Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Phytochemical profiling and neuroprotective potential of Garcinia lanceifolia Roxb.: In vitro and in silico insights

DOI
https://doi.org/10.14719/pst.7428
Submitted
25 January 2025
Published
08-07-2025
Versions

Abstract

Garcinia lanceifolia Roxb. is renowned for its medicinal properties, though its neuroprotective potential remains underexplored. This study investigated the methanolic leaf extract of G. lanceifolia (MEGL) to identify its bioactive compounds and evaluate their neuroprotective potential through an integrated in vitro and silico approach. Gas chromatography-mass spectrometry (GC-MS) analysis identified 56 phytocompounds, with 20 exhibiting favourable pharmacokinetic properties based on Lipinskis’ rule of five. In vitro assays revealed significant antioxidant and anti-inflammatory activities, highlighting the extracts’ potential in combating oxidative stress and neuroinflammation. In silico analysis demonstrated strong molecular interactions of key compounds, such as precocene II, 13-hexyloxacyclotridec-10-en-2-one and methyl ricinoleate, with neuroprotective targets including IL-1α, KEAP1, serotonin, GABA and NMDA receptors. These compounds exhibited binding affinities competitive with or superior to reference drugs like ascorbic acid, diclofenac, ifenprodil, fluoxetine and diazepam. Toxicity profiling indicated minimal adverse effects, suggesting their potential for drug development. Visualizing ligand-receptor interactions provided insights into binding stability and specificity, emphasizing the therapeutic relevance of these phytocompounds. While findings are promising, further experimental validation is required to confirm their neuroprotective efficacy. This study underscores the potential of G. lanceifolia as a source of neuroprotective agents, paving the way for innovative treatments for neurodegenerative disorders.

References

  1. 1. Barbalho SM, Leme Boaro B, da Silva Camarinha Oliveira J, Patočka J, Barbalho Lamas C, Tanaka M, et al. Molecular Mechanisms Underlying Neuroinflammation Intervention with Medicinal Plants: A Critical and Narrative Review of the Current Literature. Pharmaceuticals. 2025 18(133):1–28. https://doi.org/10.3390/ph18010133
  2. 2. Kumar GP, Khanum F. Neuroprotective potential of phytochemicals. Pharmacogn Rev. 2012;6(12):81–90. https://doi.org/10.4103/0973-7847.99898
  3. 3. Chowdhury T, Handique PJ. Evaluation of antibacterial activity and phytochemical activity of Garcinia lancifolia Roxb. Int J Pharm Sci Res. 2012;3(6):1663–67.
  4. 4. Policegoudra RS, Saikia S, Das J, Chattopadhyay P, Singh L, Veer V. Phenolic Content, Antioxidant Activity, Antibacterial Activity and Phytochemical Composition of Garcinia lancifolia. Ind J Pharm Sci. 2012 Jun 10;74(3):268–71. https://doi.org/10.4103/0250-474X.106075
  5. 5. Karvandi MS, Sheikhzadeh Hesari F, Aref AR, Mahdavi M. The neuroprotective effects of targeting key factors of neuronal cell death in neurodegenerative diseases: The role of ER stress, oxidative stress and neuroinflammation. Front Cell Neurosci. 2023 Mar 6;17:1–24. https://doi.org/10.3389/fncel.2023.1105247
  6. 6. Nandhu MS, Paul J, Kuruvila KP, Abraham PM, Antony S, Paulose CS. Glutamate and NMDA receptors activation leads to cerebellar dysfunction and impaired motor coordination in unilateral 6-hydroxydopamine lesioned Parkinsons’ rat: Functional recovery with bone marrow cells, serotonin and GABA. Mol Cell Biochem. 2011 Jul;353(1–2):47–57. https://doi.org/10.1007/s11010-011-0773-x
  7. 7. Vashisth MK, Hu J, Liu M, Basha SH, Yu C, Huang W. In-Silico discovery of 17alpha-hydroxywithanolide-D as a potential neuroprotective allosteric modulator of NMDA receptor targeting Alzheimer’s disease. Sci Rep. 2024 Nov 13;14(1). https://doi.org/10.1038/srep42717
  8. 8. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolourisation assay. Free Radic Biol Med. 1999;26:1231–37. https://doi.org/10.1016/S0891-5849(98)
  9. 00315-3
  10. 9. Mirke N, Shelke P, Malavdkar P, Jagtap P. In vitro protein denaturation inhibition assay of Eucalyptus globulus and Glycine max for potential anti-inflammatory activity. Innovations in Pharmaceuticals and Pharmacotherapy. 2020;8(2):28–31.
  11. 10. Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017 ;7(1):42717. https://doi.org/10.1038/srep42717
  12. 11. Sanner MF. Python: A Programming Language for Software Integration and Development. J. Mol. Graphics Model. 1999;17(1):57–61.
  13. 12. Ren X, Gelinas AD, Von Carlowitz I, Janjic N, Pyle AM. Structural basis for IL-1α recognition by a modified DNA aptamer that specifically inhibits IL-1α signaling. Nat Commun. 2017;8(1):810. https://doi.org/10.1038/s41467-017-
  14. 00864-2
  15. 13. Lo SC, Li X, Henzl MT, Beamer LJ, Hannink M. Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signalling. EMBO Journal. 2006 ;25(15):3605–17. https://doi.org/10.1038/sj.emboj.7601243
  16. 14. Stroebel D, Buhl DL, Knafels JD, Chanda PK, Green M, Sciabola S, et al. A novel binding mode reveals two distinct classes of NMDA receptor GluN2B-selective antagonists. Mol Pharmacol. 2016;89(5):541–51. https://doi.org/10.1124/mol.115.103036
  17. 15. Wang C, Jiang Y, Ma J, Wu H, Wacker D, Katritch V, et al. Structural basis for molecular recognition at serotonin receptors. Science (1979). 2013;340(6132):610–14. https://doi.org/10.1126/science.1232807
  18. 16. Tiger M, Varnäs K, Okubo Y, Lundberg J. The 5-HT 1B receptor - a potential target for antidepressant treatment. Vol. 235, Psychopharmacology. Verlag: Springer; 2018. p. 1317–34. https://doi.org/10.1007/s00213-018-4872-1
  19. 17. Miller PS, Aricescu AR. Crystal structure of a human GABAA receptor. Nature. 2014 ;512(7514):270–5. https://doi.org/10.1038/nature13293
  20. 18. Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem. 2010;31(2):455–61. https://doi.org/10.1002/jcc.21334
  21. 19. Banerjee P, Kemmler E, Dunkel M, Preissner R. ProTox 3.0: A web server for the prediction of toxicity of chemicals. Nucleic Acids Res. 2024;52(1):513–20. https://doi.org/10.1093/nar/gkae303
  22. 20. Bora NS, Bairy PS, Salam A, Kakoti BB. Antidiabetic and antiulcerative potential of Garcinia lanceifolia Roxb. bark. Futur J Pharm Sci. 2020 Dec;6(1):1–11. https://doi.org/10.1186/s43094-020-00101-6
  23. 21. Ghosh A, Banik S, Amin MN, Ahmed J. Evaluation of antinociceptive, antihyperglycemic and membrane stabilizing activities of Garcinia lancifolia Roxb. J Tradit Complement Med. 2018 Apr 1;8(2):303–07. https://doi.org/10.1016/j.jtcme.2017.04.009
  24. 22. Vasantharani S, Thirugnanasampandan R, Bhuvaneswari G. Qualitative and quantitative analysis of Precocene II, estimation of enzymatic, nonenzymatic antioxidant and cytotoxic potentials of methyl jasmonate-elicited shoot culture of Ageratum conyzoides Linn. J Appl Biol Biotechnol. 2023 Jan 1;11(1):93–99. https://doi.org/10.7324/JABB.
  25. 2023.110114
  26. 23. Vieira C, Fetzer S, Sauer SK, Evangelista S, Averbeck B, Kress M, et al. Pro and anti-inflammatory actions of ricinoleic acid: Similarities and differences with capsaicin. Naunyn Schmiedebergs Arch Pharmacol. 2001;364(2):87–95. https://doi.org/10.1007/s002100100427
  27. 24. Mascolo N, Barbato F, Grumetto L, Quaglia F, Capasso F. Ricinoleic acid, the active ingredient of castor oil, increases Nitric Oxide Synthase activity in the rat ileum and colon. Pharm Biol. 1997;35(5):364–70.
  28. 25. Wang T, Lee SL, Da Silva JAC, Hammond E, Yao L. Determination of oxidation of methyl ricinoleates.Journal of the American Oil Chemists' Society. 2015 Apr18;92(6):871–80. https://doi.org/10.1007/s11746-015-2649-9
  29. 26. Neganova M, Liu J, Aleksandrova Y, Vasilieva N, Semakov A, Yandulova E, et al. Development of Neuroprotective Agents for the Treatment of Alzheimer’s Disease using Conjugates of Serotonin with Sesquiterpene Lactones. Curr Med Chem. 2024;31(5):529–51. https://doi.org/10.2174/0929867330666221125105253
  30. 27. Pairas GN, Tsoungas PG. H-Bond: Τhe Chemistry-Biology H-Bridge. Vol. 1, ChemistrySelect. 2016 Sep 16:1(15):4520–32. https://doi.org/10.1002/slct.201600770
  31. 28. Tóth G, Bowers SG, Truong AP, Probst G. The Role and Significance of Unconventional Hydrogen Bonds in Small Molecule Recognition by Biological Receptors of Pharmaceutical Relevance. Curr Pharm Des. 2007;13(34):3476–93. https://doi.org/10.2174/138161207782794284
  32. 29. Hunter CA. Aromatic Interactions in Proteins, DNA and Synthetic Receptors. Philos Trans R Soc Lond A Phys Eng Sci. 1993 Oct 15;345(1674):77–85. https://doi.org/10.1098/rsta.1993.0119
  33. 30. Mierke DF, Pellegrini M. Receptor–Ligand Interactions. Encyclopedia of Endocrine Diseases. 2004;163–66. https://doi.org/10.1016/B0-12-475570-4/01127-6

Downloads

Download data is not yet available.