Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Organic farming: A strategy for a sustainable and secure food system

DOI
https://doi.org/10.14719/pst.7076
Submitted
5 January 2025
Published
17-06-2025
Versions

Abstract

The growing human population presents a global challenge in providing adequate food, shelter and a healthy lifestyle. Sustainable food production and environmental stewardship are essential for addressing food security and environmental preservation. Organic farming is gaining popularity due to its perceived safety, health and ecological benefits. However, there are differing viewpoints on its role in sustainability. Despite advances in agricultural productivity and the use of GMOs, hunger persists in the poorest countries. This review aims to answer whether organic farming is the future of sustainable agriculture to address the world's growing food needs. The Green Revolution has led to increased agricultural output and income, but it has also led to lower-quality food and environmental degradation due to chemical use. Health concerns, such as hormone imbalances and cancers, have been raised due to these practices. Organic farming, which avoids artificial inputs and uses biological control methods, has gained momentum in developed nations. It promotes ecological restoration, plant, animal and soil health and improves biodiversity. Sustainable agriculture should support both the economy and the environment.

References

  1. 1. Funk C, Kennedy B. The new food fights: US public divides over food science. Pew Research Center. 2016;1.
  2. 2. Seufert V, Ramankutty N. Many shades of gray-The context-dependent performance of organic agriculture. Sci Adv. 2017;3(3):e1602638. https://doi.org/10.1126/sciadv.1602638
  3. 3. Mercati V. Organic agriculture as a paradigm of sustainability: Italian food and its progression in the global market. Agric Sci Procedia. 2016;8:798–802. https://doi.org/10.1016/j.aaspro.2016.02.071
  4. 4. Klumper W, Kathage J, Qaim M. Perception of global food security issues in the German public. Berichte Uber Landwirtschaft. ​2013;91​(1). ​
  5. 5. Curtis M. Fostering economic resilience: The financial benefits of ecological farming in Kenya and Malawi. Greenpeace Africa, Johannesburg, South Africa. 2015
  6. 6. Probst L, Houedjofonon E, Ayerakwa HM, Haas R. Will they buy it? The potential for marketing organic vegetables in the food vending sector to strengthen vegetable safety: A choice experiment study in three West African cities. Food Policy. 2012;37(3):296–308. https://doi.org/10.1016/j.foodpol.2012.02.014
  7. 7. Connor DJ, Minguez MI. Evolution not revolution of farming systems will best feed and green the world. Global Food Sec. 2012;1(2):106–13. https://doi.org/10.1016/j.gfs.2012.10.004
  8. 8. Lotter D. Facing food insecurity in Africa: Why, after 30 years of work in organic agriculture, I am promoting the use of synthetic fertilizers and herbicides in small-scale staple crop production. Agric Human Values. 2015;32:111–18. https://doi.org/10.1007/s10460-014-9547-x
  9. 9. Trewavas A. Urban myths of organic farming. Nat. 2001;410(6827):409–10. https://doi.org/10.1038/35068639
  10. 10. Badgley C, Moghtader J, Quintero E, Zakem E, Chappell MJ, Aviles-Vazquez K, et al. Organic agriculture and the global food supply. Renew Agr Food Syst. 2007;22(2):86–108. https://doi.org/10.1017/s1742170507001640
  11. 11. Reganold JP, Wachter JM. Organic agriculture in the twenty-first century. Nat Plants. 2016;2(2):1–8. https://doi.org/10.1038/nplants.2015.221
  12. 12. Evenson RE, Gollin D. Assessing the impact of the Green revolution, 1960 to 2000. Sci. 2003;300(5620):758–62. https://doi.org/10.1126/science.1078710
  13. 13. Qaim M. Globalisation of agrifood systems and sustainable nutrition. Proc Nutr Soc. 2017;76(1):12–21. https://doi.org/10.1017/s0029665116000598
  14. 14. UNICEF. The state of food security and nutrition in the world 2018. FAO; 2019. Available from: https://doi.org/10.18356/c94f150c-en
  15. 15. World Health Organization. Guidelines for drinking-water quality: incorporating the first and second addenda. World Health Organization; 2022.
  16. 16. Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, et al. Food security: The challenge of feeding 9 billion people. Sci. 2010;327(5967):812–18. https://doi.org/10.1126/science.1185383
  17. 17. Hertel TW. The challenges of sustainably feeding a growing planet. Food Secur. 2015;7(2):185–98. https://doi.org/10.1007/s12571-015-0440-2
  18. 18. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, et al. Solutions for a cultivated planet. Nat. 2011;478(7369):337–42. https://doi.org/10.1038/nature10452
  19. 19. Gamage A, Gangahagedara R, Gamage J, Jayasinghe N, Kodikara N, Suraweera P, et al. Role of organic farming for achieving sustainability in agriculture. Farming Syst. 2023;1(1):100005. https://doi.org/10.1016/j.farsys.2023.100005
  20. 20. Garcia SN, Osburn BI, Jay-Russell MT. One health for food safety, food security and sustainable food production. Front Sustain Food Syst. 2020;4:1. https://doi.org/10.3389/fsufs.2020.00001
  21. 21. Meemken EM, Qaim M. Organic agriculture, food security and the environment. Annu Rev Resour Econ. 2018;10(1):39–63. substances. Int J Bio-resource Stress Manag. 2020;11(3):287–96. https://doi.org/10.23910/1.2020.2107
  22. 22. Cassman KG. Editorial response by Kenneth Cassman: can organic agriculture feed the world-science to the rescue?. Renew Agric Food Syst. 2007;22(2):83–84.
  23. 23. Connor DJ. Organic agriculture cannot feed the world. Field Crops Res. 2008;106(2):187–90. https://doi.org/10.1016/j.fcr.2007.11.010
  24. 24. Goulding KW, Trewavas AJ, Giller KE. Can organic farming feed the world? A contribution to the debate on the ability of organic farming systems to provide sustainable supplies of food. In: Proceedings of the International Fertiliser Society 663. Paris: IFS; 2009.
  25. 25. De Ponti T, Rijk B, Van Ittersum MK. The crop yield gap between organic and conventional agriculture. Agric Syst. 2012;108:1–9. https://doi.org/10.1016/j.agsy.2011.12.004
  26. 26. Ponisio LC, M'Gonigle LK, Mace KC, Palomino J, De Valpine P, Kremen C. Diversification practices reduce organic to conventional yield gap. Proc R Soc B: Biol Sci. 2015;282(1799):20141396. https://doi.org/10.1098/rspb.2014.1396
  27. 27. Seufert V, Ramankutty N, Foley JA. Comparing the yields of organic and conventional agriculture. Nat. 2012;485(7397):229–32. https://doi.org/10.1038/nature11069
  28. 28. Forster D, Andres C, Verma R, Zundel C, Messmer MM, Mader P. Yield and economic performance of organic and conventional cotton-based farming systems–results from a field trial in India. PloS One. 2013;8(12):e81039. https://doi.org/10.1371/journal.pone.0081039
  29. 29. Mader P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U. Soil fertility and biodiversity in organic farming. Sci. 2002;296(5573):1694–97. https://doi.org/10.1126/science.1071148
  30. 30. Niggli U. Sustainability of organic food production: challenges and innovations. Proc Nutr Soc. 2015;74(1):83–88. https://doi.org/10.1017/s0029665114001438
  31. 31. Berry PM, Sylvester-Bradley R, Philipps L, Hatch DJ, Cuttle SP, Rayns FW, et al. Is the productivity of organic farms restricted by the supply of available nitrogen?. Soil Use Manag. 2002;18(1):248–55. https://doi.org/10.1079/sum2002129
  32. 32. Oehl F, Oberson A, Tagmann HU, Besson JM, Dubois D, Mader P, et al. Phosphorus budget and phosphorus availability in soils under organic and conventional farming. Nutr Cycling Agroecosyst. 2002;62:25–35. https://doi.org/10.1023/a:1015195023724
  33. 33. Gomiero T, Pimentel D, Paoletti MG. Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Crit Rev Plant Sci. 2011;30(1-2):95–124. https://doi.org/10.1080/07352689.2011.554355
  34. 34. Kravchenko AN, Snapp SS, Robertson GP. Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems. Proc Natl Acad Sci. 2017;114(5):926–31. https://doi.org/10.1073/pnas.1612311114
  35. 35. Taheri F, Azadi H, D’Haese M. A world without hunger: organic or GM crops?. Sustain. 2017;9(4):580. https://doi.org/10.3390/su9040580
  36. 36. Kniss AR, Savage SD, Jabbour R. Commercial crop yields reveal strengths and weaknesses for organic agriculture in the United States. PloS One. 2016;11(8):e0161673. https://doi.org/10.1371/journal.pone.0161673
  37. 37. Pimentel D, Burgess M. An environmental, energetic and economic comparison of organic and conventional farming systems. Integrated pest management: pesticide problems. 2014;3. p. 141–66. https://doi.org/10.1007/978-94-007-7796-5_6
  38. 38. Leifeld J. Current approaches neglect possible agricultural cutback under large-scale organic farming. A comment to Ponisio et al. Proc R Soc B: Biol Sci. 2016;283(1824):20151623. https://doi.org/10.1098/rspb.2015.1623
  39. 39. Dangour AD, Lock K, Hayter A, Aikenhead A, Allen E, Uauy R. Nutrition-related health effects of organic foods: A systematic review. Am J Clin Nutr. 2010;92(1):203–10. https://doi.org/10.3945/ajcn.2010.29269
  40. 40. Huber M, Knottnerus JA, Green L, Van Der Horst H, Jadad AR, Kromhout D, et al. How should we define health?. Br Med J. 2011;343:d4163. https://doi.org/10.1136/bmj.d4163
  41. 41. Baranski M, Srednicka-Tober D, Volakakis N, Seal C, Sanderson R, Stewart GB, et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. Br J Nutr. 2014;112(5):794–811. https://doi.org/10.1017/s0007114514001366
  42. 42. Magkos F, Arvaniti F, Zampelas A. Organic food: buying more safety or just peace of mind? A critical review of the literature. Crit Rev Food Sci Nutr. 2006;46(1):23–56. https://doi.org/10.1080/10408690490911846
  43. 43. Smith-Spangler C, Brandeau ML, Hunter GE, Bavinger JC, Pearson M, Eschbach PJ, et al. Are organic foods safer or healthier than conventional alternatives? A systematic review. Ann Intern Med. 2012;157(5):348–66. https://doi.org/10.7326/0003-4819-157-5-201209040-00007
  44. 44. Mditshwa A, Magwaza LS, Tesfay SZ, Mbili N. Postharvest quality and composition of organically and conventionally produced fruits: A review. Sci Hortic. 2017;216:148–59. https://doi.org/10.1016/j.scienta.2016.12.033
  45. 45. Brandt K, Leifert C, Sanderson R, Seal CJ. Agroecosystem management and nutritional quality of plant foods: The case of organic fruits and vegetables. Crit Rev Plant Sci. 2011;30(1-2):177–97. https://doi.org/10.1080/07352689.2011.554417
  46. 46. Forman J, Silverstein J. Organic Foods: Health and Environmental Advantages and Disadvantages. Pediatric Clinical Practice Guidelines & amp; Policies [Internet]. 2013;130(5):651–62. Available from: http://doi.org/10.1542/9781581108224-organic_sub01
  47. 47. Alfven T, Braun-Fahrlander C, Brunekreef BV, Von Mutius E, Riedler J, Scheynius A, et al. Allergic diseases and atopic sensitization in children related to farming and anthroposophic lifestyle-the PARSIFAL study. Allergy. 2006;61(4):414–21. https://doi.org/10.1111/j.1398-9995.2005.00939.x
  48. 48. Kummeling I, Thijs C, Huber M, van de Vijver LP, Snijders BE, Penders J, et al. Consumption of organic foods and risk of atopic disease during the first 2 years of life in the Netherlands. Br J Nutr. 2008;99(3):598–605. https://doi.org/10.1017/s0007114507815844
  49. 49. Kesse-Guyot E, Peneau S, Mejean C, Szabo de Edelenyi F, Galan P, Hercberg S, et al. Profiles of organic food consumers in a large sample of French adults: results from the Nutrinet-Sante cohort study. PloS One. 2013;8(10):e76998. https://doi.org/10.1371/journal.pone.0076998
  50. 50. Edenhofer O, Pichs-Madruga R, Sokona Y, Matshoss P, Seyboth K. Renewable energy sources and climate change mitigation. UK: Cambridge University Press; 2011. https://doi.org/10.1017/cbo9781139151153
  51. 51. Smith LG, Williams AG, Pearce BD. The energy efficiency of organic agriculture: A review. Renew Agr Food Syst. 2015;30(3):280–301. https://doi.org/10.1017/s1742170513000471
  52. 52. Meier MS, Stoessel F, Jungbluth N, Juraske R, Schader C, Stolze M. Environmental impacts of organic and conventional agricultural products– are the differences captured by life cycle assessment?. J Environ Manag. 2015;149:193–208. https://doi.org/10.1016/j.jenvman.2014.10.006
  53. 53. Scialabba NE, Muller-Lindenlauf M. Organic agriculture and climate change. Renew Agr Food Syst. 2010;25(2):158–69. https://doi.org/10.1017/s1742170510000116
  54. 54. Lynch DH, MacRae R, Martin RC. The carbon and global warming potential impacts of organic farming: does it have a significant role in an energy constrained world?. Sustain. 2011;3(2):322–62. https://doi.org/10.3390/su3020322
  55. 55. Lee KS, Choe YC, Park SH. Measuring the environmental effects of organic farming: A meta-analysis of structural variables in empirical research. J Environ Manag. 2015;162:263–74. https://doi.org/10.1016/j.jenvman.2015.07.021
  56. 56. Skinner C, Gattinger A, Muller A, Mader P, Flieβbach A, Stolze M, et al. Greenhouse gas fluxes from agricultural soils under organic and non-organic management-A global meta-analysis. Sci Total Environ. 2014;468:553–63. https://doi.org/10.1016/j.scitotenv.2013.08.098
  57. 57. Clark M, Tilman D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency and food choice. Environ Res Lett. 2017;12(6):064016. https://doi.org/10.1088/1748-9326/aa6cd5
  58. 58. Gattinger A, Muller A, Haeni M, Skinner C, Fliessbach A, Buchmann N, et al. Enhanced top soil carbon stocks under organic farming. Proc Natl Acad Sci. 2012;109(44):18226–31. https://doi.org/10.1073/pnas.1209429109
  59. 59. Lori M, Symnaczik S, Mader P, De Deyn G, Gattinger A. Organic farming enhances soil microbial abundance and activity- A meta-analysis and meta-regression. PloS One. 2017;12(7):e0180442. https://doi.org/10.1371/journal.pone.0180442
  60. 60. Treu H, Nordborg M, Cederberg C, Heuer T, Claupein E, Hoffmann H, et al. Carbon footprints and land use of conventional and organic diets in Germany. J Clean Prod. 2017;161:127–42. https://doi.org/10.1016/j.jclepro.2017.05.041
  61. 61. Beirat WB. Klimaschutz in der land-und forstwirtschaft sowie den nachgelagerten bereichen ernahrung und holzverwendung. Berichte uber Landwirtschaft-Zeitschrift fur Agrarpolitik und Landwirtschaft. 2016.
  62. 62. Halberg N. Assessment of the environmental sustainability of organic farming: definitions, indicators and the major challenges. Can J Plant Sci. 2012;92(6):981–96. https://doi.org/10.4141/cjps2012-035
  63. 63. Tuomisto HL, Hodge ID, Riordan P, Macdonald DW. Does organic farming reduce environmental impacts?– A meta-analysis of European research. J Environ Manag. 2012;112:309–20. https://doi.org/10.1016/j.jenvman.2012.08.018
  64. 64. Bengtsson J, Ahnstrom J, Weibull AC. The effects of organic agriculture on biodiversity and abundance: A meta-analysis. J Appl Ecol. 2005;42(2):261–69. https://doi.org/10.1111/j.1365-2664.2005.01005.x
  65. 65. Hole DG, Perkins AJ, Wilson JD, Alexander IH, Grice PV, Evans AD. Does organic farming benefit biodiversity?. Biol Conserv. 2005;122(1):113–30. https://doi.org/10.1016/j.biocon.2004.07.018
  66. 66. Schneider MK, Luscher G, Jeanneret P, Arndorfer M, Ammari Y, Bailey D, et al. Gains to species diversity in organically farmed fields are not propagated at the farm level. Nat Commun. 2014;5(1):4151. https://doi.org/10.1038/ncomms5151
  67. 67. Tuck SL, Winqvist C, Mota F, Ahnstrom J, Turnbull LA, Bengtsson J. Land-use intensity and the effects of organic farming on biodiversity: A hierarchical meta-analysis. J Appl Ecol. 2014;51(3):746–55. https://doi.org/10.1111/1365-2664.12219
  68. 68. Gabriel D, Sait SM, Kunin WE, Benton TG. Food production vs. biodiversity: comparing organic and conventional agriculture. J Appl Ecol. 2013;50(2):355–64. https://doi.org/10.1111/1365-2664.12035
  69. 69. Green RE, Cornell SJ, Scharlemann JP, Balmford A. Farming and the fate of wild nature. Sci. 2005;307(5709):550–55. https://doi.org/10.1126/science.1106049
  70. 70. Mondelaers K, Aertsens J, Van Huylenbroeck G. A meta-analysis of the differences in environmental impacts between organic and conventional farming. Brit Food J. 2009;111(10):1098–119. https://doi.org/10.1108/00070700910992925
  71. 71. Phalan B, Onial M, Balmford A, Green RE. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Sci. 2011;333(6047):1289–91. https://doi.org/10.1126/science.1208742
  72. 72. Kukreti A, Kurmanchali N, Rawat. Organic farming and biochar. In: Uniyal A, Sharma I, editors. Trends in agriculture: Traditional and modern approaches. Jodhpur Agrobios; 2021. p. 141–153.
  73. 73. Zhang Z, Dong X, Wang S, Pu X. Benefits of organic manure combined with biochar amendments to cotton root growth and yield under continuous cropping systems in Xinjiang, China. Sci Rep. 2020;10(1):4718. https://doi.org/10.1038/s41598-020-61118-8
  74. 74. Gamage A, Basnayake B, De Costa J, Merah O. Effects of rice husk biochar coated urea and anaerobically digested rice straw compost on the soil fertility and cyclic effect of phosphorus. Plants. 2021;11(1):75. https://doi.org/10.3390/plants11010075
  75. 75. Agu OS, Tabil LG, Mupondwa E, Emadi B, Dumonceaux T. Impact of biochar addition in microwave torrefaction of camelina straw and switchgrass for biofuel production. Fuels. 2022;3(4):588–606. https://doi.org/10.3390/fuels3040036
  76. 76. Glaser B, Wiedner K, Seelig S, Schmidt HP, Gerber H. Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agron Sustain Dev. 2015;35:667–78. https://doi.org/10.1007/s13593-014-0251-4
  77. 77. Kumar R, Kumawat N, Sahu YK. Role of biofertilizers in agriculture. Popular Kheti. 2017;5(4):63–66.
  78. 78. Kunal, Sharma S, Gosal SK, Choudhary R, Singh R, Adholeya A. Optical sensing and arbuscular mycorrhizal fungi for improving fertilizer nitrogen and phosphorus use efficiencies in maize. J Soil Sci Plant Nutr. 2020;20:2087–98. https://doi.org/10.1007/s42729-020-00277-z
  79. 79. Zhou Y, Liu H, Chen H, Awasthi SK, Sindhu R, Binod P, et al. Introduction: trends in composting and vermicomposting technologies. Curr Dev Biotechnol Bioeng. 2023:1–28. https://doi.org/10.1016/b978-0-323-91874-9.00004-8
  80. 80. Atere CT, Olayinka A. Effect of organo-mineral fertilizer on soil chemical properties, growth and yield of soybean. Afr J Agric Res. 2012;7(37):5208–16. https://doi.org/10.5897/ajar11.1378
  81. 81. Crusciol CA, Campos MD, Martello JM, Alves CJ, Nascimento CA, Pereira JC, et al. Organomineral fertilizer as source of P and K for sugarcane. Sci Rep. 2020;10(1):5398. https://doi.org/10.1038/s41598-020-62315-1
  82. 82. Mushi GE, Di Marzo Serugendo G, Burgi PY. Digital technology and services for sustainable agriculture in Tanzania: A literature review. Sustain. 2022;14(4):2415. https://doi.org/10.3390/su14042415
  83. 83. World Health Organization. The state of food security and nutrition in the world 2022: repurposing food and agricultural policies to make healthy diets more affordable. Food Agri Org. 2022. https://doi.org/10.4060/cc0639en
  84. 84. Seremesic S, Dolijanovic Z, Tomas Simin M, Vojnov B, Glavas Trbic D. The future we want: sustainable development goals accomplishment with organic agriculture. Probl Ekorozw. 2021;16(2):171–80. https://doi.org/10.35784/pe.2021.2.18
  85. 85. Setboonsarng S, Gregorio EE. Achieving sustainable development goals through organic agriculture: empowering poor women to build the future. Manila: Asian Development Bank; 2017. https://doi.org/10.22617/wps179123-2
  86. 86. Markandya A, Setboonsarng S, editors. Organic agriculture and post-2015 development goals: Building on the comparative advantage of poor farmers. Manila: Asian Development Bank; 2015.
  87. 87. Bouhia Y, Hafidi M, Ouhdouch Y, Zeroual Y, Lyamlouli K. Organo-mineral fertilization based on olive waste sludge compost and various phosphate sources improves phosphorus agronomic efficiency, Zea mays agro-physiological traits and water availability. https://doi.org/10.1146/annurev-resource-100517-023252
  88. 88. Muller A, Schader C, El-Hage Scialabba N, Bruggemann J, Isensee A, Erb KH, et al. Strategies for feeding the world more sustainably with organic agriculture. Nat Commun. 2017;8(1):1–3. https://doi.org/10.1038/s41467-017-01410-w
  89. 89. Kansanga M, Andersen P, Kpienbaareh D, Mason-Renton S, Atuoye K, Sano Y, et al. Traditional agriculture in transition: examining the impacts of agricultural modernization on smallholder farming in Ghana under the new Green Revolution. Int J Sustain Dev World Ecol. 2019;26(1):11–24. https://doi.org/10.1080/13504509.2018.1491429
  90. 90. Liyanage CE, Thabrew MI, Kuruppuarachchi DS. Nitrate pollution in ground water of Kalpitiya: An evaluation of the content of nitrates in the water and food items cultivated in the area. J Natn Sci Found Sri Lanka. 2000;28(2):101–12. https://doi.org/10.4038/jnsfsr.v28i2.2679
  91. 91. Geissen V, Silva V, Lwanga EH, Beriot N, Oostindie K, Bin Z, et al. Cocktails of pesticide residues in conventional and organic farming systems in Europe-Legacy of the past and turning point for the future. Environ Pollut. 2021;278:116827. https://doi.org/10.1016/j.envpol.2021.116827
  92. 92. Vogt G. The origins of organic farming. In: Lockeretz W, editors. Organic farming: An international history; Wallingford UK:CABI; 2007. p. 9–29 https://doi.org/10.1079/9780851998336.0009
  93. 93. Lockeretz W. What explains the rise of organic farming?. In: Lockeretz W, editors. Organic farming: An international history; Wallingford UK:CABI; 2007. p. 1–8. https://doi.org/10.1079/9780851998336.0001
  94. 94. Stolze M, Lampkin N. Policy for organic farming: rationale and concepts. Food Policy. 2009;34(3):237–44. https://doi.org/10.1016/j.foodpol.2009.03.005
  95. 95. Clark S. Organic farming and climate change: The need for innovation. Sustain. 2020;12(17):7012. https://doi.org/10.3390/su12177012
  96. 96. Hammed TB, Oloruntoba EO, Ana GR. Enhancing growth and yield of crops with nutrient-enriched organic fertilizer at wet and dry seasons in ensuring climate-smart agriculture. Int J Recycl Org Waste Agric. 2019;8:81–92. https://doi.org/10.1007/s40093-019-0274-6
  97. 97. Pandiselvi T, Jeyajothi R, Kandeshwari M. Organic nutrient management a way to improve soil fertility and sustainable agriculture- A review. Int J Adv Life Sci. 2017;10(2):175–81. https://doi.org/10.26627/ijals/2017/10.02.0005
  98. 98. Ebitu L, Avery H, Mourad KA, Enyetu J. Citizen science for sustainable agriculture- A systematic literature review. Land use policy. 2021;103:105326. https://doi.org/10.1016/j.landusepol.2021.105326
  99. 99. Merrigan K, Giraud EG, Scialabba NE, Brook L, Johnson A, Aird NS. Grow organic: The climate, health and economic case for expanding organic agriculture. The Natural Resources Defence Council. 2022.
  100. 100. Muller A. Benefits of organic agriculture as a climate change adaptation and mitigation strategy in developing countries. rapport nr.: Working Papers in Economics 343. 2009. https://doi.org/10.1088/1755-1307/6/7/372032
  101. 101. Pandit MA, Kumar J, Gulati S, Bhandari N, Mehta P, Katyal R, et al. Major biological control strategies for plant pathogens. Pathog. 2022;11(2):273. https://doi.org/10.3390/pathogens11020273
  102. 102. Seneviratne G, Kulasooriya SA, Rosswall T. Sustainment of soil fertility in the traditional rice farming, dry zone, Sri Lanka. Soil Biol Biochem. 1994;26(6):681–88. https://doi.org/10.1016/0038-0717(94)90259-3
  103. 103. Seufert V, Ramankutty N, Mayerhofer T. What is this thing called organic? - How organic farming is codified in regulations. Food Policy. 2017;68:10–20. https://doi.org/10.1016/j.foodpol.2016.12.009
  104. 104. Jena PR, Chichaibelu BB, Stellmacher T, Grote U. The impact of coffee certification on small-scale producers’ livelihoods: A case study from the Jimma Zone, Ethiopia. Agric Econ. 2012;43(4):429–40. https://doi.org/10.1111/j.1574-0862.2012.00594.x
  105. 105. Meemken EM, Veettil PC, Qaim M. Toward improving the design of sustainability standards- A gendered analysis of farmers’ preferences. World Dev. 2017;99:285–98. https://doi.org/10.1016/j.worlddev.2017.05.021
  106. 106. Willer H, Travnicek J, Schlatter S. The world of organic agriculture. Statistics and emerging trends 2024. https://doi.org/10.1017/s0014479709007807
  107. 107. Carlson A, Jaenicke E. Changes in retail organic price premiums from 2004 to 2010. USDA; 2016. Available from: https://www.ers.usda.gov/publications/pub-details?pubid=45550
  108. 108. Brenes-Munoz T, Lakner S, Bruummer B. What influences the growth of organic farms? Evidence from a panel of organic farms in Germany. German J Agric Econ. 2016;65(1):1–5. https://doi.org/10.52825/gjae.v65i1.2010
  109. 109. Serra T, Zilberman D, Gil JM. Differential uncertainties and risk attitudes between conventional and organic producers: The case of Spanish arable crop farmers. Agric Econ. 2008;39(2):219–29. https://doi.org/10.1111/j.1574-0862.2008.00329.x
  110. 110. Kallas Z, Serra T, Gil JM. Farmers’ objectives as determinants of organic farming adoption: The case of Catalonian vineyard production. Agric Econ. 2010;41(5):409–23. https://doi.org/10.1111/j.1574-0862.2010.00454.x
  111. 111. Lapple D. Adoption and abandonment of organic farming: An empirical investigation of the Irish drystock sector. J Agric Econ. 2010;61(3):697–714. https://doi.org/10.1111/j.1477-9552.2010.00260.x
  112. 112. Wollni M, Andersson C. Spatial patterns of organic agriculture adoption: evidence from Honduras. Ecol Econ. 2014;97:120–28. https://doi.org/10.1016/j.ecolecon.2013.11.010
  113. 113. Kuminoff NV, Wossink A. Why isn’t more US farmland organic?. J Agric Econ. 2010;61(2):240–58. https://doi.org/10.1111/j.1477-9552.2009.00235.x
  114. 114. Bolwig S, Gibbon P, Jones S. The economics of smallholder organic contract farming in tropical Africa. World Dev. 2009;37(6):1094–104. https://doi.org/10.1016/j.worlddev.2008.09.012
  115. 115. Walmsley A, Sklenicka P. Various effects of land tenure on soil biochemical parameters under organic and conventional farming- implications for soil quality restoration. Ecol Eng. 2017;107:137–43. https://doi.org/10.1016/j.ecoleng.2017.07.006
  116. 116. Malik DS, Sharma AK, Sharma AK, Thakur R, Sharma M. A review on impact of water pollution on freshwater fish species and their aquatic environment. Adv Environ Pollut Manag. 2020;1:10–28. https://doi.org/10.26832/aesa-2020-aepm-02
  117. 117. Mateo-Sagasta J, Zadeh SM, Turral H, Burke J. Water pollution from agriculture: A global review. Executive Summary. Rome: FAO; 2017.
  118. 118. Chaichi W, Djazouli Z, Zebib B, Merah O. Effect of vermicompost tea on faba bean growth and yield. Compost Sci Util. 2018;26(4):279–85. https://doi.org/10.1080/1065657x.2018.1528908
  119. 119. Merah O, Djazouli ZE, Zebib B. Aqueous extract of algerian nettle (Urtica dioica L.) as possible alternative pathway to control some plant diseases. Iran J Sci Technol Trans A: Sci. 2021;45:463–68. https://doi.org/10.1007/s40995-021-01061-z
  120. 120. Mohammedi A, Zebib B, Atika S, Merah O, Djazouli ZE. Effect of Ulva rigida as crude and formulated extract on vineyard growth at an early stage. Ukr J Ecol. 2022;12(6):15–25.
  121. 121. Zhou X, Ding D. Factors influencing farmers’ willingness and behaviors in organic agriculture development: An empirical analysis based on survey data of farmers in Anhui Province. Sustain. 2022;14(22):14945. https://doi.org/10.3390/su142214945
  122. 122. Food and Agriculture Organization of the United Nations. Transforming food and agriculture to achieve the Sustainable Developmental Goals (SDGs): Good practices from FAO-GEF projects around the world. Rome, FAO. 2020. p. 64. https://doi.org/10.4060/ca8768en
  123. 123. Pingali PL. Green revolution: impacts, limits and the path ahead. Proc Natl Acad Sci. 2012;109(31):12302–08. https://doi.org/10.1073/pnas.0912953109
  124. 124. Pretty J, Benton TG, Bharucha ZP, Dicks LV, Flora CB, Godfray HC, et al. Global assessment of agricultural system redesign for sustainable intensification. Nat Sustain. 2018;1(8):441–46. https://doi.org/10.1038/s41893-018-0114-0
  125. 125. Baker BP, Cooley D, Futrell S, Garling L, Gershuny G, Green TA, et al. Organic agriculture and integrated pest management: synergistic partnership needed to Improve the Sustainability of Agriculture and Food Systems. In: Brian PB, Thomas AG, editors. National Organic and IPM working group. 2015.
  126. 126. Merah O, Djazouli Z. Toxicity Evaluation of Dittrichia viscosa L’s aqueous extracts in combination with bio-adjuvant Silene fuscata on Chaitophorus leucomelas Koch. (Hom., Aphididae) and on biocenotic resumption of functional groups. Jordan J Agric Sci. 2016;12(3):797–814. https://doi.org/10.12816/0033386
  127. 127. Salim D, De Caro P, Merah O, Chbani A. Control of postharvest citrus green mold using Ulva lactuca extracts as a source of active Agron. 2023;13(1):249. https://doi.org/10.3390/agronomy13010249
  128. 128. Rathod PH, Patel JC, Shah MR, Jhala AJ. Recycling gamma irradiated sewage sludge as fertilizer: A case study using onion (Alium cepa). Appl Soil Ecolog. 2009;41(2):223–33. https://doi.org/10.1016/j.apsoil.2008.11.001
  129. 129. Kominko H, Gorazda K, Wzorek Z. The possibility of organo-mineral fertilizer production from sewage sludge. Waste Biomass Valori. 2017;8:1781–91. https://doi.org/10.1007/s12649-016-9805-9
  130. 130. Koutroubas SD, Antoniadis V, Damalas CA, Fotiadis S. Municipal sewage sludge effects on maize yield, nitrogen use efficiency and soil properties. J Soil Sci Plant Nutr. 2023;23(1):1209–21. https://doi.org/10.1007/s42729-022-01115-0
  131. 131. Correa RS, Barbosa JZ, Poggere GC, Magri E, de Oliveira SA. Grain and foliar nutritional responses of corn (Zea mays L.) to sewage sludge soil application. Waste Biomass Valori. 2023;14(8):2629–41. https://doi.org/10.1007/s12649-023-02037-3
  132. 132. Jamil M, Qasim M, Umar M. Utilization of sewage sludge as organic fertilizer in sustainable agriculture. J Appl Sci. 2006;6(3):531–35. https://doi.org/10.3923/jas.2006.531.535
  133. 133. Kominko H, Gorazda K, Wzorek Z. Potentiality of sewage sludge-based organo-mineral fertilizer production in Poland considering nutrient value, heavy metal content and phytotoxicity for rapeseed crops. J Environ Manag. 2019;248:109283. https://doi.org/10.1016/j.jenvman.2019.109283
  134. 134. Chojnacka K, Skrzypczak D, Szopa D, Izydorczyk G, Moustakas K, Witek-Krowiak A. Management of biological sewage sludge: fertilizer nitrogen recovery as the solution to fertilizer crisis. J Environ Manag. 2023;326:116602. https://doi.org/10.1016/j.jenvman.2022.116602
  135. 135. Kumar A, Kumar A, Kumar Yadav A, Thakur S. Impact of organic farming on eco-friendly sustainable agriculture: A review. Pharma Innov J. 2022;11(2):709–15.
  136. 136. Rathod PH, Patel JC, Jhala AJ. Potential of gamma irradiated sewage sludge as fertilizer in radish: evaluating heavy-metal accumulation in sandy loam soil. Commun Soil Sci Plant Anal. 2011;42(3):263–82. https://doi.org/10.1080/00103624.2011.538880
  137. 137. Sichler TC, Adam C, Montag D, Barjenbruch M. Future nutrient recovery from sewage sludge regarding three different scenarios- German case study. J Clean Prod. 2022;333:130130. https://doi.org/10.1016/j.jclepro.2021.130130
  138. 138. Banerjee DS, Balkrishna A, Arya V, Ghosh S, Singh SK. Reuse of sewage sludge as organic agricultural products: An efficient technology-based initiative. Authorea Preprints. 2022. https://doi.org/10.22541/au.164899210.06660033/v1
  139. 139. Franz M. Phosphate fertilizer from sewage sludge ash (SSA). Waste Manag. 2008;28(10):1809–18. https://doi.org/10.1016/j.wasman.2007.08.011
  140. 140. Herzel H, Kruger O, Hermann L, Adam C. Sewage sludge ash-A promising secondary phosphorus source for fertilizer production. Sci Total Environ. 2016;542:1136–43. https://doi.org/10.1016/j.scitotenv.2015.08.059
  141. 141. Gomiero T, Paoletti MG, Pimentel D. Energy and environmental issues in organic and conventional agriculture. Crit Rev Plant Sci. 2008;27(4):239–54. https://doi.org/10.1080/07352680802225456
  142. 142. Crowder DW, Northfield TD, Strand MR, Snyder WE. Organic agriculture promotes evenness and natural pest control. Nat. 2010;466(7302):109–12. https://doi.org/10.1038/nature09183

Downloads

Download data is not yet available.