssc.200700261
  20. 20. Puupponen-Pimia R, Nohynek L, Meier C. Antimicrobial properties of phenolic compounds from berries. J Appl Microbiol. 2001;90(4):494–504. https://doi.org/10.1046/j.1365-2672.2001.01271.x
  21. 21. Holler JG, Christensen SB, Slotved HC, Rasmussen HB, Guzman A, Olsen CE, et al. Novel inhibitory activity of the Staphylococcus aureus NorA efflux pump by a Kaempferol rhamnoside isolated from Persea lingue Nees. J Antimicrob Chemother. 2012;67(5):1138–44. https://doi.org/10.1093/jac/dks005
  22. 22. Tyagi P, Singh M, Kumari H, Kumari A, Mukhopadhyay K. Bactericidal activity of curcumin I is associated with damage to bacterial membrane. PLoS One. 2015;10(3):1–15. https://doi.org/10.1371/journal.pone.0121313
  23. 23. Bouarab-Chibane L, Forquet V, Lanteri P, Clement Y, Leonard-Akkari L, Oulahal N, et al. Antibacterial properties of polyphenols: characterization and QSAR (quantitative structure-activity relationship) models. Front Microbiol. 2019;10:829. https://doi.org/10.3389/fmicb.2019.00829
  24. 24. Schilmiller AL, Schauvinhold I, Larson M, Xu R, Charbonneau AL, Schmidt A, et al. Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc Natl Acad Sci USA. 2009;106(26):10865–70. https://doi.org/10.1073/pnas.0904113106
  25. 25. Prabuseenivasan S, Jayakumar M, Ignacimuthu S. In vitro antibacterial activity of some plant essential oils. Complement Altern Med. 2006;6:1–8. https://doi.org/10.1186/1472-6882-6-39
  26. 26. Kelsey JA, Bayles KW, Shafii B, McGuire MA. Fatty acids and monoacylglycerols inhibit the growth of Staphylococcus aureus. Lipids. 2006;41(10):951–61. https://doi.org/10.1007/s11745-006-5048-z
  27. 27. Guimaraes AC, Meireles LM, Lemos MF, Guimaraes MCC, Endringer DC, Fronza M, et al. Antibacterial activity of terpenes and terpenoids present in essential oils. Mol. 2019;24(13):1–12. https://doi.org/10.3390/molecules24132471
  28. 28. Yadav MK, Chae SW, Im GJ, Chung JW, Song JJ. Eugenol: A phyto-compound effective against methicillin-resistant and methicillin-sensitive Staphylococcus aureus clinical strain biofilms. PLoS One. 2015;10(3):1–21. https://doi.org/10.1371/journal.pone.0119564
  29. 29. Cushnie TPT, Cushnie B, Lamb AJ. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and anti-virulence activities. Int J Antimicrob Agents. 2014;44(5):377–86. https://doi.org/10.1016/j.ijantimicag.2014.06.001
  30. 30. Scazzocchio F, Cometa MF, Tomassini L, Palmery M. Antibacterial activity of Hydrastis canadensis extract and its major isolated alkaloids. Planta Med. 2001;67(06):561–64. https://doi.org/10.1055/s-2001-16493
  31. 31. Boberek JM, Stach J, Good L. Genetic evidence for inhibition of bacterial division protein FtsZ by berberine. PLoS One. 2010;5(10):1–9. https://doi.org/10.1371/journal.pone.0013745
  32. 32. Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Camara M. Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev. 2011;35(2):247–74. https://doi.org/10.1111/j.1574-6976.2010.00247.x
  33. 33. Khameneh B, Iranshahy M, Soheili V, Bazzaz BSF. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob Resist Infect Control. 2019;8(118):1–28. https://doi.org/10.1186/s13756-019-0559-6
  34. 34. Khameneh B, Iranshahy M, Ghandadi M, Ghoochi Atashbeyk D, Fazly Bazzaz BS, et al. Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus. Drug Dev Ind Pharm. 2015;41(6):989–94. https://doi.org/10.3109/03639045.2014.920025
  35. 35. Soltani R, Fazeli H, Najafi RB, Jelokhanian A. Evaluation of the synergistic effect of tomatidine with several antibiotics against standard and clinical isolates of Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli. Iran J Pharm Res. 2017;16(1):290–96.
  36. 36. Badan Pusat Statistik (BPS). Provinsi Jambi dalam angka 2021. Jambi: BPS Provinsi Jambi; 2021. p. 593.
  37. 37. Susanti T, Suraida, Natalia D, Ningsih T. Local knowledge of Suku Anak Dalam tribe about the utilization of medical plants in Bukit Duabelas Sarolangun National Park area. Biospecies. 2023;16(2):19–26. https://doi.org/10.22437/biospecies.v16i2.26629
  38. 38. Kusuma YWC, Dodo, Hendrian R. Propagation and transplanting of manau rattan (Calamus manan) in Bukit Duabelas National Park, Sumatra, Indonesia. Conserv Evid. 2011;8:19–25.
  39. 39. Kalima T, Sumarhani. Identifikasi jenis-jenis rotan pada hutan rakyat di Katingan, Kalimantan Tengah dan upaya pengembangan. [Identification of rattan species in community forests in Katingan, Central Kalimantan and development efforts]. Pros Sem Nas Masy Biodiv Indon. 2015;1(2):194–200. https://doi.org/10.13057/psnmbi/m010205
  40. 40. Salusu HD, Ariani F, Budiarso E, Kusuma IW, Arung ET. Increased benefits of Calamus manan Miq. Fruit by its potential bioactivity. Proc Joint Symp Trop Stud (JSTS-19). 2021;11:180–85. https://doi.org/10.2991/absr.k.210408.030
  41. 41. Fauzi F, Widodo H, Haryanti S. Kajian tumbuhan obat yang banyak digunakan untuk aprodisiaka oleh beberapa etnis Indonesia. [Study of medicinal plants widely used as aphrodisiacs by several Indonesian ethnic groups]. Media Penelitian dan Pengembangan Kesehatan. 2019;29(1):51–64. https://doi.org/10.22435/mpk.v29i1.466
  42. 42. Manna S, Kamilya P, Ghara TK, Roy A. Swamp Forest : A phytoassociation analysis of Helminthostachys zeylanica in Barringtonia. Glob J Sci Front Res Bio Sci. 2013;13(5).
  43. 43. de Winter W. Cryptogams: Ferns and fern allies. Amoroso VB, editor. Backhuys Publishers; 2003. p. 263.
  44. 44. Hartini S. Helminthostachys zeylanica (L.) Hook : Potensinya sebagai obat masa depan. [Its potential as a future medicine]. Warta Kebun Raya. 2011;11(1):34–37.
  45. 45. Ulfa M, Mitaria Sirait dan. Jenis dan nilai ekonomi hasil hutan bukan kayu terhadap Suku Anak Dalam di Taman Nasional Bukit Duabelas. Jurnal Silva Tropika. 2019;3(1):2615–8353.
  46. 46. Fitrya F, Anwar L, Eliza E, Muharni M. Ugonin J Flavonoid from tunjuk langit (Helminthostachys zeylanica Linn.) root extract. Indones J Chem. 2010;10(2):226–31. https://doi.org/10.22146/ijc.21465
  47. 47. Acevedo-Rodriguez P, Strong MT. Monocotyledons and gymnosperms of Puerto Rico and the Virgin Islands. Contrib U S Natl Herb. 2005;52(1):128–33. https://doi.org/10.2307/25065559
  48. 48. Bai L, Maslin BR, Triboun P, Xia N, Leong-Skornickova J. Unravelling the identity and nomenclatural history of Zingiber montanum and establishing Z. purpureum as the correct name for Cassumunar ginger. Taxon. 2019;68(6):1334–49. https://doi.org/10.1002/tax.12160
  49. 49. Singh TT, Sharma HM. An ethnobotanical study of monocotyledonous medicinal plants used by the scheduled caste community of Andro in Imphal East District, Manipur (India). Res J Life Sci Bioinform Pharm Chem Sci. 2018;4(4):55–72. https://doi.org/10.26479/2018.0404.04
  50. 50. Silalahi M. Botani, metabolit sekunder dan bioaktivitas bangle (Zigiber montanum). Jurnal Ilmiah Ilmu Kesehatan. 2019;7(1):73–83.
  51. 51. Verma RS. Ethnobotany, phytochemistry and pharmacology of Zingiber cassumunar Roxb. (Zingiberaceae). J Sci Food Agric. 2018;98(1):1053–57. https://doi.org/10.1055/s-0031-1273656
  52. 52. Bariah S, Mayasari U. Uji aktivitas ekstrak buah rotan manau (Calamus manan) terhadap pertumbuhan bakteri Vibrio cholerae dan Staphylococcus epidermidis. BEST J. 2023;6(1):634–40. https://doi.org/10.30821/kfl:jibt.v6i1.11762
  53. 53. Maulina M, Rasyidah, Mayasari U. Uji Aktivitas antijamur ekstrak batang muda rotan manau (Calamus manan) terhadap jamur Aspergillus flavus dan Candida albicans. BEST J. 2023;6(2):43–49. https://doi.org/10.30821/kfl:jibt.v6i1.11762
  54. 54. Suja SR, Latha PG, Pushpangadan P, Shine VJ, Anuja GI, Bijukumar BS, et al. Evaluation of antihepatotoxic potential of Helminthostachys zeylanica (Linn.) Hook. f., a medicinal fern against ethanol-induced liver damage: In vitro and in vivo studies. AJEB. 2014 May 17;1:16–31.
  55. 55. Huang YL, Shen CC, Shen YC, Chiou WF, Chen CC. Anti-inflammatory flavonoids from the rhizomes of Helminthostachys zeylanica Yaun-Chao. J Nat Prod. 2009;72(2):1273–78. https://doi.org/10.1021/acs.jnatprod.5b01164
  56. 56. Wu KC, Huang SS, Kuo YH, Ho YL, Yang CS, Chang YS, et al. Ugonin M, a Helminthostachys zeylanica constituent, prevents LPS-induced acute lung injury through TLR4-mediated MAPK and NF-kB signalling pathways. Mol. 2017;22(4):1–15. https://doi.org/10.3390/molecules22040573
  57. 57. Herawati IE, Saptarini NM, Urip NR. Analisis kadar flavonoid total pada rimpang, batang, dan daun bangle (Zingiber purpureum Roscoe). In: Prosiding Seminar Nasional ‘Perkembangan Terbaru Pemanfaatan Herbal Sebagai Agen Preventif Pada Terapi Kanker’. 2014. p. 158–62.
  58. 58. Noviyanto F, Hodijah S, Yusransyah Y. Aktivitas ekstrak daun bangle (Zingiber purpureum roxb.) terhadap pertumbuhan bakteri Pseudomonas aeruginosa. J Syifa Sci Clinical Res. 2020;2(1):31–38. https://doi.org/10.37311/jsscr.v2i1.2665
  59. 59. Hermansyah B, Utami WS. Bioactivity of a compound of standardized bangle (Zingiber cassumunar Roxb.) extract fraction as a complementary therapy to prevent malaria complications. J Agromed Med Sci. 2015;1(2):19–25. https://doi.org/10.19184/ams.v1i2.1955
  60. 60. Risnawati E, Ainurofiq A, Widyo Wartono M. Study of antibacterial activity and identification of the most active fraction from ethanol extraction of Zingiber cassumunar Roxb. rhizomes by vacuum liquid chromatography. J Chem Pharm Res. 2014;6(9):101–07.
  61. 61. Kamazeri TSAT, Samah OA, Taher M, Susanti D, Qaralleh H. Antimicrobial activity and essential oils of Curcuma aeruginosa, Curcuma mangga and Zingiber cassumunar from Malaysia. Asian Pac J Trop Med. 2012;5(3):202–09. https://doi.org/10.1016/S1995-7645(12)60025-X
  62. 62. Devkota HP, Paudel KR, Hassan MM, Dirar AI, Das N, Adhikari-Devkota A, et al. Bioactive compounds from Zingiber montanum and their pharmacological activities with focus on zerumbone. Appl Sci. 2021;11(21):10205. https://doi.org/10.3390/app112110205
  63. 63. Hassan MM, Adhikari-Devkota A, Imai T, Devkota HP. Zerumbone and kaempferol derivatives from the rhizomes of Zingiber montanum (J. Koenig) link ex a. dietr. from Bangladesh. Separations. 2019;6(31):1–8. https://doi.org/10.3390/separations6020031
  64. 64. Kantayos V, Paisooksantivatana Y. Antioxidant activity and selected chemical components of 10 Zingiber spp. in Thailand. J Dev Sustain Agric. 2012;(1):89–96.
  65. 65. Sukatta U, Rugthaworn P, Punjee P, Keeratinijakal V. Chemical composition and physical properties of oil from Plai (Zingiber cassumunar Roxb.) obtained by hydro distillation and hexane extraction. Kasetsart J Nat Sci. 2009;43(5):212–17.
  66. 66. Mahdiyah D, Maulina N, Hakim AR, Mukti BH. Aktivitas antimikroba ekstrak biji rotan manau (Calamus manan Miq.) Terhadap Salmonella typhi dan Candida albicans. Al-Kauniyah J Biol. 2024;17(2):247–56. https://doi.org/10.15408/kauniyah.v17i2.23122
  67. 67. Tagousop CN, Tamokou JDD, Ekom SE, Ngnokam D, Voutquenne-Nazabadioko L. Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action. BMC Complement Altern Med. 2018;18(1):1–10. https://doi.org/10.1186/s12906-018-2321-7
  68. 68. Maisetta G, Batoni G, Caboni P, Esin S, Rinaldi AC, Zucca P. Tannin profile, antioxidant properties and antimicrobial activity of extracts from two Mediterranean species of parasitic plant Cytinus. BMC Complement Altern Med. 2019;19(1):1–11. https://doi.org/10.1186/s12906-019-2487-7
  69. 69. Dong S, Yang X, Zhao L, Zhang F, Hou Z, Xue P. Antibacterial activity and mechanism of action of saponins from Chenopodium quinoa Willd. husks against foodborne pathogenic bacteria. Ind Crops Prod. 2020;149:112350. https://doi.org/10.1016/j.indcrop.2020.112350
  70. 70. Yenn TW, Ring LC, Zahan KA, Rahman MSA, Tan WN, Alaudin BJS. Chemical composition and antimicrobial efficacy of Helminthostachys zeylanica against foodborne Bacillus cereus. Nat Prod Sci. 2018;24(1):66–70. https://doi.org/10.20307/nps.2018.24.1.66
  71. 71. Army MK, Khodijah R, Haryani Y, Teruna HY, Hendra R. Antibacterial in vitro screening of Helminthostachys zeylanica (L.) Hook. root extracts. J Pharm Pharmacogn Res. 2023;11(2):291–96. https://doi.org/10.56499/jppres22.1540_11.2.291
  72. 72. Kuspradini H, Batubara I, Mitsunaga T. Antimicrobial and gtase inhibitory activity of crude methanol extracts of plants from Java and Kalimantan. J Ilmu Teknol Kayu Trop. 2010;8(1):39–46.
  73. 73. Batubara I, Mitsunaga T, Ohashi H. Screening antiacne potency of Indonesian medicinal plants: antibacterial, lipase inhibition and antioxidant activities. J Wood Sci. 2009;55(3):230–35. https://doi.org/10.1007/s10086-008-1021-1
  74. 74. Shah AB, Baiseitova A, Kim JH, Lee YH, Park KH. Inhibition of bacterial neuraminidase and biofilm formation by ugonins isolated from Helminthostachys zeylanica (L.) Hook. Front Pharmacol. 2022;13:890649. https://doi.org/10.3389/fphar.2022.890649
  75. 75. Plaper A, Golob M, Hafner I, Oblak M, Solmajer T, Jerala R. Characterization of quercetin binding site on DNA gyrase. Biochem Biophys Res Commun. 2003;306(2):530–36. https://doi.org/10.1016/S0006-291X(03)01006-4
  76. 76. Wang S, Yao J, Zhou B, Yang J, Chaudry MT, Wang M, et al. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. J Food Prot. 2018;81(1):68–78. https://doi.org/10.4315/0362-028X.JFP-17-214
  77. 77. Boonyanugomol W, Kraisriwattana K, Rukseree K, Boonsam K, Narachai P. In vitro synergistic antibacterial activity of the essential oil from Zingiber cassumunar Roxb against extensively drug-resistant Acinetobacter baumannii strains. J Infect Public Health. 2017;10(5):586–92. https://doi.org/10.1016/j.jiph.2017.01.008
  78. 78. Li L, Shi C, Yin Z, Jia R, Peng L, Kang S, et al. Antibacterial activity of a-terpineol may induce morphostructural alterations in Escherichia coli. Sociedade Bras de Microbiol. 2014;45(4):1409–13. https://doi.org/10.1590/S1517-83822014000400035
  79. 79. Yang X, Zhao S, Deng Y, Xu W, Wang Z, Wang W, et al. Antibacterial activity and mechanisms of α-terpineol against foodborne pathogenic bacteria. Appl Microbiol Biotechnol. 2023;107(21):6641–53. https://doi.org/10.1007/s00253-023-12737-4
  80. 80. Adriadi A, Nursanti N, Puspitasari R. Keanekaragaman tumbuhan obat masyarakat di hutan talang rencong desa pulau sangkar, kabupaten kerinci, Jambi. Media Konservasi. 2020;25(2):134–39. https://doi.org/10.29244/medkon.25.2.134-139
  81. 81. Wardana ST. Ethnomedicinal approach of Zingiberaceae in traditional medicine of the Kerinci tribe, Jambi, Indonesia. Int J Biol Res. 202313;8(2):5–7.
  82. 82. Andesmora E, Muhadiono M, Hilwan I. Ethnobotanical study of plants used by people in Hiang indigenous forest, Kerinci, Jambi. J Trop Life Sci. 2017;7(2):95–101. https://doi.org/10.11594/jtls.07.02.02
  83. 83. Affandi H, Nuryadin A, Prayogo SB. Medicinal herbs of Pasir Mayang, Jambi: ethnopharmacy and toxicity screening. Biotropia (Bogor). 2004;(22):40–58.
  84. 84. Has DH, Zuhud EAM, Hikmat A. Etnobotani obat pada masyarakat suku penguluh Di KPHP Limau Unit VII Hulu Sarolangun, Jambi. Media Konservasi. 2020;25(1):73–80. https://doi.org/10.29244/medkon.25.1.73-80
  85. 85. Noerjoedianto D, Kalsum U, Halim R, Ridwan M, Dhermawan Sitanggang H, Suryani Nasution H, et al. Identifikasi tanaman obat tradisional yang dipergunakan suku anak dalam desa dwi karya bakti, Kabupaten Bungo, Provinsi Jambi. J Ilm Ibnu Sina. 2024;9(1):198–208. https://doi.org/10.36387/jiis.v5i1.1818
  86. 86. Indriati G. Etnobotani tumbuhan obat yang digunakan suku anak dalam di desa tabun kecamatan VII Koto kabupaten tebo Jambi. J Sainstek. 2014;6(1):52–56.
  87. 87. Yelianti U, Mutiara Aswan D, Author C, Name A. Medicinal plant used by indigenous people, namely Suku Anak Dalam (SAD) in Nyogan village, Jambi Province. J Penelit Pendid IPA. 2023;9(2):277–80. https://doi.org/10.29303/jppipa.v9i2.1008
  88. 88. Adriadi A, Budilaksono T. Etnobotani tumbuhan obat pada masyarakat desa teluk rendah di kecamatan tebo Ilir kabupaten tebo. J Biotek. 2023;11(2):222–35. https://doi.org/10.24252/jb.v11i2.37242

Downloads

Download data is not yet available.