Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Status of acaricide resistance in major phytophagous mites infesting horticultural crops - mechanisms and management: A review

DOI
https://doi.org/10.14719/pst.7877
Submitted
22 February 2025
Published
07-07-2025
Versions

Abstract

The persistent presence of mite pests poses an ongoing challenge to the sustainable cultivation of numerous economically important crops on a global scale. Acaricide application stands as a key element in management practices to date. Unfortunately, the relentless use of acaricides in the field has led to the development of resistance among mite populations to several acaricidal compounds. The advancement and application of reverse genetic tools, such as RNAi, have provided valuable insights into the molecular genetic mechanisms underlying resistance, particularly in model species like Tetranychus urticae, although such understanding remains limited in many agriculturally important phytophagous mite pests. This review emphasizes the status of acaricide resistance of major phytophagous mites, shedding light on the physiological and intricate molecular mechanisms underlying this phenomenon, while RNAi represents a promising research tool for studying gene function and resistance mechanisms in mites, its practical application in overcoming acaricide resistance remains in the experimental phase due to delivery challenges and species-specific variability in response.

References

  1. 1. Friedrich M, Tautz D. Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods. Nature. 1995;376(6536):165-7. https://doi.org/10.1038/376165a0
  2. 2. Boore JL, Collins TM, Stanton D, Daehler LL, Brown WM. Deducing the pattern of arthropod phytogeny from mitochondrial DNA rearrangements. Nature. 1995;376(6536):163-5.
  3. 3. J, Shen G, Christiaens O, Smagghe G, He L, Wang J. Beyond insects: current status and achievements of RNA interference in mite pests and future perspectives. Pest Manag Sci. 2018;74(12):2680-7. https://doi.org/10.1002/ps.5071
  4. 4. Jeppson LR, Keifer HH, Baker EW. Mites injurious to economic plants. Berkeley: Univ of California Press; 1975.
  5. 5. Devi M, Challa N, Mahesh G. Important mite pests of temperate and sub-tropical crops: A review. J Entomol Zool Stud. 2019;7:1378-84.
  6. 6. Lindquist EE, Amrine JW. Systematics, diagnoses for major taxa and keys to families and genera with species on plants of economic importance. In: World Crop Pests. 1996;6:33-87. https://doi.org/10.1016/S1572-4379(96)80004-2
  7. 7. Messelink GJ. Persistent and emerging pests in greenhouse crops: Is there a need for new natural enemies. IOBC/WPRS Bull. 2014;102:143-50.
  8. 8. Beard JJ, Ochoa R, Bauchan GL, Trice M, Redford AJ, Walters T, et al. Flat mites of the world - Edition 2. World Wide Web. 2012;1(1):1-80.
  9. 9. Migeon A, Nouguier E, Dorkeld F. Spider Mites Web: a comprehensive database for the Tetranychidae. In: Trends in Acarology: Proc 12th Int Congr. 2010;557-60.
  10. 10. Helle W, Sabelis MW, editors. Spider mites: their biology, natural enemies and control. Amsterdam: Elsevier. 1985:141-60.
  11. 11. Adesanya AW, Lavine MD, Moural TW, Lavine LC, Zhu F, Walsh DB. Mechanisms and management of acaricide resistance for Tetranychus urticae in agroecosystems. J Pest Sci. 2021;94:639-63. https://doi.org/10.1007/s10340-021-01342-x
  12. 12. Keena MA, Granett J. Cyhexatin and propargite resistance in populations of spider mites (Acari: Tetranychidae) from California almonds. J Econ Entomol. 1987;80(3):560-4. https://doi.org/10.1093/jee/80.3.560
  13. 13. Grafton-Cardwell EE, Granett J, Normington SM. Influence of dispersal from almonds on the population dynamics and acaricide resistance frequencies of spider mites infesting neighboring cotton. Exp Appl Acarol. 1991;10:187-212. https://doi.org/10.1007/BF01198650
  14. 14. Kishimoto H. Species composition and seasonal occurrence of spider mites (Acari: Tetranychidae) and their predators in Japanese pear orchards with different agrochemical spraying programs. Appl Entomol Zool. 2002;37(4):603-15. https://doi.org/10.1303/aez.2002.603
  15. 15. Lee SY, Ahn KS, Kim CS, Shin SC, Kim GH. Inheritance and stability of etoxazole resistance in twospotted spider mite Tetranychus urticae and its cross resistance. Korean J Appl Entomol. 2004;43:43-8. https://doi.org/10.5555/20043148045
  16. 16. Suh E, Koh SH, Lee JH, Shin KI, Cho K. Evaluation of resistance pattern to fenpyroximate and pyridaben in Tetranychus urticae collected from greenhouses and apple orchards using lethal concentration-slope relationship. Exp Appl Acarol. 2006;38:151-65. https://doi.org/10.1007/s10493-006-0009-z
  17. 17. Hoy MA. Agricultural acarology: introduction to integrated mite management. Boca Raton: CRC Press; 2011.
  18. 18. Meck ED, Kennedy GG, Walgenbach JF. Effect of Tetranychus urticae (Acari: Tetranychidae) on yield, quality and economics of tomato production. Crop Prot. 2013;52:84-90. https://doi.org/10.1016/j.cropro.2013.05.011
  19. 19. Piraneo TG, Bull J, Morales MA, Lavine LC, Walsh DB, Zhu F. Molecular mechanisms of Tetranychus urticae chemical adaptation in hop fields. Sci Rep. 2015;5(1):17090. https://doi.org/10.1038/srep17090
  20. 20. Bi JL, Niu ZM, Yu L, Toscano NC. Resistance status of the carmine spider mite Tetranychus cinnabarinus and the two-spotted spider mite Tetranychus urticae to selected acaricides on strawberries. Insect Sci. 2016;23(1):88-93. https://doi.org/10.1111/1744-7917.12190
  21. 21. Adesanya AW, Franco E, Walsh DB, Lavine M, Lavine L, Zhu F. Phenotypic and genotypic plasticity of acaricide resistance in populations of Tetranychus urticae (Acari: Tetranychidae) on peppermint and silage corn in the Pacific Northwest. J Econ Entomol. 2018;111(6):2831-43. https://doi.org/10.1093/jee/toy303
  22. 22. Patil CM, Udikeri SS, Karabhantanal S. Grape infesting mite Tetranychus urticae Koch. Resistance to acaricides. Pak J Zool. 2020;52(3). https://doi.org/10.17582/journal.pjz/20180511170526
  23. 23. Zhen CA, Mahtumgul H, Zhang S, Li DP, Zhang L, Cheng SH, Gao X. Current status of insecticide resistance in cotton spider mites and resistance management strategies. 2023. https://doi.org/10.5555/20230487662
  24. 24. Sato ME, Veronez B, Stocco RS, Queiroz MCV, Gallego R. Spiromesifen resistance in Tetranychus urticae (Acari: Tetranychidae): selection, stability and monitoring. Crop Prot. 2016;89:278-83. https://doi.org/10.1016/j.cropro.2016.08.003
  25. 25. Zamani P, Sajedi R, Ghadamyari M, Memarizadeh N. Resistance mechanisms to chlorpyrifos in Iranian populations of the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae). J Agric Sci Technol. 2014;16(2):277-89.
  26. 26. Demaeght P, Osborne EJ, Odman-Naresh J, Grbić M, Nauen R, Merzendorfer H, et al. High resolution genetic mapping uncovers chitin synthase-1 as the target-site of the structurally diverse mite growth inhibitors clofentezine, hexythiazox and etoxazole in Tetranychus urticae. Insect Biochem Mol Biol. 2014;51:52-61. https://doi.org/10.1016/j.ibmb.2014.05.004
  27. 27. Sugimoto N, Osakabe M. Cross-resistance between cyenopyrafen and pyridaben in the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae). Pest Manag Sci. 2014;70(7):1090-6. https://doi.org/10.1002/ps.3652
  28. 28. Sato ME, Miyata T, Da Silva M, Raga A, De Souza Filho MF. Selections for fenpyroximate resistance and susceptibility and inheritance, cross-resistance and stability of fenpyroximate resistance in Tetranychus urticae Koch (Acari: Tetranychidae). Appl Entomol Zool. 2004;39(2):293-302. https://doi.org/10.1303/aez.2004.293
  29. 29. Van Pottelberge S, Van Leeuwen T, Khajehali J, Tirry L. Genetic and biochemical analysis of a laboratory-selected spirodiclofen-resistant strain of Tetranychus urticae Koch (Acari: Tetranychidae). Pest Manag Sci. 2009;65(4):358-66. https://doi.org/10.1002/ps.1698
  30. 30. Pan W, Luo P, Fu R, Gao P, Long Z, Xu F, et al. Acaricidal activity against Panonychus citri of a ginkgolic acid from the external seed coat of Ginkgo biloba. Pest Manag Sci. 2006;62(3):283-7. https://doi.org/10.1002/ps.1152
  31. 31. Vassiliou VA, Papadoulis G. First record of the citrus red mite Panonychus citri in Cyprus. Phytoparasitica. 2009;37:99-100. https://doi.org/10.1007/s12600-008-0017-0
  32. 32. Zhang ZQ. Mites of greenhouses: identification, biology and control. 2003; CABI.
  33. 33. Vacante V. Citrus mites: identification, bionomy and control. 2010; CABI.
  34. 34. Pan D, Xia MH, Luo QJ, Liu XY, Li CZ, Yuan GR, et al. Resistance of Panonychus citri (McGregor) (Acari: Tetranychidae) to pyridaben in China: monitoring and fitness costs. Pest Manag Sci. 2023;79(3):996-1004. https://doi.org/10.1002/ps.7270
  35. 35. Sun L, Fan GC, Zheng YQ, Chen DS, Zheng HQ, Zhang H, et al. Spirodiclofen toxicity in Tetranychus urticae and safety to natural enemies Proprioseiopsis asetus and Amblyseius swirskii. Syst Appl Acarol. 2024;29(9):1231-43.
  36. 36. Pan D, Dou W, Yuan GR, Zhou QH, Wang JJ. Monitoring the resistance of the citrus red mite (Acari: Tetranychidae) to four acaricides in different citrus orchards in China. J Econ Entomol. 2020;113(2):918-23. https://doi.org/10.1093/jee/toz335
  37. 37. Joshi NK, Phan NT, Biddinger DJ. Management of Panonychus ulmi with various miticides and insecticides and their toxicity to predatory mites conserved for biological mite control in Eastern US apple orchards. Insects. 2023;14(3):228. https://doi.org/10.3390/insects14030228
  38. 38. Rameshgar F, Khajehali J, Nauen R, Dermauw W, Van Leeuwen T. Characterization of abamectin resistance in Iranian populations of European red mite, Panonychus ulmi Koch (Acari: Tetranychidae). Crop Prot. 2019;125:104903. https://doi.org/10.1016/j.cropro.2019.104903
  39. 39. Kramer T, Nauen R. Monitoring of spirodiclofen susceptibility in field populations of European red mites, Panonychus ulmi (Koch) (Acari: Tetranychidae) and the cross-resistance pattern of a laboratory-selected strain. Pest Manag Sci. 2011;67(10):1285-93. https://doi.org/10.1002/ps.2184
  40. 40. Kumral NA, Susurluk H, Gençer NS, Gürkan MO. Resistance to chlorpyrifos and lambda-cyhalothrin along with detoxifying enzyme activities in field-collected female populations of European red mite. Phytoparasitica. 2009;37:7-15. https://doi.org/10.1007/s12600-008-0007-2
  41. 41. Auger P, Bonafos R, Guichou S, Kreiter S. Resistance to fenazaquin and tebufenpyrad in Panonychus ulmi Koch (Acari: Tetranychidae) populations from South of France apple orchards. Crop Prot. 2003;22(8):1039-44. https://doi.org/10.1016/S0261-2194(03)00136-4
  42. 42. Cranham JE. Pesticide resistance in Tetranychidae. In: Helle W, Sabelis MW, editors. Spider mites: their biology, natural enemies and control. 1985:405-21.
  43. 43. Katsavou E, Vlogiannitis S, Karp-Tatham E, Blake DP, Ilias A, Strube C, et al. Identification and geographical distribution of pyrethroid resistance mutations in the poultry red mite Dermanyssus gallinae. Pest Manag Sci. 2020;76(1):125-33. https://doi.org/10.1002/ps.5582
  44. 44. Agwunobi DO, Yu Z, Liu J. A retrospective review on ixodid tick resistance against synthetic acaricides: implications and perspectives for future resistance prevention and mitigation. Pestic Biochem Physiol. 2021;173:104776. https://doi.org/10.1016/j.pestbp.2021.104776
  45. 45. Enayati AA, Ranson H, Hemingway J. Insect glutathione transferases and insecticide resistance. Insect Mol Biol. 2005;14(1):3-8. https://doi.org/10.1111/j.1365-2583.2004.00529.x
  46. 46. Gilbert LI, Iatrou K, Gill SS. Comprehensive molecular insect science. 2005.
  47. 47. Oakeshott J, Claudianos C, Campbell PM, Newcomb RD, Russell R. Biochemical genetics and genomics of insect esterases. In: Gilbert LI, Iatrou K, Gill SS, editors. Comprehensive molecular insect science. 2010:5.
  48. 48. Grbić M, Van Leeuwen T, Clark RM, Rombauts S, Rouzé P, Grbić V, et al. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature. 2011;479(7374):487-92. https://doi.org/10.1038/nature10640
  49. 49. Van Nieuwenhuyse P, Van Leeuwen T, Khajehali J, Vanholme B, Tirry L. Mutations in the mitochondrial cytochrome b of Tetranychus urticae Koch (Acari: Tetranychidae) confer cross-resistance between bifenazate and acequinocyl. Pest Manag Sci. 2009;65(4):404-12. https://doi.org/10.1002/ps.1705
  50. 50. Gulati R. Eco-friendly management of phytophagous mites. In: Peshin R, Dhawan AK, editors. Integrated Pest Management. 2014:461-91. Academic Press.
  51. 51. Van Leeuwen T, Vanholme B, Van Pottelberge S, Van Nieuwenhuyse P, Nauen R, Tirry L, Denholm I. Mitochondrial heteroplasmy and the evolution of insecticide resistance: non-Mendelian inheritance in action. Proc Natl Acad Sci U S A. 2008;105(16):5980-5. https://doi.org/10.1073/pnas.0802224105
  52. 52. Kwon DH, Clark JM, Lee SH. Extensive gene duplication of acetylcholinesterase associated with organophosphate resistance in the two-spotted spider mite. Insect Mol Biol. 2010;19(2):195-204. https://doi.org/10.1111/j.1365-2583.2009.00958.x
  53. 53. Khajehali J, Van Leeuwen T, Grispou M, Morou E, Alout H, Weill M, et al. Acetylcholinesterase point mutations in European strains of Tetranychus urticae (Acari: Tetranychidae) resistant to organophosphates. Pest Manag Sci. 2010;66(2):220-8. https://doi.org/10.1002/ps.1884
  54. 54. De Rouck S, Inak E, Dermauw W, Van Leeuwen T. A review of the molecular mechanisms of acaricide resistance in mites and ticks. Insect Biochem Mol Biol. 2023;103981. https://doi.org/10.1016/j.ibmb.2023.103981
  55. 55. Heikal HM, Bhullar MB, Kaur P. Acaricide resistance in field collected two-spotted spider mite, Tetranychus urticae from okra in Punjab. Indian J Ecol. 2020;47(2):590-3. ISSN: 0304-5250
  56. 56. Vassiliou VA, Kitsis P. Acaricide resistance in Tetranychus urticae (Acari: Tetranychidae) populations from Cyprus. J Econ Entomol. 2013;106(4):1848-54. https://doi.org/10.1603/ec12369
  57. 57. Cho SW, Lee J, Carroll D, Kim JS, Lee J. Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9–sgRNA ribonucleoproteins. Genetics. 2013;195(3):1177-80. https://doi.org/10.1534/genetics.113.155853
  58. 58. Naveena K, Shanthi M, Chinniah C, Jayaraj J, Ramasubramanian T, Mini ML, Renuka R. Magnitude of resistance and metabolism of acaricides in two-spotted spider mite, Tetranychus urticae Koch on vegetables in Southern districts of Tamil Nadu. Indian J Agric Res. 2022;1:8. https://doi.org/10.18805/IJARe.A-5932
  59. 59. Van Pottelberge S, Van Leeuwen T, Khajehali J, Tirry L. Genetic and biochemical analysis of a laboratory-selected spirodiclofen-resistant strain of Tetranychus urticae Koch (Acari: Tetranychidae). Pest Manag Sci. 2009;65(4):358-66. https://doi.org/10.1002/ps.1698
  60. 60. Gotoh T, Kitashima Y, Adachi I. Geographic variation of susceptibility to acaricides in two spider mite species, Panonychus osmanthi and P. citri (Acari: Tetranychidae) in Japan. Int J Acarol. 2004;30(1):55-61. https://doi.org/10.1080/01647950408684369
  61. 61. Döker İ, Kazak C. Detecting acaricide resistance in Turkish populations of Panonychus citri McGregor (Acari: Tetranychidae). Syst Appl Acarol. 2012;17(4):368-77. https://doi.org/10.11158/saa.17.4.4
  62. 62. Ouyang Y, Montez GH, Liu L, Grafton-Cardwell EE. Spirodiclofen and spirotetramat bioassays for monitoring resistance in citrus red mite, Panonychus citri (Acari: Tetranychidae). Pest Manag Sci. 2012;68(5):781-7. https://doi.org/10.1002/ps.2326
  63. 63. Yamamoto A, Yoneda A, Hatano R, Asada A. Genetic analysis of hexythiazox resistance in the citrus red mite, Panonychus citri (McGregor). J Pestic Sci. 1995;20:513-9. https://doi.org/10.1584/jpestics.20.513
  64. 64. Van Leeuwen T, Van Nieuwenhuyse P, Vanholme B, Dermauw W, Nauen R, Tirry L. Parallel evolution of cytochrome b mediated bifenazate resistance in the citrus red mite Panonychus citri. Insect Mol Biol. 2011;20(1):135-40. https://doi.org/10.1111/j.1365-2583.2010.01040.x
  65. 65. Döker İ, Kazak C, Ay R. Resistance status and detoxification enzyme activity in ten populations of Panonychus citri (Acari: Tetranychidae) from Turkey. Crop Prot. 2021;141. https://doi.org/10.1016/j.cropro.2020.105488
  66. 66. Hu J, Wang C, Wang J, You Y, Chen F. Monitoring of resistance to spirodiclofen and five other acaricides in Panonychus citri collected from Chinese citrus orchards. Pest Manag Sci. 2010;66(9):1025-30. https://doi.org/10.1002/ps.1978
  67. 67. Yu DY, Wang CF, Yu Y, Huang YQ, Yao JA, Hu JF. Laboratory selection for spirodiclofen resistance and cross-resistance in Panonychus citri. Afr J Biotechnol. 2011;10(17):3424-9. https://doi.org/10.5897/AJB10.2417
  68. 68. Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W, Tirry L. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect Biochem Mol Biol. 2010;40(8):563-72. https://doi.org/10.1016/j.ibmb.2010.05.008
  69. 69. Bajda S, Dermauw W, Greenhalgh R, Nauen R, Tirry L, Clark RM, Van Leeuwen T. Transcriptome profiling of a spirodiclofen susceptible and resistant strain of the European red mite Panonychus ulmi using strand-specific RNA-seq. BMC Genomics. 2015;16:1-26. https://doi.org/10.1186/s12864-015-2157-1
  70. 70. Newcomer EJ, Dean FP. Orchard mites resistant to parathion in Washington. J Econ Entomol. 1952;45(6):1076-8. https://doi.org/10.1093/jee/45.6.1076a
  71. 71. Pree DJ, Bittner LA, Whitty KJ. Characterization of resistance to clofentezine in populations of European red mite from orchards in Ontario. Experimental & applied acarology. 2002;27:181-93. https://doi.org/10.1023/a:1021624421016
  72. 72. Wang H, Wang P, Si S, Luan B, Wang Y. Resistance monitoring of different Panonychus ulmi populations to four acaricides in Shandong Province. Journal of Fruit Science. 2012;29(6):1083-7. https://doi.org/10.5555/20133087350
  73. 73. Nauen R, Stumpf N, Elbert A, Zebitz CPW, Kraus W. Acaricide toxicity and resistance in larvae of different strains of Tetranychus urticae and Panonychus ulmi (Acari: Tetranychidae). Pest Management Science. 2001;57(3):253-61. https://doi.org/10.1002/ps.280
  74. 74. Mota-Sanchez D, Wise JC. The arthropod pesticide resistance database. Michigan State University. 2021.
  75. 75. Taylor M, Feyereisen R. Molecular biology and evolution of resistance of toxicants. Molecular biology and evolution. 1996;13(6):719-34. https://doi.org/10.1093/oxfordjournals.molbev.a025633
  76. 76. Roush R, Tabashnik BE. Pesticide resistance in arthropods. Springer Science & Business Media. 2012.
  77. 77. Feyereisen R. Molecular biology of insecticide resistance. Toxicology letters. 1995;82:83-90. https://doi.org/10.1016/0378-4274(95)03470-6
  78. 78. Van Leeuwen T, Vontas J, Tsagkarakou A, Tirry L. Mechanisms of acaricide resistance in the two-spotted spider mite Tetranychus urticae. Biorational Control of Arthropod Pests: Application and Resistance Management. 2009;347-93. https://doi.org/10.1007/978-90-481-2316-2_14
  79. 79. Feyereisen R, Dermauw W, Van Leeuwen T. Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods. Pesticide biochemistry and physiology. 2015;121:61-77. https://doi.org/10.1016/j.pestbp.2015.01.004
  80. 80. Adesanya AW, Beauchamp MJ, Lavine MD, Lavine LC, Zhu F, Walsh DB. Physiological resistance alters behavioral response of Tetranychus urticae to acaricides. Scientific reports. 2019;9(1):19308. https://doi.org/10.1038/s41598-019-55708-4
  81. 81. Gould F. Role of behavior in the evolution of insect adaptation to insecticides and resistant host plants. Bulletin of the ESA. 1984;30(4):34-41. https://doi.org/10.1093/besa/30.4.34
  82. 82. Sparks TC, Lockwood JA, Byford RL, Graves JB, Leonard BR. The role of behavior in insecticide resistance. Pesticide Science. 1989;26(4):383-99. https://doi.org/10.1002/ps.2780260406
  83. 83. Karaağaç SU. Insecticide resistance. London, UK: IntechOpen. 2012.
  84. 84. Davis DW. Some effects of DDT on spider mites. Journal of Economic Entomology. 1952;45(6):1011-9. https://doi.org/10.1093/jee/45.6.1011
  85. 85. Allison WE, Doty AE, Hardy JL, Kenaga EE, Whitney WK. Laboratory evaluations of Plictran® miticide against two-spotted spider mites. Journal of economic entomology. 1968;61(5):1254-7. https://doi.org/10.1093/jee/61.5.1254
  86. 86. Fisher RW, Morgan NG. The effect on the two-spotted spider mite, Tetranychus urticae, of dicofol concentration and deposit distribution on the leaf surface. The Canadian Entomologist. 1968;100(7):777-81. https://doi.org/10.4039/Ent100777-7
  87. 87. Gemrich EG, Lamar Lee B, Tripp ML, VandeStreek E. Relationship between formamidine structure and insecticidal, miticidal and ovicidal activity. Journal of Economic Entomology. 1976;69(3):301-6. https://doi.org/10.1093/jee/69.3.301
  88. 88. Franklin EJ, Knowles CO. Influence of formamidines on twospotted spider mite (Acari: Tetranychidae) dispersal behavior. Journal of economic entomology. 1984;77(2):318-23. https://doi.org/10.1093/jee/77.2.318
  89. 89. Alm SR, Reichard DL, Hall FR. Effects of spray drop size and distribution of drops containing bifenthrin on Tetranychus urticae (Acari: Tetranychidae). Journal of Economic Entomology. 1987;80(2):517-20. https://doi.org/10.1093/jee/80.2.517
  90. 90. Margolies DC, Kennedy GG. Fenvalerate-induced aerial dispersal by the twospotted spider mite. Entomologia experimentalis et applicata. 1988;46(3):233-40. https://doi.org/10.1111/j.1570-7458.1988.tb01117.x
  91. 91. Zalucki MP, Furlong MJ. Behavior as a mechanism of insecticide resistance: evaluation of the evidence. Current opinion in insect science. 2017;21:19-25.
  92. 92. Hubbard CB, Murillo AC. Behavioral resistance to insecticides: current understanding, challenges and future directions. Current Opinion in Insect Science. 2024;63:101177.
  93. 93. Balabanidou V, Grigoraki L, Vontas J. Insect cuticle: a critical determinant of insecticide resistance. Curr Opin Insect Sci. 2018;27:68-74. https://doi.org/10.1016/j.cois.2018.03.001
  94. 94. Dang K, Doggett SL, Veera Singham G, Lee CY. Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp. (Hemiptera: Cimicidae). Parasites & vectors. 2017;10:1-31. https://doi.org/10.1186/s13071-017-2232-3
  95. 95. Henneberry TJ, Adams JR, Cantwell GE. Comparative electron microscopy of the integment of organophosphate resistant and non-resistant two-spotted spider mites (Tetranychus telarius). Acarologia. 1964;6:414-9.
  96. 96. Hirai K, Miyata T, Saito T. Penetration of 32P-dimethoate into organophosphate resistant and susceptible citrus red mite, Panonychus citri (Acarina: Tetranychidae). Applied entomology and zoology. 1973;8(3):183-90. https://doi.org/10.1303/aez.8.183
  97. 97. Adesanya AW, Cardenas A, Lavine MD, Walsh DB, Lavine LC, Zhu F. RNA interference of NADPH-cytochrome P450 reductase increases susceptibilities to multiple acaricides in Tetranychus urticae. Pesticide biochemistry and physiology. 2020;165:104550. https://doi.org/10.1016/j.pestbp.2020.02.016
  98. 98. Devorshak C, Roe RM. The role of esterases in insecticide resistance. Reviews in Toxicology. 1999;2(7):501-37. https://doi.org/10.5555/20013027035
  99. 99. Devonshire AL, Field LM. Gene amplification and insecticide resistance. Annual review of entomology. 1991;36(1):1-21. https://doi.org/10.1146/annurev.en.36.010191.000245
  100. 100. Hemingway J, Hawkes N, Prapanthadara LA, Jayawardenal KI, Ranson H. The role of gene splicing, gene amplification and regulation in mosquito insecticide resistance. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 1998;353(1376):1695-9. https://doi.org/10.1098/rstb.1998.0320
  101. 101. Pickett CB, Lu AY. Glutathione S-transferases: gene structure, regulation and biological function. Annual review of biochemistry. 1989;58(1):743-64. https://doi.org/10.1146/annurev.bi.58.070189.003523
  102. 102. Prapanthadara L, Hemingway J, Ketteran AJ. Partial purification and characterization of glutathione S-transferase involved in DTT resistance from the mosquito Anopheles gambiae. Pest Biochem Physiol. 1993;47:119-33. https://doi.org/10.1006/pest.1993.1070
  103. 103. Feyereisen R. Insect P450 enzymes. Annual review of entomology. 1999;44(1):507-33. https://doi.org/10.1146/annurev.ento.44.1.507
  104. 104. Van Leeuwen T, Tirry L. Esterase-mediated bifenthrin resistance in a multiresistant strain of the two-spotted spider mite, Tetranychus urticae. Pest Management Science. 2007;63(2):150-6. https://doi.org/10.1002/ps.1314
  105. 105. Riga M, Tsakireli D, Ilias A, Morou E, Myridakis A, Stephanou EG, et al. Abamectin is metabolized by CYP392A16, a cytochrome P450 associated with high levels of acaricide resistance in Tetranychus urticae. Insect biochemistry and molecular biology. 2014;46:43-53. https://doi.org/10.1016/j.ibmb.2014.01.006
  106. 106. Xu D, Zhang Y, Zhang Y, Wu Q, Guo Z, Xie W, et al. Transcriptome profiling and functional analysis suggest that the constitutive overexpression of four cytochrome P450s confers resistance to abamectin in Tetranychus urticae from China. Pest Management Science. 2021;77(3):1204-13. https://doi.org/10.1002/ps.6130
  107. 107. Ilias A, Vontas J, Tsagkarakou A. Global distribution and origin of target site insecticide resistance mutations in Tetranychus urticae. Insect Biochemistry and Molecular Biology. 2014;48:17-28. https://doi.org/10.1016/j.ibmb.2014.02.006
  108. 108. Stegeman JJ, Livingstone DR. Forms and functions of cytochrome P450. Comparative biochemistry and physiology. Part C, Pharmacology, Toxicology & Endocrinology. 1998;121(1-3):1-3. https://doi.org/10.1016/S0742-8413(98)10025-7
  109. 109. Nelson DR. Cytochrome P450 nomenclature. Methods in Molecular Biology. 1998;107:15-24. https://doi.org/10.1385/0-89603-519-0:15
  110. 110. Van Leeuwen T, Dermauw W. The molecular evolution of xenobiotic metabolism and resistance in chelicerate mites. Annual Review of Entomology. 2016;61:475-98. https://doi.org/10.1146/annurev-ento-010715-023907
  111. 111. Dermauw W, Jonckheere W, Riga M, Livadaras I, Vontas J, Van Leeuwen T. Targeted mutagenesis using CRISPR-Cas9 in the chelicerate herbivore Tetranychus urticae. Insect biochemistry and molecular biology. 2020;120:103347. https://doi.org/10.1016/j.ibmb.2020.103347
  112. 112. Dermauw W, Wybouw N, Rombauts S, Menten B, Vontas J, Grbić M, et al. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. Proceedings of the National Academy of Sciences. 2013;110(2):E113-22. https://doi.org/10.1073/pnas.1213214110
  113. 113. Fotoukkiaii SM, Wybouw N, Kurlovs AH, Tsakireli D, Pergantis SA, Clark RM, et al. High-resolution genetic mapping reveals cis-regulatory and copy number variation in loci associated with cytochrome P450-mediated detoxification in a generalist arthropod pest. PLoS Genetics. 2021;17(6):e1009422. https://doi.org/10.1371/journal.pgen.1009422
  114. 114. De Beer B, Villacis-Perez E, Khalighi M, Saalwaechter C, Vandenhole M, Jonckheere W, et al. QTL mapping suggests that both cytochrome P450-mediated detoxification and target-site resistance are involved in fenbutatin oxide resistance in Tetranychus urticae. Insect Biochemistry and Molecular Biology. 2022;145:103757. https://doi.org/10.1016/j.ibmb.2022.103757
  115. 115. Khalighi M, Dermauw W, Wybouw N, Bajda S, Osakabe M, Tirry L, Van Leeuwen T. Molecular analysis of cyenopyrafen resistance in the two-spotted spider mite Tetranychus urticae. Pest Management Science. 2016;72(1):103-12. https://doi.org/10.1002/ps.4071
  116. 116. Xue W, Wybouw N, Van Leeuwen T. The G126S substitution in mitochondrially encoded cytochrome b does not confer bifenazate resistance in the spider mite Tetranychus urticae. Experimental and Applied Acarology. 2021;85:161-72. https://doi.org/10.1007/s10493-021-00668-6
  117. 117. Wybouw N, Kosterlitz O, Kurlovs AH, Bajda S, Greenhalgh R, Snoeck S, et al. Long-term population studies uncover the genome structure and genetic basis of xenobiotic and host plant adaptation in the herbivore Tetranychus urticae. Genetics. 2019;211(4):1409-27. https://doi.org/10.1534/genetics.118.301803
  118. 118. Sharma RK, Bhullar MB, Singh S, Jindal V. Molecular analysis of fenazaquin selected resistant strain of two-spotted spider mite Tetranychus urticae Koch. 2018. ISSN: 0975-0967
  119. 119. Ding TB, Niu JZ, Yang LH, Zhang K, Dou W, Wang JJ. Transcription profiling of two cytochrome P450 genes potentially involved in acaricide metabolism in citrus red mite Panonychus citri. Pesticide Biochemistry and Physiology. 2013;106(1-2):28-37. https://doi.org/10.1016/j.pestbp.2013.03.009
  120. 120. Surbhi SG, Gupta SK. Acaricide resistance mechanisms and monitoring tools available for Rhipicephalus (Boophilus) microplus. Pharma Innovation Journal. 2018;7(7):398-405.
  121. 121. Pavlidi N, Vontas J, Van Leeuwen T. The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. Current Opinion in Insect Science. 2018;27:97-102. https://doi.org/10.1016/j.cois.2018.04.007
  122. 122. Hernandez EP, Kusakisako K, Talactac MR, Galay RL, Hatta T, Fujisaki K, et al. Glutathione S-transferases play a role in the detoxification of flumethrin and chlorpyrifos in Haemaphysalis longicornis. Parasites & Vectors. 2018;11:1-14. https://doi.org/10.1186/s13071-018-3044-9
  123. 123. Pavlidi N, Khalighi M, Myridakis A, Dermauw W, Wybouw N, Tsakireli D, et al. A glutathione-S-transferase (TuGSTd05) associated with acaricide resistance in Tetranychus urticae directly metabolizes the complex II inhibitor cyflumetofen. Insect Biochemistry and Molecular Biology. 2017;80:101-15. https://doi.org/10.1016/j.ibmb.2016.12.003
  124. 124. Liao CY, Xia WK, Feng YC, Li G, Liu H, Dou W, Wang JJ. Characterization and functional analysis of a novel glutathione S-transferase gene potentially associated with the abamectin resistance in Panonychus citri (McGregor). Pesticide Biochemistry and Physiology. 2016;132:72-80. https://doi.org/10.1016/j.pestbp.2015.11.002
  125. 125. Feng K, Yang Y, Wen X, Ou S, Zhang P, Yu Q, et al. Stability of cyflumetofen resistance in Tetranychus cinnabarinus and its correlation with glutathione-S-transferase gene expression. Pest Management Science. 2019;75(10):2802-9. https://doi.org/10.1002/ps.5392
  126. 126. Zhang Y, Feng K, Hu J, Shi L, Wei P, Xu Z, et al. A microRNA-1 gene, tci-miR-1-3p, is involved in cyflumetofen resistance by targeting a glutathione S-transferase gene, TCGSTM4, in Tetranychus cinnabarinus. Insect Molecular Biology. 2018;27(3):352-64. https://doi.org/10.1111/imb.12375
  127. 127. De Beer B, Vandenhole M, Njiru C, Spanoghe P, Dermauw W, Van Leeuwen T. High-resolution genetic mapping combined with transcriptome profiling reveals that both target-site resistance and increased detoxification confer resistance to the pyrethroid bifenthrin in the spider mite Tetranychus urticae. Biology. 2022;11(11):1630. https://doi.org/10.3390/biology11111630
  128. 128. Wei P, Shi L, Shen G, Xu Z, Liu J, Pan Y, He L. Characteristics of carboxylesterase genes and their expression-level between acaricide-susceptible and resistant Tetranychus cinnabarinus (Boisduval). Pesticide Biochemistry and Physiology. 2016;131:87-95. https://doi.org/10.1016/j.pestbp.2015.12.007
  129. 129. Wei P, Zeng X, Han H, Yang Y, Chen M, Zhang Y, He L. Alternative splicing of Carboxyl/Choline Esterase 23 (Tccce23) attenuates fenpropathrin toxicity against Tetranychus cinnabarinus (Biosduval). Choline Esterase. 2022;23. https://doi.org/10.2139/ssrn.4238700
  130. 130. Feng YN, Yan J, Sun W, Zhao S, Lu WC, Li M, He L. Transcription and induction profiles of two esterase genes in susceptible and acaricide-resistant Tetranychus cinnabarinus. Pesticide Biochemistry and Physiology. 2011;100(1):70-3. https://doi.org/10.1016/j.pestbp.2011.02.007
  131. 131. Shi L, Wei P, Wang X, Shen G, Zhang J, Xiao W, et al. Functional analysis of esterase TCE2 gene from Tetranychus cinnabarinus (Boisduval) involved in acaricide resistance. Scientific Reports. 2016;6(1):18646. https://doi.org/10.1038/srep18646
  132. 132. Wei P, Demaeght P, De Schutter K, Grigoraki L, Labropoulou V, Riga M, et al. Overexpression of an alternative allele of carboxyl/choline esterase 4 (CCE04) of Tetranychus urticae is associated with high levels of resistance to the keto-enol acaricide spirodiclofen. Pest Management Science. 2020;76(3):1142-53. https://doi.org/10.1002/ps.5627
  133. 133. Shen XM, Liao CY, Lu XP, Wang Z, Wang JJ, Dou W. Involvement of three esterase genes from Panonychus citri (McGregor) in fenpropathrin resistance. International Journal of Molecular Sciences. 2016;17(8):1361. https://doi.org/10.3390/ijms17081361
  134. 134. Lairson LL, Henrissat B, Davies GJ, Withers SG. Glycosyltransferases: structures, functions and mechanisms. Annu Rev Biochem. 2008;77:521-55. https://doi.org/10.1146/annurev.biochem.76.061005.092322
  135. 135. Ahn SJ, Dermauw W, Wybouw N, Heckel DG, Van Leeuwen T. Bacterial origin of a diverse family of UDP-glycosyltransferase genes in the Tetranychus urticae genome. Insect Biochem Mol Biol. 2014;50:43-57. https://doi.org/10.1016/j.ibmb.2014.04.003
  136. 136. Papapostolou KM, Riga M, Charamis J, Skoufa E, Souchlas V, Ilias A, et al. Identification and characterization of striking multiple-insecticide resistance in a Tetranychus urticae field population from Greece. Pest Management Science. 2021;77(2):666-76. https://doi.org/10.1002/ps.6136
  137. 137. Xue W, Snoeck S, Njiru C, Inak E, Dermauw W, Van Leeuwen T. Geographical distribution and molecular insights into abamectin and milbemectin cross-resistance in European field populations of Tetranychus urticae. Pest Management Science. 2020;76(8):2569-81. https://doi.org/10.1002/ps.5831
  138. 138. Wang MY, Liu XY, Shi L, Liu JL, Shen GM, Zhang P, et al. Functional analysis of UGT201D3 associated with abamectin resistance in Tetranychus cinnabarinus (Boisduval). Insect Science. 2020;27(2):276-91. https://doi.org/10.1111/1744-7917.12637
  139. 139. Dong K. Insect sodium channels and insecticide resistance. Invert Neurosci. 2007;7:17. https://doi.org/10.1007/s10158-006-0036-9
  140. 140. Van Leeuwen T, Tirry L, Yamamoto A, Nauen R, Dermauw W. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pestic Biochem Physiol. 2015;121:12-21. https://doi.org/10.1016/j.pestbp.2014.12.009
  141. 141. Hawkins NJ, Bass C, Dixon A, Neve P. The evolutionary origins of pesticide resistance. Biological Reviews. 2019;94(1):135-55. https://doi.org/10.1111/brv.12440
  142. 142. Weill M, Fort P, Berthomieu A, Dubois MP, Pasteur N, Raymond M. A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene Drosophila. Proc R Soc Lond B Biol Sci. 2002;269(1504):2007-16.
  143. 143. Kwon DH, Im JS, Ahn JJ, Lee JH, Clark JM, Lee SH. Acetylcholinesterase point mutations putatively associated with monocrotophos resistance in the two-spotted spider mite. Pestic Biochem Physiol. 2010;96(1):36-42. https://doi.org/10.1016/j.pestbp.2009.08.013
  144. 144. Aiki Y, Kozaki T, Mizuno H, Kono Y. Amino acid substitution in Ace paralogous acetylcholinesterase accompanied by organophosphate resistance in the spider mite Tetranychus kanzawai. Pestic Biochem Physiol. 2005;82(2):154-61. https://doi.org/10.1016/j.pestbp.2005.02.004
  145. 145. Carvalho R, Yang Y, Field LM, Gorman K, Moores G, Williamson MS, Bass C. Chlorpyrifos resistance is associated with mutation and amplification of the acetylcholinesterase-1 gene in the tomato red spider mite, Tetranychus evansi. Pestic Biochem Physiol. 2012;104(2):143-49. https://doi.org/10.1016/j.pestbp.2012.05.009
  146. 146. Anazawa Y, Tomita T, Aiki Y, Kozaki T, Kono Y. Sequence of a cDNA encoding acetylcholinesterase from susceptible and resistant two-spotted spider mite, Tetranychus urticae. Insect Biochem Mol Biol. 2003;33(5):509-14. https://doi.org/10.1016/s0965-1748(03)00025-0
  147. 147. Kwon DH, Kang TJ, Kim YH, Lee SH. Phenotypic- and genotypic-resistance detection for adaptive resistance management in Tetranychus urticae Koch. PLoS One. 2015;10(11):e0139934. https://doi.org/10.1371/journal.pone.0139934
  148. 148. Li C, Cao Y, Yang J, Li M, Li B, Bu C. Acetylcholinesterase target sites for developing environmentally friendly insecticides against Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol. 2021;84(2):419-31. https://doi.org/10.1007/s10493-021-00624-4
  149. 149. Kwon DH, Choi JY, Je YH, Lee SH. The overexpression of acetylcholinesterase compensates for the reduced catalytic activity caused by resistance-conferring mutations in Tetranychus urticae. Insect Biochem Mol Biol. 2012;42(3):212-9. https://doi.org/10.1016/j.ibmb.2011.12.003
  150. 150. Kwon DH, Lee SW, Ahn JJ, Lee SH. Determination of acaricide resistance allele frequencies in field populations of Tetranychus urticae using quantitative sequencing. J Asia Pac Entomol. 2014;17(1):99-103. https://doi.org/10.1016/j.aspen.2013.11.001
  151. 151. Ay R, Gürkan MO. Resistance to bifenthrin and resistance mechanisms of different strains of the two-spotted spider mite (Tetranychus urticae) from Turkey. Phytoparasitica. 2005;33:237-44. https://doi.org/10.1007/BF02979860
  152. 152. Tsagkarakou A, Van Leeuwen T, Khajehali J, Ilias A, Grispou M, Williamson MS, et al. Identification of pyrethroid resistance associated mutations in the para sodium channel of the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae). Insect Mol Biol. 2009;18(5):583-93. https://doi.org/10.1111/j.1365-2583.2009.00900.x
  153. 153. Khambay B, Jewess P. Pyrethroids. In: Iatrou K, Gilbert LI, Gill SS, editors. Comprehensive Molecular Insect Science. Vol. 6. Oxford: Elsevier. 2005:1-2.
  154. 154. Ding TB, Zhong R, Jiang XZ, Liao CY, Xia WK, Liu B, et al. Molecular characterisation of a sodium channel gene and identification of a Phe1538 to Ile mutation in citrus red mite, Panonychus citri. Pest Manag Sci. 2015;71(2):266-77. https://doi.org/10.1002/ps.3802
  155. 155. Riga M, Bajda S, Themistokleous C, Papadaki S, Palzewicz M, Dermauw W, et al. The relative contribution of target-site mutations in complex acaricide resistant phenotypes as assessed by marker assisted backcrossing in Tetranychus urticae. Sci Rep. 2017;7(1):9202. https://doi.org/10.1038/s41598-017-09054-y
  156. 156. Wu M, Adesanya AW, Morales MA, Walsh DB, Lavine LC, Lavine MD, Zhu F. Multiple acaricide resistance and underlying mechanisms in Tetranychus urticae on hops. J Pest Sci. 2019;92:543-55. https://doi.org/10.1007/s10340-018-1050-5
  157. 157. Kurlovs AH, Snoeck S, Kosterlitz O, Van Leeuwen T, Clark RM. Trait mapping in diverse arthropods by bulked segregant analysis. Curr Opin Insect Sci. 2019;36:57-65. https://doi.org/10.1016/j.cois.2019.08.004
  158. 158. Rameshgar F, Khajehali J, Nauen R, Bajda S, Jonckheere W, Dermauw W, Van Leeuwen T. Point mutations in the voltage-gated sodium channel gene associated with pyrethroid resistance in Iranian populations of the European red mite Panonychus ulmi. Pestic Biochem Physiol. 2019;157:80-7. https://doi.org/10.1016/j.pestbp.2019.03.008
  159. 159. Dermauw W, Ilias A, Riga M, Tsagkarakou A, Grbić M, Tirry L, et al. The cys-loop ligand-gated ion channel gene family of Tetranychus urticae: implications for acaricide toxicology and a novel mutation associated with abamectin resistance. Insect Biochem Mol Biol. 2012;42(7):455-65. https://doi.org/10.1016/j.ibmb.2012.03.002
  160. 160. Huang QT, Sheng CW, Liu GY, Luo GH, Song ZJ, Han ZJ, CQ Z. Glycine at the third position of TM3 determines the action of fluralaner on insect and rat GABA receptor. 2022.
  161. 161. Nakao T, Banba S, Hirase K. Comparison between the modes of action of novel meta-diamide and macrocyclic lactone insecticides on the RDL GABA receptor. Pestic Biochem Physiol. 2015;120:101-8. https://doi.org/10.1016/j.pestbp.2014.09.011
  162. 162. Yamato K, Nakata Y, Takashima M, Ozoe F, Asahi M, Kobayashi M, Ozoe Y. Effects of intersubunit amino acid substitutions on GABA receptor sensitivity to the ectoparasiticide fluralaner. Pestic Biochem Physiol. 2020;163:123-9. https://doi.org/10.1016/j.pestbp.2019.11.001
  163. 163. Blythe J, Earley FG, Piekarska-Hack K, Firth L, Bristow J, Hirst EA, et al. The mode of action of isocycloseram: a novel isoxazoline insecticide. Pestic Biochem Physiol. 2022;187:105217. https://doi.org/10.1016/j.pestbp.2022.105217
  164. 164. Mermans C, Dermauw W, Geibel S, Van Leeuwen T. Activity, selection response and molecular mode of action of the isoxazoline afoxolaner in Tetranychus urticae. Pest Manag Sci. 2023;79(1):183-93. https://doi.org/10.1002/ps.7187
  165. 165. Campos F, Dybas RA, Krupa DA. Susceptibility of twospotted spider mite (Acari: Tetranychidae) populations in California to abamectin. J Econ Entomol. 1995;88(2):225-31. https://doi.org/10.1093/jee/88.2.225
  166. 166. Stumpf N, Nauen R. Biochemical markers linked to abamectin resistance in Tetranychus urticae (Acari: Tetranychidae). Pestic Biochem Physiol. 2002;72(2):111-21. https://doi.org/10.1006/pest.2001.2583
  167. 167. Kwon DH, Yoon KS, Clark JM, Lee SH. A point mutation in a glutamate-gated chloride channel confers abamectin resistance in the two-spotted spider mite, Tetranychus urticae Koch. Insect Mol Biol. 2010;19(4):583-91. https://doi.org/10.1111/j.1365-2583.2010.01017.x
  168. 168. Villacis-Perez E, Xue W, Vandenhole M, De Beer B, Dermauw W, Van Leeuwen T. Intraspecific diversity in the mechanisms underlying abamectin resistance in a cosmopolitan pest. Evol Appl. 2023;16(4):863-79. https://doi.org/10.1111/eva.13542
  169. 169. Ffrench-Constant RH, Rocheleau TA, Steichen JC, Chalmers AE. A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature. 1993;363(6428):449-51. https://doi.org/10.1038/363449a0
  170. 170. Zhang HG, Ffrench-Constant RH, Jackson MB. A unique amino acid of the Drosophila GABA receptor with influence on drug sensitivity by two mechanisms. J Physiol. 1994;479(1):65-75. https://doi.org/10.1113/jphysiol.1994.sp020278
  171. 171. Guest M, Goodchild JA, Bristow JA, Flemming AJ. RDL A301S alone does not confer high levels of resistance to cyclodiene organochlorine or phenyl pyrazole insecticides in Plutella xylostella. Pestic Biochem Physiol. 2019;158:32-9. https://doi.org/10.1016/j.pestbp.2019.04.005
  172. 172. Pavlidi N, Tseliou V, Riga M, Nauen R, Van Leeuwen T, Labrou NE, Vontas J. Functional characterization of glutathione S-transferases associated with insecticide resistance in Tetranychus urticae. Pestic Biochem Physiol. 2015;121:53-60. https://doi.org/10.1016/j.pestbp.2015.01.009
  173. 173. Nicastro RL, Sato ME, Da Silva MZ. Milbemectin resistance in Tetranychus urticae (Acari: Tetranychidae): selection, stability and cross-resistance to abamectin. Exp Appl Acarol. 2010;50:231-41. https://doi.org/10.1007/s10493-009-9304-9
  174. 174. Bajda S, Dermauw W, Panteleri R, Sugimoto N, Douris V, Tirry L, et al. A mutation in the PSST homologue of complex I (NADH:ubiquinone oxidoreductase) from Tetranychus urticae is associated with resistance to METI acaricides. Insect Biochem Mol Biol. 2017;80:79-90. https://doi.org/10.1016/j.ibmb.2016.11.010
  175. 175. Alavijeh ES, Khajehali J, Snoeck S, Panteleri R, Ghadamyari M, Jonckheere W, et al. Molecular and genetic analysis of resistance to METI-I acaricides in Iranian populations of the citrus red mite Panonychus citri. Pestic Biochem Physiol. 2020;164:73-84. https://doi.org/10.1016/j.pestbp.2019.12.009
  176. 176. Xue W, Lu X, Mavridis K, Vontas J, Jonckheere W, Van Leeuwen T. The H92R substitution in PSST is a reliable diagnostic biomarker for predicting resistance to mitochondrial electron transport inhibitors of complex I in European populations of Tetranychus urticae. Pest Manag Sci. 2022;78:3644-53. https://doi.org/10.1002/ps.7007
  177. 177. Sun J, Li C, Jiang J, Song C, Wang C, Feng K, et al. Cross resistance, inheritance and fitness advantage of cyetpyrafen resistance in twospotted spider mite, Tetranychus urticae. Pestic Biochem Physiol. 2022;183:105062. https://doi.org/10.1016/j.pestbp.2022.105062
  178. 178. Khalighi M, Tirry L, Van Leeuwen T. Cross-resistance risk of the novel complex II inhibitors cyenopyrafen and cyflumetofen in resistant strains of the twospotted spider mite Tetranychus urticae. Pest Manag Sci. 2014;70(3):365-8. https://doi.org/10.1002/ps.3641
  179. 179. Sugimoto N, Takahashi A, Ihara R, Itoh Y, Jouraku A, Van Leeuwen T, Osakabe M. QTL mapping using microsatellite linkage reveals target-site mutations associated with high levels of resistance against three mitochondrial complex II inhibitors in Tetranychus urticae. Insect Biochem Mol Biol. 2020;123:103410. https://doi.org/10.1016/j.ibmb.2020.103410
  180. 180. Njiru C, Saalwaechter C, Gutbrod O, Geibel S, Wybouw N, Van Leeuwen T. A H258Y mutation in subunit B of the succinate dehydrogenase complex of the spider mite Tetranychus urticae confers resistance to cyenopyrafen and pyflubumide, but likely reinforces cyflumetofen binding and toxicity. Insect Biochem Mol Biol. 2022;144:103761. https://doi.org/10.1016/j.ibmb.2022.103761
  181. 181. Inak E, Alpkent YN, Saalwaechter C, Albayrak T, Inak A, Dermauw W, et al. Long-term survey and characterization of cyflumetofen resistance in Tetranychus urticae populations from Turkey. Pestic Biochem Physiol. 2022;188:105235. https://doi.org/10.1016/j.pestbp.2022.105235
  182. 182. Lee KR, Koo HN, Yoon CM, Kim GH. Cross resistance and point mutation of the mitochondrial cytochrome b of bifenazate resistant twospotted spider mite, Tetranychus urticae. Korean J Pestic Sci. 2010;14(3):247-54.
  183. 183. Van Nieuwenhuyse P, Van Leeuwen T, Khajehali J, Vanholme B, Tirry L. Mutations in the mitochondrial cytochrome b of Tetranychus urticae Koch (Acari: Tetranychidae) confer cross-resistance between bifenazate and acequinocyl. Pest Manag Sci. 2009;65(4):404-12. https://doi.org/10.1002/ps.1705
  184. 184. Lu X, Vandenhole M, Tsakireli D, Pergantis SA, Vontas J, Jonckheere W, et al. Increased metabolism in combination with the novel cytochrome b target-site mutation L258F confers cross-resistance between the Qo inhibitors acequinocyl and bifenazate in Tetranychus urticae. Pestic Biochem Physiol. 2023;192:105411. https://doi.org/10.1016/j.pestbp.2023.105411
  185. 185. Hill CA, Sharan S, Watts VJ. Genomics, GPCRs and new targets for the control of insect pests and vectors. Curr Opin Insect Sci. 2018;30:99-106. https://doi.org/10.1016/j.cois.2018.08.010
  186. 186. Evans PD, Maqueira B. Insect octopamine receptors: a new classification scheme based on studies of cloned Drosophila G-protein coupled receptors. Invertebr Neurosci. 2005;5:111-8. https://doi.org/10.1007/s10158-005-0001-z
  187. 187. Chen AC, He H, Davey RB. Mutations in a putative octopamine receptor gene in amitraz-resistant cattle ticks. Vet Parasitol. 2007;148(3-4):379-83. https://doi.org/10.1016/j.vetpar.2007.06.026
  188. 188. Baron S, van der Merwe NA, Madder M, Maritz-Olivier C. SNP analysis infers that recombination is involved in the evolution of amitraz resistance in Rhipicephalus microplus. PloS One. 2015;10(7):e0131341. https://doi.org/10.1371/journal.pone.0131341
  189. 189. Corley SW, Jonsson NN, Piper EK, Cutullé C, Stear MJ, Seddon JM. Mutation in the RmβAOR gene is associated with amitraz resistance in the cattle tick Rhipicephalus microplus. Proc Natl Acad Sci U S A. 2013;110(42):16772-7. https://doi.org/10.1073/pnas.1309072110
  190. 190. Yu SJ, Cong L, Pan Q, Ding LL, Lei S, Cheng LY, et al. Whole genome sequencing and bulked segregant analysis suggest a new mechanism of amitraz resistance in the citrus red mite, Panonychus citri (Acari: Tetranychidae). Pest Manag Sci. 2021;77(11):5032-48. https://doi.org/10.1002/ps.6544
  191. 191. Tong L. Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. Cell Mol Life Sci. 2005;62:1784-803. https://doi.org/10.1007/s00018-005-5121-4
  192. 192. Rauch N, Nauen R. Spirodiclofen resistance risk assessment in Tetranychus urticae (Acari: Tetranychidae): a biochemical approach. Pestic Biochem Physiol. 2002;74(2):91-101. https://doi.org/10.1016/S0048-3575(02)00150-5
  193. 193. Demaeght P, Osborne EJ, Odman-Naresh J, Grbić M, Nauen R, Merzendorfer H, et al. High resolution genetic mapping uncovers chitin synthase-1 as the target-site of the structurally diverse mite growth inhibitors clofentezine, hexythiazox and etoxazole in Tetranychus urticae. Insect biochemistry and molecular biology 2014;51:52-61. https://doi.org/10.1016/j.ibmb.2014.05.004
  194. 194. Van Leeuwen T, Demaeght P, Osborne EJ, Dermauw W, Gohlke S, Nauen R, et al. Population bulk segregant mapping uncovers resistance mutations and the mode of action of a chitin synthesis inhibitor in arthropods. Proceedings of the National Academy of Sciences 2012;109(12):4407-12. https://doi.org/10.1073/pnas.1200068109
  195. 195. Tadatsu M, Sakashita R, Panteleri R, Douris V, Vontas J, Shimotsuma Y, et al. A mutation in chitin synthase I associated with etoxazole resistance in the citrus red mite Panonychus citri (Acari: Tetranychidae) and its uneven geographical distribution in Japan. Pest Management Science 2022;78(10):4028-36. https://doi.org/10.1002/ps.7021
  196. 196. İnak E, Alpkent YN, Çobanoğlu S, Dermauw W, Van Leeuwen T. Resistance incidence and presence of resistance mutations in populations of Tetranychus urticae from vegetable crops in Turkey. Experimental and Applied Acarology 2019;78:343-60. https://doi.org/10.1007/s10493-019-00398-w
  197. 197. Abbas RZ, Zaman MA, Colwell DD, Gilleard J, Iqbal Z. Acaricide resistance in cattle ticks and approaches to its management: the state of play. Veterinary parasitology 2014;203(1-2):6-20. https://doi.org/10.1016/j.vetpar.2014.03.006
  198. 198. Jonsson NN, Mayer DG, Green PE. Possible risk factors on Queensland dairy farms for acaricide resistance in cattle tick (Boophilus microplus). Veterinary parasitology 2000;88(1-2):79-92. https://doi.org/10.1016/s0304-4017(99)00189-2
  199. 199. Thullner F, Willadsen P, Kemp D. Acaricide rotation strategy for managing resistance in the tick Rhipicephalus (Boophilus) microplus (Acarina: Ixodidae): laboratory experiment with a field strain from Costa Rica. Journal of Medical Entomology 2007;44(5):817-21. https://doi.org/10.1603/0022-2585(2007)44[817:arsfmr]2.0.co;2
  200. 200. Thind BB, Ford HL. Assessment of susceptibility of the poultry red mite Dermanyssus gallinae (Acari: Dermanyssidae) to some acaricides using an adapted filter paper based bioassay. Veterinary Parasitology 2007;144(3-4):344-8. https://doi.org/10.1016/j.vetpar.2006.10.002
  201. 201. Maggi MD, Ruffinengo SR, Mendoza Y, Ojeda P, Ramallo G, Floris I, Eguaras MJ. Susceptibility of Varroa destructor (Acari: Varroidae) to synthetic acaricides in Uruguay: Varroa mites’ potential to develop acaricide resistance. Parasitology research 2011;108:815-21. https://doi.org/10.1007/s00436-010-2122-5
  202. 202. Kočišová A, Plachý J. Novel approach to controlling the poultry red mite (Acarina: Mesostigmata). In: 6th International Conference on Urban Pests, Budapest, Hungary. International Conference on Urban Pests (ICUP) 2008:349-54. https://doi.org/10.5555/20133307523
  203. 203. Dodiya RD, Barad AH, Italiya JV. Efficacy of insecticides against Spodoptera litura (Fabricius) infesting groundnut (Arachis hypogaea Linnaeus). Pesticide Research Journal 2024;36(2):125-9.
  204. 204. Damalas CA, Eleftherohorinos IG. Pesticide exposure, safety issues and risk assessment indicators. International journal of environmental research and public health 2011;8(5):1402-19. https://doi.org/10.3390/ijerph8051402
  205. 205. Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L. Chemical pesticides and human health: the urgent need for a new concept in agriculture. Frontiers in public health 2016;4:148. https://doi.org/10.3389/fpubh.2016.00148
  206. 206. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 2012;337(6096):816-21. https://doi.org/10.1126/science.1225829
  207. 207. Douris V, Papapostolou KM, Ilias A, Roditakis E, Kounadi S, Riga M, et al. Investigation of the contribution of RyR target-site mutations in diamide resistance by CRISPR/Cas9 genome modification in Drosophila. Insect biochemistry and molecular biology 2017;87:127-35. https://doi.org/10.1016/j.ibmb.2017.06.013
  208. 208. Gantz VM, Akbari OS. Gene editing technologies and applications for insects. Current Opinion in Insect Science 2018;28:66-72. https://doi.org/10.1016/j.cois.2018.05.006
  209. 209. Korona D, Koestler SA, Russell S. Engineering the Drosophila genome for developmental biology. Journal of Developmental Biology. 2017;5(4):16. https://doi.org/10.3390/jdb5040016
  210. 210. Garb JE, Sharma PP, Ayoub NA. Recent progress and prospects for advancing arachnid genomics. Current Opinion in Insect Science. 2018;25:51-7. https://doi.org/10.1016/j.cois.2017.11.005
  211. 211. Kotwica-Rolinska J, Chodakova L, Chvalova D, Kristofova L, Fenclova I, Provaznik J, et al. CRISPR/Cas9 genome editing introduction and optimization in the non-model insect Pyrrhocoris apterus. Frontiers in Physiology 2019;10:891. https://doi.org/10.3389/fphys.2019.00891
  212. 212. Witte H, Moreno E, Rödelsperger C, Kim J, Kim JS, Streit A, Sommer RJ. Gene inactivation using the CRISPR/Cas9 system in the nematode Pristionchus pacificus. Development Genes and Evolution 2015;225:55-62. https://doi.org/10.1007/s00427-014-0486-8
  213. 213. De Rouck S, Mocchetti A, Dermauw W, Van Leeuwen T. SYNCAS: Efficient CRISPR/Cas9 gene-editing in difficult to transform arthropods. Insect Biochemistry and Molecular Biology. 2024;165:104068. https://doi.org/10.1016/j.ibmb.2023.104068
  214. 214. Chaverra-Rodriguez D, Macias VM, Hughes GL, Pujhari S, Suzuki Y, Peterson DR, et al. Targeted delivery of CRISPR-Cas9 ribonucleoprotein into arthropod ovaries for heritable germline gene editing. Nature Communications 2018;9(1):3008. https://doi.org/10.1038/s41467-018-05425-9
  215. 215. Whyard S, Singh AD, Wong S. Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochemistry and Molecular Biology. 2009;39(11):824-32. https://doi.org/10.1016/j.ibmb.2009.09.007
  216. 216. de la Fuente J, Kocan KM, Almazán C, Blouin EF. RNA interference for the study and genetic manipulation of ticks. Trends in Parasitology. 2007;23(9):427-33. https://doi.org/10.1016/j.pt.2007.07.002
  217. 217. Marr EJ, Sargison ND, Nisbet AJ, Burgess ST. Gene silencing by RNA interference in the house dust mite, Dermatophagoides pteronyssinus. Molecular and Cellular Probes. 2015;29(6):522-6. https://doi.org/10.1016/j.mcp.2015.07.008
  218. 218. Mondal M, Klimov P, Flynt AS. Rewired RNAi-mediated genome surveillance in house dust mites. PLoS Genetics 2018;14(1):e1007183. ck
  219. 219. Höck J, Meister G. The Argonaute protein family. Genome Biology. 2008;9:1-8. https://doi.org/10.1186/gb-2008-9-2-210
  220. 220. Okamura K, Lai EC. Endogenous small interfering RNAs in animals. Nature Reviews Molecular Cell Biology. 2008;9(9):673-8. https://doi.org/10.1038/nrm2479
  221. 221. Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nature Reviews Genetics. 2009;10(2):94-108. https://doi.org/10.1038/nrg2504
  222. 222. Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 2004;117(1):69-81. https://doi.org/10.1016/s0092-8674(04)00261-2
  223. 223. Mello CC, Conte Jr D. Revealing the world of RNA interference. Nature. 2004;431(7006). https://doi.org/10.1038/nature02872
  224. 224. Ding SW. RNA-based antiviral immunity. Nature Reviews Immunology. 2010;10(9):632-44. https://doi.org/10.1038/nri2824
  225. 225. Shi L, Zhang J, Shen G, Xu Z, Wei P, Zhang Y, et al. Silencing NADPH-cytochrome P450 reductase results in reduced acaricide resistance in Tetranychus cinnabarinus (Boisduval). Scientific Reports. 2015;5(1):15581. https://doi.org/10.1038/srep15581
  226. 226. Xu Z, Liu Y, Wei P, Feng K, Niu J, Shen G, et al. High gama-aminobutyric acid contents involved in abamectin resistance and predation, an interesting phenomenon in spider mites. Frontiers in Physiology. 2017;8:216. https://doi.org/10.3389/fphys.2017.00216
  227. 227. Xu Z, Wu Q, Xu Q, He L. Functional analysis reveals glutamate and gamma-aminobutyric acid-gated chloride channels as targets of avermectins in the carmine spider mite. Toxicological Sciences. 2017;155(1). https://doi.org/10.1093/toxsci/kfw210
  228. 228. Xu Z, Liu P, Hu Y, Hu J, Qi C, Wu Q, He L. Characterization of an intradiol ring-cleavage dioxygenase gene associated with abamectin resistance in Tetranychus cinnabarinus (Acari: Tetranychidae). Journal of Economic Entomology. 2019;112(4):1858-65. https://doi.org/10.1093/jee/toz087
  229. 229. Liao CY, Xia WK, Feng YC, Li G, Liu H, Dou W, Wang JJ. Characterization and functional analysis of a novel glutathione S-transferase gene potentially associated with the abamectin resistance in Panonychus citri (McGregor). Pesticide Biochemistry and Physiology. 2016;132:72-80. https://doi.org/10.1016/j.pestbp.2015.11.002

Downloads

Download data is not yet available.