Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Influence of soil management practices on the arthropod diversity in Moroccan pomegranate orchard

DOI
https://doi.org/10.14719/pst.7859
Submitted
21 February 2025
Published
23-06-2025
Versions

Abstract

The main objective of this research is to determine the composition and diversity of weed communities in the inter-rows of pomegranate orchards and to assess their impact on the abundance and diversity of arthropods. Weed diversity was assessed using the quadrat method, while arthropod sampling employed sweep netting, beating and collection shoot methods.  Samples were collected weekly during the pomegranate cycle development. The results revealed the identification of a total of 17 weed species from 11 families. In 2022, we found that the three most abundant families were Amaranthaceae, Fumariaceae and Poaceae, which accounted for more than 90 % of the total sampled weeds, with proportions of 74.30 %, 8.09 % and 7.36 %, respectively. In 2023, the most dominant families were Solanaceae (30.03 %), Amaranthaceae (25.11 %) and Poaceae (16.18 %).  Arthropods were associated with 12 weed species in 2022 but only 4 species in 2023, with Sonchus asper, Chenopodium album and Convolvulus arvensis hosting the highest arthropod abundance. While sweep netting sampling revealed no significant difference in arthropod abundance between years (p > 0.05). In addition, the shoot collection and beating methods revealed a significant positive effect of the weedy treatment on the abundance of beneficial arthropods (p < 0.05), with a significant difference observed between the two study years (p < 0.05).  However, climatic variations also influenced the results across the seasons, with weeds supporting greater arthropod diversity and abundance, compared to bare ground. These findings highlight the role of weeds as a sustainable orchard management practice, promoting arthropod biodiversity and ecosystem services in pomegranate orchards, which may contribute to improving the productivity and management of pomegranate cultivation.

References

  1. 1. Kamau H, Roman S, Biber-Freudenberger L. Nearly half of the world is suitable for diversified farming for sustainable intensification. Commun Earth Environ. 2023;4(1):446. https://doi.org/10.1038/s43247-023-01062-3
  2. 2. Blaise C, Mazzia C, Bischoff A, Millon A, Ponel P, Blight O. Vegetation increases abundances of ground and canopy arthropods in Mediterranean vineyards. Sci Rep. 2022;12(1):1–10. https://doi.org/10.1038/s41598-022-07529-1
  3. 3. Rocher L, Blaya R, Blaise C, Bischoff A, Blight O. Species and functional responses of ants to inter-row tillage and vegetation in organic Mediterranean vineyards. Basic Appl Ecol. 2022;65:126–35. https://doi.org/10.1016/j.baae.2022.11.009
  4. 4. Rasmussen LV, Coolsaet B, Martin A, Mertz, Pascual U, Corbera E, et al. Social-ecological outcomes of agricultural intensification Land-use. Nat Sustain. 2018;1(6):275–82. https://doi.org/10.1038/s41893-018-0070-8
  5. 5. Laffon L, Bischoff A. Conservation biological control of codling Moth (Cydia pomonella): Effects of two aromatic plants, Basil (Ocimum basilicum) and French Marigolds (Tagetes patula). Insects. 2022;13(10):1–11. doi.org/10.3390/insects13100908
  6. 6. Laha S, Chatterjee S, Das A, Smith B, Basu P. Selection of non-crop plant mixes informed by arthropod-plant network analyses for multiple ecosystem services delivery towards ecological intensification of agriculture. Sustain. 2022;14(3):1903. https://doi.org/10.3390/su14031903
  7. 7. Dainese M, Martin EA, Aizen MA, Albrecht M, Bartomeus I, Bommarco R, et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci Adv. 2019;5(10):1–14.
  8. 8. Raven PH, Wagner DL. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proceedings of the National Academy of Sciences. 2021;118(2):1–6. https://doi.org/10.1073/PNAS.2002548117
  9. 9. Wakhare P, Neduncheliyan S. Study of effective pest management strategies for pomegranate orchards. J Surv Fish Sci. 2023;10:17782. https://doi.org/10.53555/sfs.v10i4s.1322
  10. 10. Özkaya MS, Beğen HA. Effects of fertilizers and earthworms on morphological and nutritional attributes of Punica granatum and reproduction of Aphis punicae. Int J Trop Insect Sci. 2022;42(2):1721–29. https://doi.org/10.1007/s42690-021-00696-0
  11. 11. Ma YJ, He HP, Zhao HM, Xian YD, Guo H, Liu B, et al. Microbiome diversity of cotton aphids (Aphis gossypii) is associated with host alternation. Sci Rep. 2021;11(1):5260. https://doi.org/10.1038/s41598-021-83675-2
  12. 12. Cocuzza GEM, Mazzeo G, Russo A, Giudice V Lo, Bella S. Pomegranate arthropod pests and their management in the Mediterranean area. Phytoparasitica. 2016;44(3):393–9. https://doi.org/10.1007/s12600-016-0529-y
  13. 13. Farrokhzadeh H, Moravvej G, Awal MM, Karimi J, Rashed A. Comparison of molecular and conventional methods for estimating parasitism level in the pomegranate aphid Aphis punicae (Hemiptera: Aphididae). J Insect Sci. 2017;7(6):1–7. https://doi.org/10.1093/jisesa/iex087
  14. 14. Rodrigues LCC, Fortini RM, C. R. Neves M. Impacts of the use of biological pest control on the technical efficiency of the Brazilian agricultural sector. Int J Environ Sci Technol. 2023;20(1):1–16. https://doi.org/10.1007/s13762-022-04032-y
  15. 15. Amokrane D, Mohammedi A, Ababou A. Interactions between aphids and aphidophages in citrus orchards in the Chlef region (North West of Algeria): einleitung, materialien und methoden, ergebnisse und diskussion, schlussfolgerung. Acta Agric Slov. 2024;120(1):1–13. https://doi.org/10.14720/aas.2024.120.1.17047
  16. 16. Griffiths GJK, Holland JM, Bailey A, Thomas MB. Efficacy and economics of shelter habitats for conservation biological control. Biol Control. 2008;45(2):200–9. https://doi.org/10.1016/j.biocontrol.2007.09.002
  17. 17. Altieri MA, Ponti L, Nicholls CI. Soil fertility, biodiversity and pest management. In: Geoff MG, Steve DW, William ES, Donna MYR, editors. Biodiversity and insect pests: key issues for sustainable management. 2012:72–84. https://doi.org/10.1002/9781118231838.ch5
  18. 18. Munir I, Ghaffar A, Aslam A, Shahzad M, Jafir M. Impact of weeds on diversity of soil arthropods in Bt cotton field in faisalabad pakistan. Pak J Weed Sci Res. 2020; 26(1):119–29. https://doi.org/10.28941/26-1(2020)-10
  19. 19. Radzikowski P, Matyka M, Berbeć AK. Biodiversity of weeds and arthropods in five different perennial industrial crops in eastern Poland. Agric. 2020;10(12):636. https://doi.org/10.3390/agriculture10120636
  20. 20. Kleiman BM, Koptur S, Jayachandran K. Weeds enhance pollinator diversity and fruit yield in mango. Insects. 2021;12(12):1114. https://doi.org/10.3390/insects12121114
  21. 21. Norris RF, Kogan M. Ecology of interactions between weeds and arthropods. Annu RevEntomol. 2005;50(1):479–503. https://doi.org/10.1146/annurev.ento.49.061802.123218
  22. 22. Nunes-Silva P, Witter S, da Rosa JM, Halinski R, Schlemmer LM, Arioli CJ, et al. Diversity of floral visitors in apple orchards: Influence on fruit characteristics depends on apple cultivar. Neotrop Entomol. 2020;49(4):511–24. https://doi.org/10.1007/s13744-020-00762-1
  23. 23. Marcelino SM, Gaspar PD, do Paço A, Lima TM, Monteiro A, Franco JC, et al. Agricultural practices for biodiversity enhancement: Evidence and recommendations for the viticultural sector. Agric Eng. 2024;6(2):1175–94. https://doi.org/10.3390/agriengineering6020067
  24. 24. Bianchi FJJA, Booij CJH, Tscharntke T. Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proceedings of the Royal Society B: Biological Sciences. 2006;273(1595):1715–27. https://doi.org/10.1098/rspb.2006.3530
  25. 25. Kumar S, Bhowmick MK, Ray P. Weeds as alternate and alternative hosts of crop pests. Ind J Weed Sci. 2021;53(1):14–29. https://doi.org/10.3390/agronomy13020559
  26. 26. Gómez-Marco, A. Urbaneja AT. A sown grass cover enriched with wild forb plants improves the biological control of aphids in citrus. Basic Appl Ecol. 2016;17(3):210–9. https://doi.org/10.1016/j.baae.2015.10.006
  27. 27. Blu N, Simons NK, Jung K, Prati D, Renner SC, Boch S, et al. Land use imperils plant and animal community stability through changes in asynchrony rather than diversity. Nat Commun. 2016;7(1):1-7. https://doi.org/10.1038/ncomms10697
  28. 28. Morente M, Cornara D, Dur M, Capiscol C, Trillo R, Ruiz M, et al. Distribution and relative abundance of insect vectors of Xylella fastidiosa in olive groves of the Iberian Peninsula. Insects. 2018;9(4):175. https://doi.org/10.3390/insects9040175
  29. 29. Elimem M, Jendoubi H, Lahfef C, Limem-Sellemi E, Belgacem L Ben, Kalboussi M, et al. Further data on scale insect species in an organic citrus orchard in North-Eastern Tunisia: Biodiversity, abundance and natural enemies. Redia. 2022;105:59–69. https://doi.org/10.19263/Redia-105.22.07
  30. 30. Vagge I, Chiaffarelli G. The alien plant species impact in rice crops in Northwestern Italy. Plants. 2023;12(10):2012. https://doi.org/10.3390/plants12102012
  31. 31. Haq SM, Lone FA, Kumar M, Calixto ES, Waheed M, Casini R, et al. Phenology and diversity of weeds in the agriculture and horticulture cropping systems of Indian Western Himalayas: Understanding implications for agro-ecosystems. Plants. 2023;12(6):1222. https://doi.org/10.3390/plants12061222
  32. 32. Kowalska J, Antkowiak M, Tymoszuk A. Effect of plant seed mixture on overwintering and floristic attractiveness of the flower strip in Western Poland. Agriculture. 2023;13(2):467. https://doi.org/10.3390/agriculture13020467
  33. 33. Alqahtani MM. taxonomic studies of weed communities growing in date palm and Christ’s thorn jujube farms in Ad-Dawadimi, KSA. Open J Ecol. 2023;13(06):345–66. https://doi.org/10.4236/oje.2023.136022
  34. 34. Shaltout KH, Al-Sodany YM. Vegetation analysis of Burullus wetland: A RAMSAR site in Egypt. Wetl Ecol Manag. 2008;16(5):421–39. https://doi.org/10.1007/s11273-008-9079-5
  35. 35. Sallam H, Alzain MN, Abuzaid AO, Loutfy N, Badry MO, Osman AK, et al. Wild plant diversity and soil characteristics of desert roadside vegetation in the Eastern Desert. 2023;15(7):874. https://doi.org/10.3390/d15070874
  36. 36. Heneidy SZ, Al-Sodany YM, Bidak LM, Fakhry AM, Hamouda SK, Halmy MWA, et al. Archeological sites and relict landscapes as refuge for biodiversity: Case study of Alexandria City, Egypt. Sustain. 2022;14(4):2416. https://doi.org/10.3390/su14042416
  37. 37. Onen H, Akdeniz M, Farooq S, Hussain M, Ozaslan C. Weed flora of citrus orchards and factors affecting its distribution in western mediterranean region of Turkey. Planta Daninha. 2018;36:1-14. https://doi.org/10.1590/S0100-83582018360100036
  38. 38. Bist MR, Shrestha BB. Weed community structure in upland farming system of the middle mountain region in far-western Nepal. Acta Ecologica Sinica. 2023;43(3):498–505. https://doi.org/10.1016/j.chnaes.2022.05.002
  39. 39. McKenzie SC, Goosey HB, O’Neill KM, Menalled FD. Impact of integrated sheep grazing for cover crop termination on weed and ground beetle (Coleoptera:Carabidae) communities. Agric Ecosyst Environ. 2016;218:141–9. https://doi.org/10.1016/j.agee.2015.11.018
  40. 40. Tursun N, Işık D gan, Demir Z, Jabran K. Use of living, mowed and soil-incorporated cover crops for weed control in apricot orchards. Agronomy. 2018;8(8):1–10. https://doi.org/10.3390/agronomy8080150
  41. 41. Hajjaj B EOA. Efficacy of different glyphosate rates of application on weed infestation in citrus orchards. Int J Environ, AgricBiotechnol. 2019;4(4):1273–75. https://doi.org/10.22161/ijeab.4455
  42. 42. Vahamidis P, Chachalis D, Akrivou A, Karanasios E, Ganopoulou M, Argiri A, et al. Weed species’ diversity and composition as shaped by the interaction of management, site and soil variables in Olive Groves of Southern Greece. Agronomy. 2024;14(3):640. https://doi.org/10.3390/agronomy14030640
  43. 43. Pratibha G, K. VR, Srinivas I, B. MKR, Arun K. S, Madhavi M, et al. Weed shift and community diversity in conservation and conventional agriculture systems in pigeonpea- castor systems under rainfed semi-arid tropics. Soil Tillage Res. 2021;212:105075. https://doi.org/10.1016/j.still.2021.105075
  44. 44. Plaza EH, Kozak M, Navarrete L, Gonzalez-Andujar JL. Tillage system did not affect weed diversity in a 23-year experiment in Mediterranean dryland. Agric Ecosyst Environ. 2011;140(1–2):102–05. https://doi.org/10.1016/j.agee.2010.11.016
  45. 45. Armengot L, Blanco-Moreno JM, Bàrberi P, Bocci G, Carlesi S, Aendekerk R, et al. Tillage as a driver of change in weed communities: a functional perspective. Agric Ecosyst Environ. 2016;222:276–85.
  46. 46. Khedr A, Lovett-Doust J. Determinants of floristic diversity and vegetation composition on the islands of Lake Burollos, Egypt. Appl Veg Sci. 2000;3(2):147–56. https://doi.org/10.2307/1478993
  47. 47. Robinson TMP, Gross KL. The impact of altered precipitation variability on annual weed species. Am J Bot. 2010;97(10):1625–629. https://doi.org/10.3732/ajb.1000125
  48. 48. Peters K, Breitsameter L, Gerowitt B. Impact of climate change on weeds in agriculture: A review. Vol. 34, Agron Sustain Dev. 2014;34(4):707–21. https://doi.org/10.1007/s13593-014-0245-2
  49. 49. Singh RP and MKS, Singh RK, Singh MK. Impact of climate and carbon dioxide change on weeds and their management-a review. Indi J Weed Scie. 2011;43(1-2):1-11.
  50. 50. Kumar V, Kumari A, Price AJ, Bana RS, Singh V, Bamboriya SD. impact of futuristic climate variables on weed biology and herbicidal efficacy: A review. Agronomy. 2023;13(2):559. https://doi.org/10.3390/agronomy13020559
  51. 51. Hooda VS, Chauhan BS. Unraveling the influence of environmental factors on fireweed (Senecio madagascariensis) germination and its management implications. Invasive Plant Sci Manag. 2024;17(1):9-16. https://doi.org/10.1017/inp.2024.8
  52. 52. Norris RF, Kogan M. Ecology of interactions between weeds and arthropods. Vol. 50, Ann Rev Entomol. 2005;50(1):479-503. https://doi.org/10.1146/annurev.ento.49.061802.123218
  53. 53. Haaland C, Naisbit RE, Bersier LF. Sown wildflower strips for insect conservation: A review. Insect ConservDivers. 2011;4(1):60-80. https://doi.org/10.1111/j.1752-4598.2010.00098.x
  54. 54. Mu J, Peng Y, Xi X, Wu X, Li G, Niklas KJ, et al. Artificial asymmetric warming reduces nectar yield in a Tibetan alpine species of Asteraceae. Ann Bot. 2015;116(6):899–906. https://doi.org/10.1093/aob/mcv042
  55. 55. Takkis K, Tscheulin T, Petanidou T. Differential effects of climate warming on the nectar secretion of early-and late-flowering mediterranean plants. Front Plant Sci. 2018;9:874. https://doi.org/10.3389/fpls.2018.00874
  56. 56. Borghi M, Perez de Souza L, Yoshida T, Fernie AR. Flowers and climate change : a metabolic perspective. New Phytol. 2019;224(4):1425–41. https://doi.org/10.1111/nph.16031
  57. 57. Shams SNU, Kupdhoni R, Arifur Rahman Khan M, Nahidul Islam M. Chenopodium album: A review of weed biology, status and the possibilities for biological control. TurkJ Weed Sci. 2023;26(2):144-58. https://dergipark.org.tr/tr/pub/tjws
  58. 58. Carvell C, Roy DB, Smart SM, Pywell RF, Preston CD, Goulson D. Declines in forage availability for bumblebees at a national scale. Biol Conserv. 2006;132(4):481–9. https://doi.org/10.1016/j.biocon.2006.05.008
  59. 59. Campbell AJ, Biesmeijer JC, Varma V, Wäckers FL. Realising multiple ecosystem services based on the response of three beneficial insect groups to floral traits and trait diversity. Basic Appl Ecol. 2012;13(4):363–70. https://doi.org/10.1016/j.baae.2012.04.003
  60. 60. Franin K, Barić B, Kuštera G. The role of ecological infrastructure on beneficial arthropods in vineyards. Span J Agric Res. 2016;14(1):1–10. https://doi.org/10.5424/sjar/2016141-7371
  61. 61. Spafford RD, Lortie CJ. Sweeping beauty: Is grassland arthropod community composition effectively estimated by sweep netting? Ecol Evol. 2013;3(10):3347–58. https://doi.org/10.1002/ece3.688
  62. 62. Popic TJ, Davila YC, Wardle GM. Evaluation of common methods for sampling invertebrate pollinator assemblages: net sampling out-perform pan traps. PLoS One. 2013;8(6):66665. https://doi.org/10.1371/journal.pone.0066665
  63. 63. Hwang JH, Yim MY, Kim SY, Ji SJ, Lee WH. Sweep sampling comparison of terrestrial insect communities associated with herbaceous stratum in the riparian zone of the Miho River, Korea. Insects. 2022;13(6):497. https://doi.org/10.3390/insects13060497
  64. 64. Pétremand G, Speight MCD, Fleury D, Castella E, Delabays N. Hoverfly diversity supported by vineyards and the importance of ground cover management. Bull Insectology. 2017;70(1):147–55.
  65. 65. Christine J, Guzmán G, Gómez JA, Cabezas JM, Entrenas JA, Winter S, et al. Diverging effects of landscape factors and inter-row management on the abundance of beneficial and herbivorous arthropods in andalusian vineyards (Spain). Insects. 2019;10(10):320. https://doi.org/10.3390/insects10100320
  66. 66. Eckert M, Mathulwe LL, Gaigher R, Joubert-van der Merwe L, Pryke JS. Native cover crops enhance arthropod diversity in vineyards of the Cape Floristic Region. J Insect Conserv. 2020;24(1):133–49. https://doi.org/10.1007/s10841-019-00196-0
  67. 67. Wan NF, Ji XY, Jiang JX. Testing the enemies hypothesis in peach orchards in two different geographic areas in eastern China: The role of ground cover vegetation. PLoS One. 2014;9(6):99850. https://doi.org/10.1371/journal.pone.0099850
  68. 68. Kleiman B, Koptur S. Weeds enhance insect diversity and abundance and may improve soil conditions in mango cultivation of South Florida. Insects. 2023;14(1):65. https://doi.org/10.3390/insects14010065
  69. 69. Nicholls C, Altieri M, Nicholls CI, Altieri MA. Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron Sustain Dev. 2013;33(2):257–74. https://doi.org/10.1007/s13593-012-0092-y
  70. 70. Rocher L, Melloul E, Blight O, Bischoff A. Effect of spontaneous vegetation on beneficial arthropods in Mediterranean vineyards. Basic ApplEcol. 2023;359:126–35. https://doi.org/10.1016/j.baae.2022.11.009
  71. 71. Bengtsson J, Ahnström J, Weibull AC. The effects of organic agriculture on biodiversity and abundance: A meta-analysis. JAppl Ecol. 2005;42(2):261–9. https://doi.org/10.1111/j.1365-2664.2005.01005.x
  72. 72. Rodríguez E, González B, Campos M. Effects of cereal cover crops on the main insect pests in Spanish olive orchards. J Pest Sci. 2009;82(2):179–85. https://doi.org/10.1007/s10340-008-0237-6
  73. 73. Holopainen JK, Virjamo V, Ghimire RP, Blande JD, Julkunen-Tiitto R, Kivimäenpää M. Climate change effects on secondary compounds of forest trees in the Northern Hemisphere. Frontiers in Plant Science. 2018;9:1445. https://doi.org/10.3389/fpls.2018.01445
  74. 74. Blubaugh CK, Asplund JS, Smith OM, Snyder WE. Does the “Enemies Hypothesis” operate by enhancing natural enemy evenness? Biol Control. 2021;152:104464. https://doi.org/10.1016/j.biocontrol.2020.104464
  75. 75. Wan NF, Ji XY, Deng JY, Kiær L, Cai YM, Jiang JX. Plant diversification promotes biocontrol services in peach orchards by shaping the ecological niches of insect herbivores and their natural enemies. Ecol Indic. 2019;999:387-92. https://doi.org/10.1016/j.ecolind.2017.11.047
  76. 76. Skendžić S, Zovko M, Živković IP, Lešić V, Lemić D. The impact of climate change on agricultural insect pests. Insects. 2021;12(5):440. https://doi.org/10.3390/insects12050440

Downloads

Download data is not yet available.