Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Alpha-terthienyl (A novel marigold derivative): An overview on nematicidal potential

DOI
https://doi.org/10.14719/pst.8256
Submitted
21 March 2025
Published
17-06-2025
Versions

Abstract

Alpha-terthienyl (α-T), a plant-derived compound primarily found in the root exudates and leaves of marigold (Tagetes spp.), has shown strong potential as a sustainable alternative to chemical nematicides for managing plant-parasitic nematodes (PPNs) such as Meloidogyne, Heterodera and Pratylenchus species. Acting as a phototoxic agent, α-T generates reactive oxygen species (ROS) under ultraviolet (UV) light, leading to nematode mortality through oxidative stress. Its broad-spectrum efficacy, persistence in the rhizosphere and low toxicity to non-target organisms make it a promising candidate for integrated pest management. Studies indicate that α-T induces high mortality in Caenorhabditis elegans and Meloidogyne incognita, disrupts key metabolic enzymes like cholinesterase and glucose-6-phosphate dehydrogenase and exhibits strong photo-larvicidal effects in Aedes aegypti (LC₅₀: 0.002 ppm under UV light), as well as insecticidal activity against Lepidoptera and fire ants. Future research should aim to improve its formulation for field stability, explore synergistic effects with other biopesticides, investigate resistance mechanisms and assess its broader applicability in pest and vector control.

References

  1. 1. Nicol J, Turner S, Coyne DL, Nijs Ld, Hockland S, Maafi ZT. Current nematode threats to world agriculture. Genomics and Molecular Genetics of Plant-Nematode Interactions. 2011;21-43. https://doi.org/10.1007/978-94-007-0434-3 2
  2. 2. Jyothi K, Goud C, Girwani A, Kumar TS. Studies on the effect of planting dates and levels of pinching on growth, flowering and yield in marigold (Tagetes erecta) cv. Arka Agni. International Journal of Current Microbiology and Applied Sciences. 2018;7(11):2705-13. https://doi.org/10.20546/ijcmas.2018.711.309
  3. 3. Arora J. Introductory ornamental horticulture: Kalyani Publishers; 2012.
  4. 4. Anumala NV, Kumar R. Floriculture sector in India: current status and export potential. The Journal of Horticultural Science and Biotechnology. 2021;96(5):673-80. https://doi.org/10.1080/14620316.2021.1902863
  5. 5. Fabrick JA, Yool AJ, Spurgeon DW. Insecticidal activity of marigold Tagetes patula plants and foliar extracts against the hemipteran pests, Lygus hesperus and Bemisia tabaci. PLoS One. 2020;15(5):e0233511. https://doi.org/10.1371/journal.pone.0233511
  6. 6. Bakshi L, Ghosh R. Marigold biopesticide as an alternative to conventional chemical pesticides. Journal of Advanced Scientific Research. 2022;13(05):26-33. https://doi.org/10.55218/jasr.202213503
  7. 7. Santos PC, Santos VH, Mecina GF, Andrade AR, Fegueiredo PA, Moraes VM, et al. Insecticidal activity of Tagetes sp. on Sitophilus zeamais Mots. International Journal of Environmental & Agriculture Research. 2016;2(4):31-8.
  8. https://doi.org/10.1016/j.sajb.2015.05.013
  9. 8. Kavitha PG, Jonathan E, Nakkeeran S. Life cycle, histopathology and yield loss caused by root knot nematode, Meloidogyne incognita on Noni. Madras Agricultural Journal. 2011;98(10-12):386-9.
  10. 9. Jonathan E, Kumar S, Devarajan K, Rajendran G. Nematode pests of commercial flower crops. Fundamentals of Plant Nematology. 2001:20-48.
  11. 10. Thangamani C, Pugalendhi L, Punithaveni V. Screening wild and cultivated cucurbits against root knot nematode to exploit as rootstocks for grafting in cucumber. Journal of Horticultural Sciences. 2018;13(1):32-41. https://doi.org/10.24154/jhs.2018.v13i01.003
  12. 11. Kilani-Morakchi S, Morakchi-Goudjil H, Sifi K. Azadirachtin-based insecticide: Overview, risk assessments, and future directions. Frontiers in Agronomy. 2021;3:676208. https://doi.org/10.3389/fagro.2021.676208
  13. 12. Manish Nivsarkar MN, Bapu Cherian BC, Harish Padh HP. Alpha-terthienyl: a plant-derived new generation insecticide. 2001:667-72.
  14. 13. Hikal WM, Tkachenko KG, Said-Al Ahl HA, Sany H, Sabra AS, Baeshen RS, et al. Chemical composition and biological significance of thymol as antiparasitic. Open Journal of Ecology. 2021;11(3):240-66. https://doi.org/10.4236/oje.2021.113018
  15. 14. Meher HC, Gajbhiye VT, Singh G, Kamra A, Chawla G. Persistence and nematicidal efficacy of carbosulfan, cadusafos, phorate, and triazophos in soil and uptake by chickpea and tomato crops under tropical conditions. Journal of Agricultural and Food Chemistry. 2010;58(3):1815-22. https://doi.org/10.1021/jf903609d
  16. 15. Din SU, Khan MA, Akram MT. Allelopathic potential of African marigold (Tagetes erecta) in sustainable tomato (Lycopersicon esculentum) production. Journal of Applied Horticulture. 2021;23(3):304-9.
  17. https://doi.org/10.37855/jah.2021.v23i03.54
  18. 16. Munif A, Nursalim M, Pradana AP. The potential of endophytic bacteria isolated from Tagetes sp. to control Meloidogyne spp. infection on tomato plants. Biodiversitas Journal of Biological Diversity. 2021;22(6). https://doi.org/10.13057/biodiv/d220626
  19. 17. Winoto Suatmadji R. Studies on the effect of Tagetes species on plant parasitic nematodes. HW Wageningen: Amsterdam, The Netherlands. 1969. https://doi.org/10.18174/192253
  20. 18. Evenhuis A, Korthals G, Molendijk L. Tagetes patula as an effective catch crop for long-term control of Pratylenchus penetrans. Nematology. 2004;6(6):877-81. https://doi.org/10.1163/1568541044038632
  21. 19. Natarajan N, Cork A, Boomathi N, Pandi R, Velavan S, Dhakshnamoorthy G. Cold aqueous extracts of African marigold, Tagetes erecta for control tomato root knot nematode, Meloidogyne incognita. Crop Protection. 2006;25(11):1210-3. https://doi.org/10.1016/j.cropro.2006.03.008
  22. 20. Lehman P. Factors influencing nematode control with marigolds. 1979.
  23. 21. Rahat S, Gurr GM, Wratten SD, Mo J, Neeson R. Effect of plant nectars on adult longevity of the stinkbug parasitoid, Trissolcus basalis. International Journal of Pest Management. 2005;51(4):321-4. https://doi.org/10.1080/09670870500312778
  24. 22. Latheef M, Irwin R. Effects of companionate planting on snap bean insects, Epilachna varivestia and Heliothis zea. 1981;195-8. https://doi.org/10.1093/ee/9.2.195
  25. 23. Leslie AW, Hamby KA, McCluen SR, Hooks CR. Evaluating a push-pull tactic for management of Epilachna varivestis Mulsant and enhancement of beneficial arthropods in Phaseolus lunatus L. Ecological Engineering. 2020;147:105660. https://doi.org/10.1016/j.ecoleng.2019.105660
  26. 24. Reynolds LB, Potter JW, Ball‐Coelho BR. Crop rotation with Tagetes sp. is an alternative to chemical fumigation for control of root‐lesion nematodes. Agronomy Journal. 2000;92(5):957-66. https://doi.org/10.2134/agronj2000.925957x
  27. 25. Halbrendt J. Allelopathy in the management of plant-parasitic nematodes. Journal of Nematology. 1996;28(1):8.
  28. 26. Zygadlo J, Guzman C, Grosso N. Antifungal properties of the leaf oils of Tagetes minuta L. and T. filifolia Lag. Journal of Essential Oil Research. 1994;6(6):617-21. https://doi.org/10.1080/10412905.1994.9699353
  29. 27. Gómez-Rodrıguez O, Zavaleta-Mejıa E, Gonzalez-Hernandez V, Livera-Munoz M, Cárdenas-Soriano E. Allelopathy and microclimatic modification of intercropping with marigold on tomato early blight disease development. Field Crops Research. 2003;83(1):27-34. https://doi.org/10.1016/s0378-4290(03)00053-4
  30. 28. Gommers F, Bakker J. Physiological diseases induced by plant responses or products. Diseases of nematodes: CRC press; 2019;3-22. https://doi.org/10.1201/9781351071475-1
  31. 29. Zechmeister L, Sease J. A blue-fluorescing compound, terthienyl, isolated from marigolds. Journal of the American Chemical Society. 1947;69(2):273-5. https://doi.org/10.1021/ja01194a032
  32. 30. Uhlenbroek J, Bijloo J. Investigations on nematicides: II. Structure of a second nematicidal principle isolated from Tagetes roots. Recueil des Travaux Chimiques des Pays‐Bas. 1959;78(5):382-90. https://doi.org/10.1002/recl.19590780512
  33. 31. El-Gengaihi S, Osman H, Youssef M, Mohamed S. Efficacy of Tagetes species extracts on the mortality of the reniform nematode, Rotylenchulus reniformis. 2001.
  34. 32. Singer jm. Investigation of the mosquito larvicidal activity of the oil of marigolds (Tagetes spp., Aedes aegypti, Ocimenone, Allelochemics): Polytechnic University; 1987.
  35. 33. El-Hamawi M, Youssef M, Zawam HS. Management of Meloidogyne incognita, the root-knot nematode, on soybean as affected by marigold and sea ambrosia (damsisa) plants. Journal of Pest Science. 2004;77:95-8. https://doi.org/10.1007/s10340-003-0034-1
  36. 34. Dutta TK, Khan MR, Phani V. Plant-parasitic nematode management via biofumigation using brassica and non-brassica plants: current status and future prospects. Current Plant Biology. 2019;17:17-32. https://doi.org/10.1016/j.cpb.2019.02.001
  37. 35. Powers L, McSorley R, Dunn R. Effects of mixed cropping on a soil nematode community in Honduras. Journal of Nematology. 1993;25(4):666.
  38. 36. Ploeg A. Effects of amending soil with Tagetes patula cv. Single Gold on Meloidogyne incognita infestation of tomato. Nematology. 2000;2(5):489-93. https://doi.org/10.1163/156854100509394
  39. 37. Sayre RM. Promising Organisms for. Plant disease. 1980:527. https://doi.org/10.1094/PD-64-527
  40. 38. Wang J, Wu Y, Wang Q, Peng Y, Pan K, Luo P, et al. Allelopathic effects of Jatropha curcas on marigold (Tagetes erecta L.). Allelopathy Journal. 2009;24(1).
  41. 39. Sarin R. Insecticidal activity of callus culture of Tagetes erecta. Fitoterapia. 2004;75(1):62-4.
  42. https://doi.org/10.1016/j.fitote.2003.07.011
  43. 40. Nikkon F, Habib MR, Saud ZA, Karim MR. Tagetes erecta Linn. and its mosquitocidal potency against Culex quinquefasciatus. Asian Pacific Journal of Tropical Biomedicine. 2011;1(3):186-8.
  44. https://doi.org/10.1016/s2221-1691(11)60024-5
  45. 41. Hooks CR, Wang K-H, Ploeg A, McSorley R. Using marigold (Tagetes spp.) as a cover crop to protect crops from plant-parasitic nematodes. Applied Soil Ecology. 2010;46(3):307-20. https://doi.org/10.1016/j.apsoil.2010.09.005
  46. 42. Weaver DK, Wells CD, Dunkel FV, Bertsch W, Sing SE, Sriharan S. Insecticidal activity of floral, foliar, and root extracts of Tagetes minuta (Asterales: Asteraceae) against adult Mexican bean weevils (Coleoptera: Bruchidae). Journal of Economic Entomology. 1994;87(6):1718-25. https://doi.org/10.1093/jee/87.6.1718
  47. 43. Rahman S, Biswas SK, Barman NC, Ferdous T. Plant extract as selective pesticide for integrated pest management. Biotechnological research. 2016;2(1):6-10.
  48. 44. Salehi B, Valussi M, Morais-Braga MFB, Carneiro JNP, Leal ALAB, Coutinho HDM, et al. Tagetes spp. essential oils and other extracts: Chemical characterization and biological activity. Molecules. 2018;23(11):2847. https://doi.org/10.3390/molecules23112847
  49. 45. Nerio LS, Olivero-Verbel J, Stashenko EE. Repellent activity of essential oils from seven aromatic plants grown in Colombia against Sitophilus zeamais Motschulsky (Coleoptera). Journal of Stored Products Research. 2009;45(3):212-4. https://doi.org/10.1016/j.jspr.2009.01.002
  50. 46. Omer EA, Hendawy SF, El-Deen AN, Zaki FN, Abd-Elgawad MM, Kandeel AM, et al. Some biological activities of Tagetes lucida plant cultivated in Egypt. Advances in Environmental Biology. 2015;9(2):82-8.
  51. 47. Marques MM, Morais SM, Vieira ÍG, Vieira MG, Silva ARA, De Almeida RR, et al. Larvicidal activity of Tagetes erecta against Aedes aegypti. Journal of the American Mosquito Control Association. 2011;27(2):156-8.https://doi.org/10.2987/10-6056.1
  52. 48. Zoubiri S, Baaliouamer A. Potentiality of plants as source of insecticide principles. Journal of Saudi Chemical Society. 2014;18(6):925-38.https://doi.org/10.1016/j.jscs.2011.11.015
  53. 49. Shi D-Y, Ren W-C, Jin W, Zhang J, Mbadianya JI, Mao X-W, et al. The transcription factor FgNsf1 regulates fungal development, virulence and stress responses in Fusarium graminearum. Journal of Integrative Agriculture. 2021;20(8):2156-69. https://doi.org/10.1016/s2095-3119(20)63339-1
  54. 50. Ponkiya N, Desai S, Mistry J, Patel S, Ingalhalli R. Development of economical mosquito repellent using marigold plant. Int J Res Trends Innov. 2018;3:47-54.
  55. 51. Conboy NJ, McDaniel T, Ormerod A, George D, Gatehouse AM, Wharton E, et al. Companion planting with French marigolds protects tomato plants from glasshouse whiteflies through the emission of airborne limonene. PloS one. 2019;14(3):e0213071. https://doi.org/10.1371/journal.pone.0213071
  56. 52. Aiyelaagbe O, Olaide O, Claudius-Cole A, Aiyelaagbe I, Ojo O. Egg hatch inhibition of root-knot nematodes by Tagetes patula extracts. XXX International Horticultural Congress IHC2018: II International Symposium on Innovative Plant Protection in Horticulture 1269; 2018. https://doi.org/10.17660/actahortic.2020.1269.17
  57. 53. Meena R, Singh M, Singh B. Effect of seed rate and weed management on weed and yield of late sown zero-till wheat. National Symposium on Integrated Weed Management in the Era of Climate Change, held at NAAS, New Delhi; 2010. https://doi.org/10.59797/ija.v56i2.4682
  58. 54. Abid M, Maqbool M. Effects of inter-cropping of Tagetes erecta on root-knot disease and growth of tomato. 1990;41-2.
  59. 55. Broussalis AM, Ferraro GE, Martino VS, Pinzón R, Coussio JD, Alvarez JC. Argentine plants as potential source of insecticidal compounds. Journal of Ethnopharmacology. 1999;67(2):219-23. https://doi.org/10.1016/s0378-8741(98)00216-5
  60. 56. Tsai CC, Hung SH, Lin XR, Huang RN. Herbal Plants as Alternatives for the Management of the Red Imported Fire Ant, Solenopsis Invicta (Hymenoptera: Formicidae). 2021. https://doi.org/10.21203/rs.3.rs-676405/v1
  61. 57. Gupta P, Gupta A, Agarwal K, Tomar P, Satija S. Antioxidant and cytotoxic potential of a new thienyl derivative from Tagetes erecta roots. Pharmaceutical Biology. 2012;50(8):1013-8. https://doi.org/10.3109/13880209.2012.655378
  62. 58. Grainge M, Ahmed S. Handbook of plants with pest-control properties; 1988.
  63. 59. Saha S, Walia S, Kundu A, Kumar B, Joshi D. Antifungal acetylinic thiophenes from Tagetes minuta: potential biopesticide. Journal of Applied Botany and Food Quality. 2013;85(2):207.
  64. 60. de Lourdes Miranda-Ham M, Castro-Concha LA, Avilés-Berzunza E, Godoy-Hernández G. Plant regeneration from shoot apex-derived calluses of marigold (Tagetes erecta L.). HortScience. 2006;41(6):1518.https://doi.org/10.21273/hortsci.41.6.1518
  65. 61. Damián-Badillo LM, Salgado-Garciglia R, Martínez-Muñoz RE, Martínez-Pacheco MM. Antifungal properties of some Mexican medicinal plants. Open Nat Prod J. 2008;1:27-33.
  66. https://doi.org/10.2174/1874848100801010027
  67. 62. Shirazi MT, Gholami H, Kavoosi G, Rowshan V, Tafsiry A. Chemical composition, antioxidant, antimicrobial and cytotoxic activities of Tagetes minuta and Ocimum basilicum essential oils. Food Science & Nutrition. 2014;2(2):146-55.https://doi.org/10.1002/fsn3.85
  68. 63. Thembo K, Vismer H, Nyazema N, Gelderblom W, Katerere D. Antifungal activity of four weedy plant extracts against selected mycotoxigenic fungi. Journal of Applied Microbiology. 2010;109(4):1479-86. https://doi.org/10.1111/j.1365-2672.2010.04776.x
  69. 64. Wang KH, Hooks C, Ploeg A. Protecting crops from nematode pests: using marigold as an alternative to chemical nematicides. 2007.
  70. 65. Campbell G, Lambert JD, Arnason T, Towers GN. Allelopathic properties of α-terthienyl and phenylheptatriyne, naturally occurring compounds from species of Asteraceae. Journal of Chemical Ecology. 1982;8:961-72. https://doi.org/10.1007/bf00987662
  71. 66. Gommers F. Increase of the nematicidal activity of A-terthienyl and related compounds by light. 1972. https://doi.org/10.1163/187529272x00052
  72. 67. Hamaguchi T, Sato K, Vicente CS, Hasegawa K. Nematicidal actions of the marigold exudate α-terthienyl: oxidative stress-inducing compound penetrates nematode hypodermis. Biology Open. 2019;8(4):bio038646.https://doi.org/10.1242/bio.038646
  73. 68. Lindblom TH, Dodd AK. Xenobiotic detoxification in the nematode Caenorhabditis elegans. Journal of Experimental Zoology Part A: Comparative Experimental Biology. 2006;305(9):720-30.
  74. https://doi.org/10.1002/jez.a.324
  75. 69. Doonan R, McElwee JJ, Matthijssens F, Walker GA, Houthoofd K, Back P, et al. Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes & development. 2008;22(23):3236-41.https://doi.org/10.1101/gad.504808
  76. 70. Choe KP, Przybysz AJ, Strange K. The WD40 repeat protein WDR-23 functions with the CUL4/DDB1 ubiquitin ligase to regulate nuclear abundance and activity of SKN-1 in Caenorhabditis elegans. Molecular and cellular biology. 2009;29(10):2704-15. https://doi.org/10.1128/mcb.01811-08
  77. 71. Hasegawa K, Miwa S, Isomura K, Tsutsumiuchi K, Taniguchi H, Miwa J. Acrylamide-responsive genes in the nematode Caenorhabditis elegans. Toxicological Sciences. 2008;101(2):215-25. https://doi.org/10.1093/toxsci/kfm276
  78. 72. Dolphin CT, Hope IA. Caenorhabditis elegans reporter fusion genes generated by seamless modification of large genomic DNA clones. Nucleic acids research. 2006;34(9):e72-e. https://doi.org/10.1093/nar/gkl352
  79. 73. Gong Y, Hou Z, Gao Y, Xue Y, Liu X, Liu G. Optimization of extraction parameters of bioactive components from defatted marigold (Tagetes erecta L.) residue using response surface methodology. Food and Bioproducts Processing. 2012;90(1):9-16.
  80. https://doi.org/10.1016/j.fbp.2010.12.004
  81. 74. Domingos PRC, da Silva Pinto AC, dos Santos JMM, Rafael MS. Insecticidal and genotoxic potential of two semi-synthetic derivatives of dillapiole for the control of Aedes (Stegomyia) aegypti (Diptera: Culicidae). Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2014;772:42-54. https://doi.org/10.1016/j.mrgentox.2014.07.008
  82. 75.Heitz JR. Development of photoactivated compounds as pesticides. ACS Publications; 1987.
  83. https://doi.org/10.1021/bk-1987-0339.ch001
  84. 76. Kagan J, Bazin M, Santus R. Photosensitization with α-terthienyl: The formation of superoxide ion in aqueous media. Journal of Photochemistry and Photobiology B: Biology. 1989;3(2):165-74.
  85. https://doi.org/10.1016/1011-1344(89)80059-4
  86. 77. Nivsarkar M, Kumar GP, Laloraya M, Laloraya MM. Superoxide dismutase in the anal gills of the mosquito larvae of Aedes aegypti: Its inhibition by α‐terthienyl. Archives of Insect Biochemistry and Physiology. 1991;16(4):249-55. https://doi.org/10.1002/arch.940160404
  87. 78. Preya UH, Lee KT, Kim NJ, Lee JY, Jang DS, Choi JH. The natural terthiophene α-terthienylmethanol induces S phase cell cycle arrest of human ovarian cancer cells via the generation of ROS stress. Chemico-Biological Interactions. 2017;272:72-9.
  88. https://doi.org/10.1016/j.cbi.2017.05.011
  89. 79. Downum K, Rosenthal G, Towers G. Phototoxicity of the allelochemical, α-terthienyl, to larvae of Manduca sexta (L.)(Sphingidae). Pesticide Biochemistry and Physiology. 1984;22(1):104-9.
  90. https://doi.org/10.1016/0048-3575(84)90015-4
  91. 80. Wang YJ, Lin H, Zhang ZX, XU HH, Liao MD-d, Liao SY. Oxidative damage to Spodoptera litura cell induced by α-Terthienyl. Agricultural Sciences in China. 2007;6(10):1217-23. https://doi.org/10.1016/s1671-2927(07)60166-7
  92. 81. Priyadharshini V, Kavitha PG, Swarnakumari N, Sivakumar U, Haripriya S. Nematicidal Property of Phytochemical Alpha-Terthienyl against Root Knot Nematode, Meloidogyne incognita. Int J Plant Soil Sci. 2023;35(19):1314-21. https://doi.org/10.9734/ijpss/2023/v35i193672
  93. 82. An JH, Blackwell TK. SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes & Development. 2003;17(15):1882-93. https://doi.org/10.1101/gad.1107803
  94. 83. Vanfleteren JR, De Vreese A. The gerontogenes age‐1 and daf‐2 determine metabolic rate potential in aging Caenorhabditis elegans. The FASEB Journal. 1995;9(13):1355-61. https://doi.org/10.1096/fasebj.9.13.7557026
  95. 84. Huang S. Cropping effects of marigolds, corn, and okra on population levels of Meloidogyne javanica and on carrot yields. Journal of Nematology. 1984;16(4):396.
  96. 85. Wernersson AS, Dave G, Nilsson E. Combining sediment quality criteria and sediment bioassays with photoactivation for assessing sediment quality along the Swedish West Coast. Aquatic Ecosystem Health & Management. 1999;2(4):379-89.
  97. https://doi.org/10.1080/14634989908656976
  98. 86. Faizi S, Fayyaz S, Bano S, Yawar Iqbal E, Siddiqi H, Naz A. Isolation of nematicidal compounds from Tagetes patula L. yellow flowers: Structure–activity relationship studies against cyst nematode Heterodera zeae infective stage larvae. Journal of Agricultural and Food Chemistry. 2011;59(17):9080-93. https://doi.org/10.1021/jf201611b
  99. 87. Wang L, Lu Y, Xu Y, Zeng L. The current status of research on Solenopsis invicta Buren (Hymenoptera: Formicidae) in Mainland China. Asian Myrmecol. 2013;5:125-38.
  100. 88. Murindangabo YT, Kopecký M, Konvalina P, Ghorbani M, Perná K, Nguyen TG, et al. Quantitative approaches in assessing soil organic matter dynamics for sustainable management. Agronomy. 2023;13(7):1776. https://doi.org/10.3390/agronomy13071776
  101. 89. Keerthiraj M, Mandal A, Dutta TK, Saha S, Dutta A, Singh A, et al. Nematicidal and molecular docking investigation of essential oils from Pogostemon cablin ecotypes against Meloidogyne incognita. Chemistry & Biodiversity. 2021;18(9):e2100320. https://doi.org/10.1002/cbdv.202100320
  102. 90. Marahatta SP, Wang KH, Sipes BS, Hooks CR. Effects of Tagetes patula on active and inactive stages of root-knot nematodes. Journal of Nematology. 2012;44(1):26.
  103. 91. Mun H, Townley HE. Nanoencapsulation of plant volatile organic compounds to improve their biological activities. Planta Medica. 2021;87(03):236-51.https://doi.org/10.1055/a-1289-4505
  104. 92. Siddiqui MA, Alam MM. Studies on the nemato-toxicity of root exudates of certain species of Tagetes. Indian Journal of Nematology. 1988;18(2):335-7.
  105. 93. Pudasaini M, Viaene N, Moens M. Effect of marigold (Tagetes patula) on population dynamics of Pratylenchus penetrans in a field. Nematology. 2006;8(4):477-84. https://doi.org/10.1163/156854106778613930
  106. 94. Alexander SA, Waldenmaier CM. Suppression of Pratylenchus penetrans populations in potato and tomato using African marigolds. Journal of Nematology. 2002;34(2):130.
  107. 95. Ko M, Schmitt D. Changes in plant-parasitic nematode populations in pineapple fields following inter-cycle cover crops. Journal of Nematology. 1996;28(4):546. https://doi.org/10.17660/actahortic.1993.334.39
  108. 96. Dandin S, Philip T, Datta R. Effect of marigold (Tagetes patula) intercropping against Meloidogyne incognita infecting mulberry. Indian Journal of Nematology. 1991;21(1):96-9.
  109. 97.Kimpinski J, Arsenault W, Gallant C, Sanderson J. The effect of marigolds (Tagetes spp.) and other cover crops on Pratylenchus penetrans and on following potato crops. Journal of Nematology. 2000;32(4S):531.
  110. 98.Hackney R, Dickerson O. Marigold, castor bean, and chrysanthemum as controls of Meloidogyne incognita and Pratylenchus alleni. Journal of Nematology. 1975;7(1):84.
  111. 99.Rhoades H. Relative susceptibility of Tagetes patula and Aeschynomene americana to plant nematodes in Florida. Nematropica. 1980:116-20.
  112. 100. Miller P, Ahrens J. Influence of growing marigolds, weeds, two cover crops and fumigation on subsequent populations of parasitic nematodes and plant growth. 1969.
  113. 101. Mares D, Tosi B, Poli F, Andreotti E, Romagnoli C. Antifungal activity of Tagetes patula extracts on some phytopathogenic fungi: ultrastructural evidence on Pythium ultimum. Microbiological Research. 2004;159(3):295-304.
  114. https://doi.org/10.1016/j.micres.2004.06.001
  115. 102. Céspedes CL, Avila JG, Martínez A, Serrato B, Calderón-Mugica JC, Salgado-Garciglia R. Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida). Journal of Agricultural and Food Chemistry. 2006;54(10):3521-7. https://doi.org/10.1021/jf053071w
  116. 103. Velasco-Azorsa R, Cruz-Santiago H, Cid del Prado-Vera I, Ramirez-Mares MV, Gutiérrez-Ortiz MdR, Santos-Sánchez NF, et al. Chemical characterization of plant extracts and evaluation of their nematicidal and phytotoxic potential. Molecules. 2021;26(8):2216. https://doi.org/10.3390/molecules26082216
  117. 104. Barbosa LC, Barcelos FF, Demuner AJ, Santos MA. Investigation-Research: Chemical constituents from Mucuna aterrima with activity against Meloidogyne incognita and Heterodera glycines. Nematropica. 1999:81-8.
  118. 105. Priyadharshini V, Kavitha PG, Vetrivelkalai P, Shandeep S, Rajavel M, Balakrishnan N, et al. Smart delivery of nanofiber matrix encapsulated botanical nematicide α-terthienyl against root knot nematode on tomato. Physiological and Molecular Plant Pathology. 2025;136:102508. https://doi.org/10.1016/j.pmpp.2024.102508
  119. 106. Bakker J, Schots A, Bouwman-Smits L, Gommers F. Species-specific and thermostable proteins from second-stage larvae of Globodera rostochiensis and G. pallida. 1988.

Downloads

Download data is not yet available.