Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Nitrogen management and nitrous oxide emission from agriculture: Implication for climate change

DOI
https://doi.org/10.14719/pst.8163
Submitted
10 March 2025
Published
06-07-2025 — Updated on 14-07-2025
Versions

Abstract

Nitrous oxide (N₂O) is a potent greenhouse gas with a global warming potential approximately 298 times that of carbon dioxide over a 100-year period. Agriculture is a major contributor to global N₂O emissions, primarily using nitrogen (N) fertilizers and associated soil microbial processes such as nitrification and denitrification. This review synthesizes current knowledge on the mechanisms of N₂O production, the influence of soil physical, chemical and biological properties and the impact of nitrogen management practices on emission dynamics. It explores the effects of fertilizer types, application rates, timing and placement on N₂O fluxes, alongside emerging technologies such as enhanced-efficiency fertilizers and nitrification inhibitors. The review also highlights mitigation strategies including conservation tillage, optimized irrigation, crop rotations and integrated nutrient management. Understanding the complex interplay between agronomic practices and N₂O emissions is essential for designing climate-smart agriculture that sustains productivity while minimizing environmental impacts. Hence this paper focus on role of nitrogen mitigation on nitrous oxide emission and implication for climate change.

References

  1. 1. Bilandžija D, Zgorelec Ž, Kisic I. The influence of agroclimatic factors on soil CO2 emissions. Collegium Antropologicum. 2014;38:77-83.
  2. 2. Mielcarek-Bochenska P, Rzeznik W. Greenhouse gas emissions from agriculture in EU countries—state and perspectives. Atmosphere. 2021;12(11):1396. https://doi.org/10.3390/atmos12111396
  3. 3. Ning J, Zhang C, Hu M, Sun T. Accounting for greenhouse gas emissions in the agricultural system of China based on the life cycle assessment method. Sustainability. 2024;16(6):2594. https://doi.org/10.3390/su16062594
  4. 4. Basheer S, Wang X, Farooque AA, Nawaz RA, Pang T, Neokye EO. A review of greenhouse gas emissions from agricultural soil. Sustainability. 2024;16(11):4789. https://doi.org/10.3390/su16114789
  5. 5. Sharma M, Sharma C, Qaiyum A. Impacts of future Indian greenhouse gas emission scenarios on projected climate change parameters deduced from MAGICC model. Climatic change. 2012;111:425-43. https://doi.org/10.1007/s10584-011-0141-6
  6. 6. Amal P, Kuriakose NE. Trends and drivers of greenhouse gas emissions in India: A decadal analysis (2010-2020). Current World Environment. 2024;19(3):1355. http://dx.doi.org/10.12944/CWE.19.3.26
  7. 7. Balogh JM. The role of agriculture in climate change: a global perspective. International Journal of Energy Economics and Policy. 2020;10(2):401-8. https://doi.org/10.32479/ijeep.8859
  8. 8. Kollar AJ. Bridging the gap between agriculture and climate: Mitigation of nitrous oxide emissions from fertilizers. Environmental Progress & Sustainable Energy. 2023;42(2):e14069. https://doi.org/10.1002/ep.14069
  9. 9. Ball B. Soil structure and greenhouse gas emissions: a synthesis of 20 years of experimentation. European Journal of Soil Science. 2013;64(3):357-73. https://doi.org/10.1111/ejss.12013
  10. 10. Smith KA, Ball T, Conen F, Dobbie K, Massheder J, Rey A. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. European Journal of Soil Science. 2018;69(1):10-20. https://doi.org/10.1111/ejss.12539
  11. 11. Ludwig J, Meixner FX, Vogel B, Forstner J. Soil-air exchange of nitric oxide: An overview of processes, environmental factors, and modeling studies. Biogeochemistry. 2001;52(3):225-57. https://doi.org/10.1023/A:1006424330555
  12. 12. Lal R. Global potential of soil carbon sequestration to mitigate the greenhouse effect. Critical Reviews in Plant Sciences. 2003;22(2):151-84. https://doi.org/10.1080/713610854
  13. 13. Du C, Liu Y, Guo J, Zhang W, Xu R, Zhou B, et al. Novel annual nitrogen management strategy improves crop yield and reduces greenhouse gas emissions in wheat-maize rotation systems under limited irrigation. Journal of Environmental Management. 2024;353:120236. https://doi.org/10.1016/j.jenvman.2024.120236
  14. 14. He H, Hu Q, Pan F, Pan X. Evaluating nitrogen management practices for greenhouse gas emission reduction in a maize farmland in the North China Plain: Adapting to climate change. Plants. 2023;12(21):3749. https://doi.org/10.3390/plants12213749
  15. 15. Wang Z-b, Chen J, Mao S-c, Han Y-c, Chen F, Zhang L-f, et al. Comparison of greenhouse gas emissions of chemical fertilizer types in China's crop production. Journal of Cleaner Production. 2017;141:1267-74. https://doi.org/10.1016/j.jclepro.2016.09.120
  16. 16. Huang M, Gu C, Bai Y. Effect of fertilization on methane and nitrous oxide emissions and global warming potential on agricultural land in China: a meta-analysis. Agriculture. 2023;14(1):34. https://doi.org/10.3390/agriculture14010034
  17. 17. Verdi L, Mancini M, Ljubojevic M, Orlandini S, Dalla Marta A. Greenhouse gas and ammonia emissions from soil: The effect of organic matter and fertilisation method. italian Journal of Agronomy. 2018;13(3):1124. https://doi.org/10.4081/ija.2018.1124
  18. 18. Li Y, Wang Z, Ju X, Wu D. Disproportional oxidation rates of ammonia and nitrite deciphers the heterogeneity of fertilizer-induced N2O emissions in agricultural soils. Soil Biology and Biochemistry. 2024;191:109325. https://doi.org/10.1016/j.soilbio.2024.109325
  19. 19. Shakoor A, Shakoor S, Rehman A, Ashraf F, Abdullah M, Shahzad SM, et al. Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils—A global meta-analysis. Journal of Cleaner Production. 2021;278:124019. https://doi.org/10.1016/j.jclepro.2020.124019
  20. 20. Gnisia G, Weik J, Ruser R, Essich L, Lewandowski I, Stein A. Machine learning-based prediction of nitrous oxide emissions from arable farming: Exploring management practices as predictor variables. Ecological Indicators. 2025;172:113233. https://doi.org/10.1016/j.ecolind.2025.113233
  21. 21. Filonchyk M, Peterson MP, Zhang L, Hurynovich V, He Y. Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O. Science of The Total Environment. 2024;935:173359. https://doi.org/10.1016/j.scitotenv.2024.173359
  22. 22. Stein LY. Surveying N2O-producing pathways in bacteria. Methods in Enzymology. 2011;486:131-52. https://doi.org/10.1016/B978-0-12-381294-0.00006-7
  23. 23. Prosser JI, Nicol GW. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends in Microbiology. 2012;20(11):523-31. https://doi.org/10.1016/j.tim.2012.08.001
  24. 24. Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature. 2006;442(7104):806-9. https://doi.org/10.1038/nature04983
  25. 25. Philippot L, Hallin S, Schloter M. Ecology of denitrifying prokaryotes in agricultural soil. Advances in Agronomy. 2007;96:249-305. https://doi.org/10.1016/S0065-2113(07)96003-4
  26. 26. Kits KD, Jung M-Y, Vierheilig J, Pjevac P, Sedlacek CJ, Liu S, et al. Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata. Nature communications. 2019;10(1):1836. https://doi.org/10.1038/s41467-019-09790-x
  27. 27. Hallin S, Philippot L, Löffler FE, Sanford RA, Jones CM. Genomics and ecology of novel N2O-reducing microorganisms. Trends in Microbiology. 2018;26(1):43-55. https://doi.org/10.1016/j.tim.2017.07.003
  28. 28. Brierley E, Wood M. Heterotrophic nitrification in an acid forest soil: isolation and characterisation of a nitrifying bacterium. Soil Biology and Biochemistry. 2001;33(10):1403-9. https://doi.org/10.1016/S0038-0717(01)00045-1
  29. 29. Tan H, Fang F, Lin Y, Zhi J, Yao Y, Liu Y, et al. Multidimensional effects of arable soil organic carbon distribution: a comparison among terrains. Journal of Soils and Sediments. 2025;25(1):207-21. https://doi.org/10.1007/s11368-024-03940-5
  30. 30. Turner PA, Griffis TJ, Lee X, Baker JM, Venterea RT, Wood JD. Indirect nitrous oxide emissions from streams within the US Corn Belt scale with stream order. Proceedings of the National Academy of Sciences. 2015;112(32):9839-43. https://doi.org/10.1073/pnas.1503598112
  31. 31. Piñeiro-Guerra JM, Lewczuk NA, Della Chiesa T, Araujo PI, Acreche M, Alvarez C, et al. Spatial variability of nitrous oxide emissions from croplands and unmanaged natural ecosystems across a large environmental gradient. Wiley Online Library; 2025. Report No.: 0047-2425. https://doi.org/10.1002/jeq2.20663
  32. 32. Baggs E, Philippot L. Microbial terrestrial pathways to nitrous oxide. Nitrous oxide and climate change. Routledge; 2010. p. 4-35.
  33. 33. Zhu X, Burger M, Doane TA, Horwath WR. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. Proceedings of the National Academy of Sciences. 2013;110(16):6328-33. https://doi.org/10.1073/pnas.1219993110
  34. 34. Bergstrand K-J. Organic fertilizers in greenhouse production systems–a review. Scientia Horticulturae. 2022;295:110855. https://doi.org/10.1016/j.scienta.2021.110855
  35. 35. Buragiene S, Šarauskis E, Romaneckas K, Adamaviciene A, Kriauciuniene Z, Avižienyte D, et al. Relationship between CO2 emissions and soil properties of differently tilled soils. Science of the Total Environment. 2019;662:786-95. https://doi.org/10.1016/j.scitotenv.2019.01.236
  36. 36. Biernat L, Taube F, Vogeler I, Reinsch T, Kluß C, Loges R. Is organic agriculture in line with the EU-Nitrate directive? On-farm nitrate leaching from organic and conventional arable crop rotations. Agriculture, Ecosystems & Environment. 2020;298:106964. https://doi.org/10.1016/j.agee.2020.106964
  37. 37. Gregorich E, Rochette P, Hopkins D, McKim U, St-Georges P. Tillage-induced environmental conditions in soil and substrate limitation determine biogenic gas production. Soil Biology and Biochemistry. 2006;38(9):2614-28. https://doi.org/10.1016/j.soilbio.2006.03.017
  38. 38. Clough T, Sherlock R, Kelliher F. Can liming mitigate N2O fluxes from a urine-amended soil? Soil Research. 2003;41(3):439-57. https://doi.org/10.1071/SR02079
  39. 39. Li X, Zhao R, Li D, Wang G, Bei S, Ju X, et al. Mycorrhiza-mediated recruitment of complete denitrifying Pseudomonas reduces N2O emissions from soil. Microbiome. 2023;11(1):45. https://doi.org/10.1186/s40168-023-01466-5
  40. 40. Lai TV, Farquharson R, Denton MD. High soil temperatures alter the rates of nitrification, denitrification and associated N2O emissions. Journal of Soils and Sediments. 2019;19:2176-89. https://doi.org/10.1007/s11368-018-02238-7
  41. 41. Saggar S, Jha N, Deslippe J, Bolan N, Luo J, Giltrap D, et al. Denitrification and N2O: N2 production in temperate grasslands: Processes, measurements, modelling and mitigating negative impacts. Science of the Total Environment. 2013;465:173-95. https://doi.org/10.1016/j.scitotenv.2012.11.050
  42. 42. Lai TV, Denton MD. N2O and N2 emissions from denitrification respond differently to temperature and nitrogen supply. Journal of Soils and Sediments. 2018;18:1548-57. https://doi.org/10.1007/s11368-017-1863-5
  43. 43. Lesschen JP, Velthof GL, de Vries W, Kros J. Differentiation of nitrous oxide emission factors for agricultural soils. Environmental Pollution. 2011;159(11):3215-22. https://doi.org/10.1016/j.envpol.2011.04.001
  44. 44. Charles A, Rochette P, Whalen JK, Angers DA, Chantigny MH, Bertrand N. Global nitrous oxide emission factors from agricultural soils after addition of organic amendments: A meta-analysis. Agriculture, Ecosystems & Environment. 2017;236:88-98. https://doi.org/10.1016/j.agee.2016.11.021
  45. 45. Oertel C, Matschullat J, Zurba K, Zimmermann F, Erasmi S. Greenhouse gas emissions from soils—A review. Geochemistry. 2016;76(3):327-52. https://doi.org/10.1016/j.chemer.2016.04.002
  46. 46. Butterbach-Bahl K, Dannenmann M. Denitrification and associated soil N2O emissions due to agricultural activities in a changing climate. Current Opinion in Environmental Sustainability. 2011;3(5):389-95. https://doi.org/10.1016/j.cosust.2011.08.004
  47. 47. Gillam K, Zebarth B, Burton D. Nitrous oxide emissions from denitrification and the partitioning of gaseous losses as affected by nitrate and carbon addition and soil aeration. Canadian Journal of Soil Science. 2008;88(2):133-43. https://doi.org/10.4141/CJSS06005
  48. 48. Mosquera Losada J, Hol J, Rappoldt C, Dolfing J. Precise soil management as a tool to reduce CH4 and N2O emissions from agricultural soils. Animal Sciences Group; 2007.
  49. 49. Snyder C, Bruulsema T. Nutrient use efficiency and effectiveness in North America. International Plant Nutrition Institute (IPNI). Report 28; 2007.
  50. 50. Bateman E, Baggs E. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biology and Fertility of Soils. 2005;41:379-88. https://doi.org/10.1007/s00374-005-0858-3
  51. 51. Friedl J, Scheer C, Rowlings DW, McIntosh HV, Strazzabosco A, Warner DI, et al. Denitrification losses from an intensively managed sub-tropical pasture–Impact of soil moisture on the partitioning of N2 and N2O emissions. Soil Biology and Biochemistry. 2016;92:58-66. https://doi.org/10.1016/j.soilbio.2015.09.016
  52. 52. Ruser R, Flessa H, Russow R, Schmidt G, Buegger F, Munch J. Emission of N2O, N2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting. Soil Biology and Biochemistry. 2006;38(2):263-74. https://doi.org/10.1016/j.soilbio.2005.05.005
  53. 53. Skinner RH, Wagner-Riddle C. Micrometeorological methods for assessing greenhouse gas flux. Managing agricultural greenhouse gases. Cambridge (MA): Academic Press; 2012. p. 367-83.
  54. 54. Tang Y, Zhou C, Ziv-El M, Rittmann BE. A pH-control model for heterotrophic and hydrogen-based autotrophic denitrification. Water Research. 2011;45(1):232-40. https://doi.org/10.1016/j.watres.2010.07.049
  55. 55. Šimek M, Cooper J. The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. European Journal of Soil Science. 2002;53(3):345-54. https://doi.org/10.1046/j.1365-2389.2002.00461.x
  56. 56. Shumba A, Chikowo R, Corbeels M, Six J, Thierfelder C, Cardinael R. Long-term tillage, residue management and crop rotation impacts on N2O and CH4 emissions from two contrasting soils in sub-humid Zimbabwe. Agriculture, Ecosystems & Environment. 2023;341:108207. https://doi.org/10.1016/j.agee.2022.108207
  57. 57. Smith K. Changing views of nitrous oxide emissions from agricultural soil: key controlling processes and assessment at different spatial scales. European Journal of Soil Science. 2017;68(2):137-55. https://doi.org/10.1111/ejss.12409
  58. 58. Cameron KC, Di HJ, Moir JL. Nitrogen losses from the soil/plant system: a review. Annals of Applied Biology. 2013;162(2):145-73. https://doi.org/10.1111/aab.12014
  59. 59. Farquharson R. Nitrification rates and associated nitrous oxide emissions from agricultural soils–a synopsis. Soil Research. 2016;54(5):469-80. https://doi.org/10.1071/SR15304
  60. 60. Weier K, Doran J, Power J, Walters D. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Soil Science Society of America Journal. 1993;57(1):66-72. https://doi.org/10.2136/sssaj1993.03615995005700010013x
  61. 61. Parton W, Holland E, Del Grosso S, Hartman M, Martin R, Mosier A, et al. Generalized model for NOx and N2O emissions from soils. Journal of Geophysical Research: Atmospheres. 2001;106(D15):17403-19. https://doi.org/10.1029/2001JD900101
  62. 62. Abdalla M, Smith P, Williams M. Emissions of nitrous oxide from agriculture: Responses to management and climate change. Understanding Greenhouse Gas Emissions from Agricultural Management. ACS Publications; 2011. p. 343-70. https://doi.org/10.1021/bk-2011-1072.ch018
  63. 63. Chen G, Kolb L, Cavigelli MA, Weil RR, Hooks CR. Can conservation tillage reduce N2O emissions on cropland transitioning to organic vegetable production? Science of the Total Environment. 2018;618:927-40. https://doi.org/10.1016/j.scitotenv.2017.08.296
  64. 64. Smit HP, Reinsch T, Swanepoel PA, Kluß C, Taube F. Grazing under irrigation affects N2O-emissions substantially in South Africa. Atmosphere. 2020;11(9):925. https://doi.org/10.3390/atmos11090925
  65. 65. Van Groenigen JW, Velthof G, Oenema O, Van Groenigen K, Van Kessel C. Towards an agronomic assessment of N2O emissions: a case study for arable crops. European journal of soil science. 2010;61(6):903-13. https://doi.org/10.1111/j.1365-2389.2009.01217.x
  66. 66. Tosti G, Farneselli M, Benincasa P, Guiducci M. Nitrogen fertilization strategies for organic wheat production: Crop yield and nitrate leaching. Agronomy Journal. 2016;108(2):770-81. https://doi.org/10.2134/agronj2015.0464
  67. 67. Robertson GP, Vitousek PM. Nitrogen in agriculture: balancing the cost of an essential resource. Annual Review of Environment and Resources. 2009;34(1):97-125. https://doi.org/10.1146/annurev.environ.032108.105046
  68. 68. Thangarajan R, Bolan NS, Tian G, Naidu R, Kunhikrishnan A. Role of organic amendment application on greenhouse gas emission from soil. Science of the Total Environment. 2013;465:72-96. https://doi.org/10.1016/j.scitotenv.2013.01.031
  69. 69. Diacono M, Montemurro F. Long-term effects of organic amendments on soil fertility. Sustainable agriculture. Vol. 2. Dordrecht: Springer; 2011. p. 761-86. https://doi.org/10.1007/978-94-007-0394-0_34
  70. 70. Zhang Y, Chen J, Yang H, Li R, Yu Q. Seasonal variation and potential source regions of PM2. 5-bound PAHs in the megacity Beijing, China: Impact of regional transport. Environmental Pollution. 2017;231:329-38. https://doi.org/10.1016/j.envpol.2017.08.025
  71. 71. Gu B, Ju X, Chang J, Ge Y, Vitousek PM. Integrated reactive nitrogen budgets and future trends in China. Proceedings of the National Academy of Sciences. 2015;112(28):8792-7. https://doi.org/10.1073/pnas.1510211112
  72. 72. Akiyama H, Yan X, Yagi K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: meta-analysis. Global Change Biology. 2010;16(6):1837-46. https://doi.org/10.1111/j.1365-2486.2009.02031.x
  73. 73. Halvorson AD, Del Grosso SJ, Alluvione F. Nitrogen source effects on nitrous oxide emissions from irrigated no-till corn. Journal of Environmental Quality. 2010;39(5):1554-62. https://doi.org/10.2134/jeq2010.0041
  74. 74. Tenuta, EG Beauchamp M. Nitrous oxide production from granular nitrogen fertilizers applied to a silt loam soil. Canadian Journal of Soil Science. 2003;83(5):521-32. https://doi.org/10.4141/S02-062
  75. 75. Velthof GL, Kuikman PJ, Oenema O. Nitrous oxide emission from animal manures applied to soil under controlled conditions. Biology and Fertility of Soils. 2003;37:221-30. https://doi.org/10.1007/s00374-003-0589-2
  76. 76. Angeletti C, Monaci E, Giannetta B, Polverigiani S, Vischetti C. Soil organic matter content and chemical composition under two rotation management systems in a Mediterranean climate. Pedosphere. 2021;31(6):903-11. https://doi.org/10.1016/S1002-0160(21)60032-2
  77. 77. Mosier AR, Halvorson AD, Reule CA, Liu XJ. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. Journal of Environmental Quality. 2006;35(4):1584-98. https://doi.org/10.2134/jeq2005.0232
  78. 78. Adviento-Borbe M, Haddix M, Binder D, Walters D, Dobermann A. Soil greenhouse gas fluxes and global warming potential in four high-yielding maize systems. Global Change Biology. 2007;13(9):1972-88. https://doi.org/10.1111/j.1365-2486.2007.01421.x
  79. 79. Parkin TB, Kaspar TC. Nitrous oxide emissions from corn–soybean systems in the Midwest. Journal of Environmental Quality. 2006;35(4):1496-506. https://doi.org/10.2134/jeq2005.0183
  80. 80. Dick J, Skiba U, Munro R, Deans D. Effect of N-fixing and non N-fixing trees and crops on NO and N2O emissions from Senegalese soils. Journal of Biogeography. 2006;33(3):416-23. https://doi.org/10.1111/j.1365-2699.2005.01421.x
  81. 81. McSwiney CP, Robertson GP. Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system. Global Change Biology. 2005;11(10):1712-9. https://doi.org/10.1111/j.1365-2486.2005.01040.x
  82. 82. Liu H, Zheng X, Li Y, Yu J, Ding H, Sveen TR, et al. Soil moisture determines nitrous oxide emission and uptake. Science of the Total Environment. 2022;822:153566. https://doi.org/10.1016/j.scitotenv.2022.153566
  83. 83. Malhi SS, Lemke R, Wang Z, Chhabra BS. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil and Tillage Research. 2006;90(1-2):171-83. https://doi.org/10.1016/j.still.2005.09.001
  84. 84. Kachanoski RG, O’Halloran I, Rochette P. Site-specific application of fertilizer N for reducing greenhouse gas emissions. Climate change funding initiative in Agriculture Canadian Agri-Food Research Council, Ottawa; 2003.
  85. 85. Rochette P, Angers DA, Bélanger G, Chantigny MH, Prévost D, Lévesque G. Emissions of N2O from alfalfa and soybean crops in eastern Canada. Soil Science Society of America Journal. 2004;68(2):493-506. https://doi.org/10.2136/sssaj2004.4930
  86. 86. Morugán-Coronado A, Pérez-Rodríguez P, Insolia E, Soto-Gómez D, Fernández-Calvino D, Zornoza R. The impact of crop diversification, tillage and fertilization type on soil total microbial, fungal and bacterial abundance: A worldwide meta-analysis of agricultural sites. Agriculture, Ecosystems & Environment. 2022;329:107867. https://doi.org/10.1016/j.agee.2022.107867
  87. 87. Breitenbeck G, Bremner J. Effects of rate and depth of fertilizer application on emission of nitrous oxide from soil fertilized with anhydrous ammonia. Biology and Fertility of Soils. 1986;2:201-4. https://doi.org/10.1007/BF00260844
  88. 88. Venterea RT, Stanenas AJ. Profile analysis and modeling of reduced tillage effects on soil nitrous oxide flux. Journal of Environmental Quality. 2008;37(4):1360-7. https://doi.org/10.2134/jeq2007.0283
  89. 89. Drury C, Reynolds W, Tan C, Welacky T, Calder W, McLaughlin N. Emissions of nitrous oxide and carbon dioxide: influence of tillage type and nitrogen placement depth. Soil Science Society of America Journal. 2006;70(2):570-81. https://doi.org/10.2136/sssaj2005.0042
  90. 90. Osorio-Tejada J, Tran NN, Hessel V. Techno-environmental assessment of small-scale Haber-Bosch and plasma-assisted ammonia supply chains. Science of The Total Environment. 2022;826:154162. https://doi.org/10.1016/j.scitotenv.2022.154162
  91. 91. Breitenbeck G, Bremner J. Effects of various nitrogen fertilizers on emission of nitrous oxide from soils. Biology and Fertility of Soils. 1986;2:195-9. https://doi.org/10.1007/BF00260843
  92. 92. Hultgreen G. Effect of nitrogen fertilizer placement, formulation, timing, and rate on greenhouse gas emissions and agronomic performance; 2003.
  93. 93. Thilakarathna SK, Hernandez-Ramirez G, Puurveen D, Kryzanowski L, Lohstraeter G, Powers LA, et al. Nitrous oxide emissions and nitrogen use efficiency in wheat: Nitrogen fertilization timing and formulation, soil nitrogen, and weather effects. Soil Science Society of America Journal. 2020;84(6):1910-27. https://doi.org/10.1002/saj2.20145
  94. 94. Roy AK, Wagner-Riddle C, Deen B, Lauzon J, Bruulsema T. Nitrogen application rate, timing and history effects on nitrous oxide emissions from corn (Zea mays L.). Canadian Journal of Soil Science. 2014;94(4):563-73. https://doi.org/10.4141/cjss2013-118
  95. 95. Lagzdins A, Pederson C, Schott L, Waring E, Helmers M, editors. Impact of nitrogen application timing and source on nitrate leaching and crop yield. 2016 10th International Drainage Symposium Conference; 6-9 September 2016. Minneapolis, Minnesota: American Society of Agricultural and Biological Engineers; 2016. http://doi.org/10.13031/IDS.20162493614
  96. 96. Sawyer J, Barker D, Lundvall J. Impact of nitrogen application timing on corn production. Ames (IA): Iowa State University; 2016.
  97. 97. Luo J, De Klein C, Ledgard S, Saggar S. Management options to reduce nitrous oxide emissions from intensively grazed pastures: a review. Agriculture, Ecosystems & Environment. 2010;136(3-4):282-91. https://doi.org/10.1016/j.agee.2009.12.003
  98. 98. Huang S, Lv W, Bloszies S, Shi Q, Pan X, Zeng Y. Effects of fertilizer management practices on yield-scaled ammonia emissions from croplands in China: a meta-analysis. Field Crops Research. 2016;192:118-25. https://doi.org/10.1016/j.fcr.2016.04.023
  99. 99. Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP, Smith P. Climate-smart soils. Nature. 2016;532(7597):49-57. https://doi.org/10.1038/nature17174
  100. 100. Hassan M, Chattha M, Chattha M, Mahmood A, Sahi S. Chemical composition and methane yield of sorghum as influenced by planting methods and cultivars. JAPS: Journal of Animal & Plant Sciences. 2019;29(1):251-9.
  101. 101. Abalos D, van Groenigen JW, De Deyn GB. What plant functional traits can reduce nitrous oxide emissions from intensively managed grasslands? Global Change Biology. 2018;24(1):e248-58. https://doi.org/10.1111/gcb.13827
  102. 102. Dhadli HS, Brar BS, Black TA. N2O emissions in a long-term soil fertility experiment under maize–wheat cropping system in Northern India. Geoderma Regional. 2016;7(2):102-9. https://doi.org/10.1016/j.geodrs.2016.02.003
  103. 103. Shakoor A, Shahbaz M, Farooq TH, Sahar NE, Shahzad SM, Altaf MM, et al. A global meta-analysis of greenhouse gases emission and crop yield under no-tillage as compared to conventional tillage. Science of the Total Environment. 2021;750:142299. https://doi.org/10.1016/j.scitotenv.2020.142299
  104. 104. Guo B, Zheng X, Yu J, Ding H, Pan B, Luo S, et al. Dissolved organic carbon enhances both soil N2O production and uptake. Global Ecology and Conservation. 2020;24:e01264. https://doi.org/10.1016/j.gecco.2020.e01264
  105. 105. Ma Y, Sun L, Zhang X, Yang B, Wang J, Yin B, et al. Mitigation of nitrous oxide emissions from paddy soil under conventional and no-till practices using nitrification inhibitors during the winter wheat-growing season. Biology and Fertility of Soils. 2013;49:627-35. https://doi.org/10.1007/s00374-012-0753-7
  106. 106. Zhao RF, Chen XP, Zhang FS, Zhang H, Schroder J, Römheld V. Fertilization and nitrogen balance in a wheat–maize rotation system in North China. Agronomy Journal. 2006;98(4):938-45. https://doi.org/10.2134/agronj2005.0157
  107. 107. Borzouei A, Saadati S, Müller C, Sanz-Cobena A, Kim D-G, Dawar K, et al. Reducing nitrous oxide emissions from irrigated maize by using urea fertilizer in combination with nitrapyrin under different tillage methods. Environmental Science and Pollution Research. 2021;29:14846-55. https://doi.org/10.1007/s11356-021-16768-0
  108. 108. Wang T, Tu X, Singh VP, Chen X, Lin K. Global data assessment and analysis of drought characteristics based on CMIP6. Journal of Hydrology. 2021;596:126091. https://doi.org/10.1016/j.jhydrol.2021.126091
  109. 109. Ye X, Liu H, Zhang X, Ma J, Han B, Li W, et al. Impacts of irrigation methods on greenhouse gas emissions/absorptions from vegetable soils. Journal of Soils and Sediments. 2020;20:723-33. https://doi.org/10.1007/s11368-019-02422-3
  110. 110. Fangueiro D, Becerra D, Albarrán Á, Peña D, Sanchez-Llerena J, Rato-Nunes JM, et al. Effect of tillage and water management on GHG emissions from Mediterranean rice growing ecosystems. Atmospheric Environment. 2017;150:303-12. https://doi.org/10.1016/j.atmosenv.2016.11.020
  111. 111. Islam SF-u, van Groenigen JW, Jensen LS, Sander BO, de Neergaard A. The effective mitigation of greenhouse gas emissions from rice paddies without compromising yield by early-season drainage. Science of the Total Environment. 2018;612:1329-39. https://doi.org/10.1016/j.scitotenv.2017.09.022
  112. 112. Sánchez-Martín L, Arce A, Benito A, Garcia-Torres L, Vallejo A. Influence of drip and furrow irrigation systems on nitrogen oxide emissions from a horticultural crop. Soil Biology and Biochemistry. 2008;40(7):1698-706. https://doi.org/10.1016/j.soilbio.2008.02.005
  113. 113. Tang J, Wang J, Li Z, Wang S, Qu Y. Effects of irrigation regime and nitrogen fertilizer management on CH4, N2O and CO2 emissions from saline–alkaline paddy fields in Northeast China. Sustainability. 2018;10(2):475. https://doi.org/10.3390/su10020475
  114. 114. Li X, Xu H, Cao J, Cai Z, Yagi K. Effect of water management on N2O emission in rice-growing season. Soils. 2006;38(6):703-7.
  115. 115. Peng S, Hou H, Xu J, Mao Z, Abudu S, Luo Y. Nitrous oxide emissions from paddy fields under different water managements in southeast China. Paddy and Water Environment. 2011;9:403-11. https://doi.org/10.1007/s10333-011-0275-1
  116. 116. Rassaei F. Nitrous oxide emissions from rice paddy: impacts of rice straw and water management. Environmental Progress & Sustainable Energy. 2023;42(4):e14066. https://doi.org/10.1002/ep.14066
  117. 117. Izaurralde R, McGill WB, Robertson J, Juma N, Thurston J. Carbon balance of the Breton classical plots over half a century. Soil Science Society of America Journal. 2001;65(2):431-41. https://doi.org/10.2136/sssaj2001.652431x
  118. 118. Rochette P, Janzen HH. Towards a revised coefficient for estimating N2O emissions from legumes. Nutrient Cycling in Agroecosystems. 2005;73:171-9. https://doi.org/10.1007/s10705-005-0357-9
  119. 119. Behnke GD, Zuber SM, Pittelkow CM, Nafziger ED, Villamil MB. Long-term crop rotation and tillage effects on soil greenhouse gas emissions and crop production in Illinois, USA. Agriculture, Ecosystems & Environment. 2018;261:62-70. https://doi.org/10.1016/j.agee.2018.03.007
  120. 120. Paustian K, Babcock B, Hatfield JL, Lal R, McCarl BA, McLaughlin S, et al., editors. Agricultural mitigation of greenhouse gases: science and policy options. 2001 Conference Proceedings, First National Conference on Carbon Sequestration. Washington (DC): Conference on Carbon Sequestration; 2001.
  121. 121. Bama K, Somasundaram E, Sivakumar S, Latha K. Soil health and nutrient budgeting as influenced by different cropping sequences in an vertisol of Tamil Nadu. International Journal of Chemical Studies. 2017;5(5):486-91.
  122. 122. Dhaliwal JK, Lussich FR, Jagadamma S, Schaeffer SM, Saha D. Long-term tillage and cover cropping differentially influenced soil nitrous oxide emissions from cotton cropping system. Agronomy Journal. 2024;116(6):2804-16. https://doi.org/10.1002/agj2.21661
  123. 123. Dobermann A. Nutrient use efficiency–measurement and management. In: Krauss A, Isherwood K, Heffer P. editors. Fertilizer best management practices: general principles, strategy for their adoption and voluntary initiatives versus regulations. Paris, France: International Fertilizer Industry Association; 2007. p. 1-28.
  124. 124. Linquist B, Van Groenigen KJ, Adviento-Borbe MA, Pittelkow C, Van Kessel C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Global Change Biology. 2012;18(1):194-209. https://doi.org/10.1111/j.1365-2486.2011.02502.x
  125. 125. Grave RA, da Silveira Nicoloso R, Cassol PC, da Silva MLB, Mezzari MP, Aita C, et al. Determining the effects of tillage and nitrogen sources on soil N2O emission. Soil and Tillage Research. 2018;175:1-12. https://doi.org/10.1016/j.still.2017.08.011
  126. 126. Chen S, Hao T, Goulding K, Misselbrook T, Liu X. Impact of 13-years of nitrogen addition on nitrous oxide and methane fluxes and ecosystem respiration in a temperate grassland. Environmental Pollution. 2019;252:675-81. https://doi.org/10.1016/j.envpol.2019.03.069
  127. 127. Nyamadzawo G, Shi Y, Chirinda N, Olesen JE, Mapanda F, Wuta M, et al. Combining organic and inorganic nitrogen fertilisation reduces N2O emissions from cereal crops: a comparative analysis of China and Zimbabwe. Mitigation and Adaptation Strategies for Global Change. 2017;22:233-45. https://doi.org/10.1007/s11027-014-9560-9
  128. 128. Senbayram M, Chen R, Budai A, Bakken L, Dittert K. N2O emission and the N2O/(N2O+ N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations. Agriculture, Ecosystems & Environment. 2012;147:4-12. https://doi.org/10.1016/j.agee.2011.06.022
  129. 129. Sarkodie-Addo J, Lee H, Baggs E. Nitrous oxide emissions after application of inorganic fertilizer and incorporation of green manure residues. Soil Use and Management. 2003;19(4):331-9. https://doi.org/10.1111/j.1475-2743.2003.tb00323.x
  130. 130. Pappa VA, Rees RM, Walker RL, Baddeley JA, Watson CA. Nitrous oxide emissions and nitrate leaching in an arable rotation resulting from the presence of an intercrop. Agriculture, Ecosystems & Environment. 2011;141(1-2):153-61. https://doi.org/10.1016/j.agee.2011.02.025
  131. 131. Pittelkow CM, Adviento-Borbe MA, Hill JE, Six J, van Kessel C, Linquist BA. Yield-scaled global warming potential of annual nitrous oxide and methane emissions from continuously flooded rice in response to nitrogen input. Agriculture, Ecosystems & Environment. 2013;177:10-20. https://doi.org/10.1016/j.agee.2013.05.011
  132. 132. Wang X, Zhang L, Lakshmanan P, Chen J, Zhang W, Chen X. Optimal nitrogen management increased topsoil organic carbon stock and maintained whole soil inorganic carbon stock to increase soil carbon stock—A 15-year field evidence. Agriculture, Ecosystems & Environment. 2025;379:109365. https://doi.org/10.1016/j.agee.2024.109365
  133. 133. Zhou X, Wang S, Ma S, Zheng X, Wang Z, Lu C. Effects of commonly used nitrification inhibitors—dicyandiamide (DCD), 3,4-dimethylpyrazole phosphate (DMPP), and nitrapyrin—on soil nitrogen dynamics and nitrifiers in three typical paddy soils. Geoderma. 2020;380:114637. https://doi.org/10.1016/j.geoderma.2020.114637
  134. 134. Graham RF, Wortman SE, Pittelkow CM. Comparison of organic and integrated nutrient management strategies for reducing soil N2O emissions. Sustainability. 2017;9(4):510. https://doi.org/10.3390/su9040510
  135. 135. Dittert K, Lampe C, Gasche R, Butterbach-Bahl K, Wachendorf M, Papen H, et al. Short-term effects of single or combined application of mineral N fertilizer and cattle slurry on the fluxes of radiatively active trace gases from grassland soil. Soil Biology and Biochemistry. 2005;37(9):1665-74. https://doi.org/10.1016/j.soilbio.2005.01.029
  136. 136. Barthod J, Rumpel C, Dignac M-F. Composting with additives to improve organic amendments. A review. Agronomy for Sustainable Development. 2018;38(2):17. https://doi.org/10.1007/s13593-018-0491-9
  137. 137. Swanepoel PA, Tshuma F. Soil quality effects on regeneration of annual Medicago pastures in the Swartland of South Africa. African Journal of Range & Forage Science. 2017;34(4):201-8. https://doi.org/10.2989/10220119.2017.1403462
  138. 138. Pereira JL, Carranca C, Coutinho J, Trindade H. The effect of soil type on gaseous emissions from flooded rice fields in Portugal. Journal of Soil Science and Plant Nutrition. 2020;20:1732-40. https://doi.org/10.1007/s42729-020-00243-9

Downloads

Download data is not yet available.