Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

A review of appropriate use of agroforestry residues for biogas production and prospects

DOI
https://doi.org/10.14719/pst.7449
Submitted
27 January 2025
Published
10-05-2025 — Updated on 26-07-2025
Versions

Abstract

Making bioenergy from waste or residue is one of the innovative and valuable ways to use renewable resources in addition to wind and solar energy. Many poor countries can benefit from this as they attempt to address the enormous amounts of rubbish left in landfills. This waste could be liquid (oil and wastewater) or solid (food and agricultural and agroforestry wastes). These consist of waste or agroforestry residues, like tree stumps and leftover leaves from timber harvest. Its’ all produced via an agroforestry system. Waste has a detrimental impact on the ecosystem and, consequently, all living organisms. One solution to this waste issue is to use garbage as a resource to produce beneficial products like biogas using compressed bioenergy production equipment. In this work, bibliometric methodologies were employed to assess global research advancements in bioenergy production from garbage through the Scopus database and developments in bioenergy production from waste. This review study assumed that agroforestry waste may be an optimistic substrate for biogas production in developing countries due to its widespread availability. Compressed biogas production, among other alternatives, is a workable solution to the countrys’ current energy issues and is safe for the environment because it emits no pollutants.

References

  1. 1. Deng L, Liu Y, Zheng D, Wang L, Pu X, Song L, et al. Application and development of biogas technology for the treatment of waste in China. Renew Sustain Ener Rev. 2017;70,845–51. https://doi.org/10.1016/j.rser.2016.11.265
  2. 2. Ebenezer NB. An assessment of construction site pollution: a case of Accra, Ghana[dissertation]. South Africa: University of Johannesburg; 2020.3.
  3. 3. Gupta J, Kumari M, Mishra A, Akram M, Thakur IS. Agroforestry waste management review. Chemosphere. 2022; 287:132321. https://doi.org/10.1016/j.chemosphere.2021.132321
  4. 4. Bhatia RK, Ramadoss G, Jain AK, Dhiman RK, Bhatia SK, Bhatt AK. Conversion of waste biomass into gaseous fuel: present status and challenges in India. BioEnergy Res. 2020;13:1046–68. https://doi.org/10.1007/s12155-020-10137-4
  5. 5. Miguez MG, Fan Y. Spatiotemporal origin of soil water taken up by vegetation. Nature. 2021;598(7882):624–28. https://doi.org/10.1038/s41586-021-03958-6
  6. 6. Malode SJ, Prabhu KK, Mascarenhas RJ, Shetti NP, Aminabhavi TM. Recent advances and viability in biofuel production. Energy Convers Manag X. 2021;10:100070. https://doi.org/10.1016/j.ecmx.2020.100070
  7. 7. Awasthi SK, Sarsaiya S, Awasthi MK, Liu T, Zhao J, Kumar S, et al. Changes in global trends in food waste composting: research challenges and opportunities. Bioresour Technol. 2020; 299:122555. https://doi.org/10.1016/j.biortech.2019.122555
  8. 8. Condon DJ, Schoene B, McLean NM, Bowring SA, Parrish RR. Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochim et Cosmochim Acta. 2015;164:464–80. https://doi.org/10.1016/j.gca.2015.05.026
  9. 9. Aggarangsi P, Koonaphapdeelert S, Saoharit Nitayavardhana JM. Biogas Technology in Southeast Asia. Springer; 2023. p 1–193. https://doi.org/10.1007/978-981-19-8887-5_1
  10. 10. Meynell P. Methane: Planning a Digester. Dorset, Clarington: Sochen Books; 1976.
  11. 11. Eckenfelder W. Biological treatment of sewage and industrial wastes.Vol. 2. New York: Reinhold;1857. p. 49–65.
  12. 12. Buswell W, Hatfield AM. Anaerobic fermentations. Urbana, (IL): Technical Report 32; 1936,
  13. 13. World Biogas Association. Global potential f biogas [internet]; 2019 [cited 2025 Feb 25]. Available from: https://www.worldbiogasassociation.org/wp-content/uploads/2019/09/WBA-globalreport-56ppa4_digital-Sept-2019.pdf
  14. 14. British Petroleum Company. Statistical review of world energy. Techreport. UK: British Petroleum;1981.
  15. 15. International Energy Agency. Outlook for biogas and biomethane: Prospects for organic growth.[Internet]. Asia, Chiang: WEPA. 2017 [cited 2025 Feb 25]. Available from: https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth
  16. 16. Kummamuru B. WBA global bioenergy statistics. World BioEnergy Association; 2016, Tech Report No: 436.
  17. 17. World Bioenergy Association. Global bioenergy statistic 2021 [Internet] 2021. [cited 2025 Feb 25]. Available from: https://www.worldbioenergy.org/uploads/211214 %20WBA %20GBS %202021.pdf
  18. 18. Tan KA, Wan Maznah WO, Morad N, Lalung J, Ismail N, Talebi A, et al. 2021. Advances in POME treatment methods: potentials of phycoremediation, with a focus on Southeast Asia. Int J Environ Sci Technol. 2021;19(8):8113–30. https://doi.org/10.1007/s13762-021-03436-6
  19. 19. Aggarangsi P, Teerasountornkul T. Practical design and efficiency of large-scale biogas digesters for swine farms in Thailand. J Sustainable Energy Environ. 2011;51:55.
  20. 20. Kashyap P. Pollution control and policy measures for piggery wastewater management.Thailand: WEPA [Internet]; 2017 [cited 2025 Feb 25]. Available from: https://wepa-db.net/
  21. 21. Nair A, Palmer EC, Aleman A, David AS. Relationship between cognition, clinical and cognitive insight in psychotic disorders: a review and meta-analysis. Schizophr Res. 2014;152(1):191–200. https://doi.org/10.1016/j.schres.2013.11.033
  22. 22. Hassan TA, Hollander S, Van Lent L, Tahoun A. Firm-level political risk: measurement and effects. The Q J Econ. 2019;134(4):2135–2202.https://doi.org/10.1093/qje/qjz021
  23. 23. Searchinger T, Waite R, Hanson C, Ranganathan J, Dumas P, Matthews E, et al. Creating a sustainable food future: a menu of solutions to feed nearly 10 billion people by 2050. World Bank, UN Environment, UN Development Programme [Internet]; 2019 [cited 2025 Feb 25]. Available from: https://www.wri.org/research/creating-sustainable-food-future
  24. 24. Prasad S, Singh A, Korres N.E, Rathore D, Sevda S, Pant D. Sustainable utilization of crop residues for energy generation: A life cycle assessment perspective. Bioresour Technol. 2020;303:122964. https://doi.org/10.1016/j.biortech.2020.122964
  25. 25. Martín-Gamboa M, Iribarren D, Dufour J. Environmental impact efficiency of natural gas combined cycle power plants: A combined life cycle assessment and dynamic data envelopment analysis approach. Sci Total Environ. 2018; 615:29–37. https://doi.org/10.1016/j.scitotenv.2017.09.243
  26. 26. Ouya D. Charcoal briquettes relieve energy poverty. Appro Technol. 2013; 40(4):61.
  27. 27. Muñoz-Rodríguez D, Aparicio-Martínez P, Perea-Moreno AJ. Contribution of agroforestry biomass valorisation to energy and environmental sustainability. Energies.2022;15(22):8670.https://doi.org/10.3390/en15228670
  28. 28. Nair S, Rajeswaran A, Kumar V, Finn C, Gupta A. R3m: A universal visual representation for robot manipulation. arXiv preprint arXiv: arXiv:2203.12601.2022.
  29. 29. Mirahmadi K, Kabir MM, Jeihanipour A, Karimi K, Taherzadeh M.J. Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production. BioResources. 2010;5(2):928–38. https://doi.org/10.15376/biores.5.2.928-938
  30. 30. Salehian MH, Mohammadzadeh MS, Salehzadeh K, Karimi L. Comparison of Depression between University Female Athletes and Non-athletes. Ann Biol Res.2012;3(4):1779–82.
  31. 31. Kabir E, Kumar V, Kim KH, Yip AC, Sohn JR. Environmental impacts of nanomaterials. J Environ Manage. 2014;225:261–71. https://doi.org/10.1016/j.jenvman.2018.07.087
  32. 32. Hom PW, Mitchell TR, Lee TW, Griffeth RW. Reviewing employee turnover: focusing on proximal withdrawal states and an expanded criterion. Psychol Bull. 2012;138(5):831. https://doi.org/10.1037/a0027983
  33. 33. Estevez MC, Alvarez M., Lechuga LM. Integrated optical devices for lab?on?a?chip biosensing applications. Laser Photonics Rev. 2012;6(4):463–87. https://doi.org/10.1002/lpor.201100025
  34. 34. Nakamura Y, Mtui G. Anaerobic fermentation of woody biomass treated by various methods. Biotechnol Bioprocess Eng. 2003;8:179–82. https://doi.org/10.1007/BF02935893
  35. 35. Yao Y, Gao B, Chen J, Yang L. Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential application as a slow-release fertilizer. Environ Sci Technol. 2013; 47(15):8700–8. https://doi.org/10.1021/es4012977
  36. 36. Brown G. Public participation GIS for regional and environmental planning: Reflections on a decade of empirical research. J Urban Reg Inf Syst Assoc.2012; 24(2):7–18.
  37. 37. Turick CE, Peck MW, Chynoweth DP, Jerger DE, White EH, Zsuffa L, et al. Methane fermentation of woody biomass. Bioresour Technol.1991;37(2):141–47. https://doi.org/10.1016/0960-8524(91)90202-U
  38. 38. Li Y, Khanal SK. Bioenergy: Principles and Applications. New York: Wiley-Blackwell Wiley; 2017.
  39. 39. Nayono SE. Anaerobic digestion of organic solid waste for energy production. Karlsruhe: KIT Scientific Publishing; 2010.
  40. 40. Khanal SK. Anaerobic biotechnology for bioenergy production: Principles and Applications. New York: Wiley; 2008. https://doi.org/10.1002/9780813804545
  41. 41. Ariesyady HD, Ito T, Okabe S. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res. 2007; 41:1554–68. https://doi.org/10.1016/j.watres.2006.12.036
  42. 42. Borja R., Rincon B. Biogas production. In: Reference module in life sciences.2017, Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.09105-6
  43. 43. Archer DB, Kirsop BH. 1990. The microbiology and control of anaerobic digestion. In: Wheatley A, editor. Anaerobic digestion: a waste treatment technology; 1990. p. 43–89
  44. 44. Mata-Alvarez J. Fundamentals of the anaerobic digestion process. In: Mata-Alvarez J (ed) Biomethanization of organic fraction of municipal solid waste. Cornwall: IWA Publishing; 2003. p. 1–20.
  45. 45. Conklin A, David Stensel H, Ferguson J. Growth kinetics and competition between methanosarcina and methanosaeta in mesophilic anaerobic digestion. Water Environ Res. 2006;78:486–96. https://doi.org/10.2175/106143006X95393
  46. 46. Biogas House. World Biogas Association [Internet]. 2024 [cited 2025 Feb 25]. Available from: https://www.worldbiogasassociation.org/
  47. 47. American Biogas Council. Business of biogas [internet]; 2024 [cited 2025 Feb 25]. Available from: https://americanbiogascouncil.org/abc-event/business-of-biogas-2024/

Downloads

Download data is not yet available.