Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Tiny toxins, big problems: the hidden threat of microplastic in agroecosystems

DOI
https://doi.org/10.14719/pst.8337
Submitted
17 March 2025
Published
08-07-2025
Versions

Abstract

Microplastic pollution has become a critical environmental challenge particularly in agricultural ecosystems, where excessive plastic use contributes to its accumulation in soils. Microplastic originate from various sources including plastic mulch films, irrigation systems, fertilizers, packaging materials and factories also gradually breaking down into microscopic particles that infiltrate the soil. Their presence disrupts soil structure, alters physicochemical properties and negatively affects water retention, nutrient cycling and microbial diversity ultimately reducing soil fertility and crop productivity. Besides disturbing soil health, microplastic enter the food chain through plant uptake, posing potential health risks to humans and even animals ingestit directly. Long-term exposure to microplastic has been linked to toxic effects including the accumulation of harmful chemicals and heavy metals. To mitigate these impacts, sustainable strategies such as biodegradable plastic alternatives, regulatory frameworks and bioremediation techniques involving plants and microorganisms must be implemented. Additionally, improved waste management practices particularly the 4Rs (Reduce, Reuse, Recycle and Recover) can significantly reduce microplastic contamination. Addressing microplastic pollution in agroecosystems requires a collaborative global effort involving policymakers, industries, researchers and local communities. By promoting sustainable agricultural practices and enforcing stricter regulations on plastic use, we can safeguard environmental health, ensure food security and protect future generations from the long-term consequences of microplastic pollution.

References

  1. 1. Plastics Europe. The circular economy for plastics – A European analysis 2024. Brussels: Plastics Europe. 2024.
  2. 2. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Science Advances. 2017;3(7):e1700782. https://doi.org/10.1126/sciadv.1700782
  3. 3. Letcher TM. Introduction to plastic waste and recycling. In Plastic waste and recycling. 2020: 3-12.. https://doi.org/10.1016/B978-0-12-817880-5.00001-3
  4. 4. Fuller S, Gautam A. A procedure for measuring microplastics using pressurized fluid extraction. Environmental Science & Technology. 2016;50(11):5774-80. https://doi.org/10.1021/acs.est.6b00816
  5. 5. Chen G, Li Y, Liu S, Junaid M, Wang J. Effects of micro (nano) plastics on higher plants and the rhizosphere environment. Science of the Total Environment. 2022;807:150841. https://doi.org/10.1016/j.scitotenv.2021.150841
  6. 6. Mai L, Bao LJ, Wong CS, Zeng EY. Microplastics in the terrestrial environment. In Microplastic contamination in aquatic environments. 2024: 229-47. https://doi.org/10.1016/B978-0-443-15332-7.00012-0
  7. 7. Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment. 2017;586:127-41. https://doi.org/10.1016/j.scitotenv.2017.01.190
  8. 8. Duan J, Bolan N, Li Y, Ding S, Atugoda T, Vithanage M, et al. Weathering of microplastics and interaction with other coexisting constituents in terrestrial and aquatic environments. Water Research. 2021;196:117011. https://doi.org/10.1016/j.watres.2021.117011
  9. 9. Pan Z, Liu Q, Jiang R, Li W, Sun X, Lin H, et al. Microplastic pollution and ecological risk assessment in an estuarine environment: The Dongshan Bay of China. Chemosphere. 2021;262:127876. https://doi.org/10.1016/j.chemosphere.2020.127876
  10. 10. Hayes DG. Impact of plastics in agriculture. Agriculture. 2025;15(3):322. https://doi.org/10.3390/agriculture15030322
  11. 11. Dixon M. Plastics and agriculture in the desert frontier. Comparative Studies of South Asia, Africa and the Middle East. 2017;37(1):86-102. https://doi.org/10.1215/1089201x-3821321
  12. 12. Borg R, Camilleri FM. Investigating the agricultural use and disposal of plastics in Malta. Sustainability. 2024;16(3):954. https://doi.org/10.3390/su16030954
  13. 13. Lakhiar IA, Yan H, Zhang J, Wang G, Deng S, Bao R, et al. Plastic pollution in agriculture as a threat to food security, the ecosystem and the environment: an overview. Agronomy. 2024;14(3):548. https://doi.org/10.3390/agronomy14030548
  14. 14. Gavigan J, Kefela T, Macadam SI, Suh S, Geyer R. Synthetic microfiber emissions to land rival those to waterbodies and are growing. PLoS One. 2020;15(9):e0237839. https://doi.org/10.1371/journal.pone.0237839
  15. 15. FAO. Assessment of agricultural plastics and their sustainability: A call for action.. 2021.
  16. 16. Hofmann T, Ghoshal S, Tufenkji N, Adamowski JF, Bayen S, Chen Q, et al. Plastics can be used more sustainably in agriculture. Communications Earth & Environment. 2023;4(1):332. https://doi.org/10.1038/s43247-023-00982-4
  17. 17. Walker TR. Calling for a decision to launch negotiations on a new global agreement on plastic pollution at UNEA5. 2. Marine Pollution Bulletin. 2022;176:113447. https://doi.org/10.1016/j.marpolbul.2022.113447
  18. 18. Wright SL, Thompson RC, Galloway TS. The physical impacts of microplastics on marine organisms: A review. Environmental Pollution. 2013;178:483-92. https://doi.org/10.1016/j.envpol.2013.02.031
  19. 19. Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, John AW, et al. Lost at sea: where is all the plastic?. Science. 2004;304(5672):838. https://doi.org/10.1126/science.1094559
  20. 20. Masciarelli E, Casorri L, Di LM, Beni C, Valentini M, Costantini E, et al. Microplastics in agricultural crops and their possible impact on farmers’ health: A review. International Journal of Environmental Research and Public Health. 2024;22(1):45. https://doi.org/10.3390/ijerph22010045
  21. 21. Moore CJ. Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environmental Research. 2008;108(2):131-9. https://doi.org/10.1016/j.envres.2008.07.025
  22. 22. Crawford CB, Quinn B. Plastic production, waste and legislation. Microplastic Pollutants. 2017;30:39-56. https://doi.org/10.1016/B978-0-12-809406-8.00003-7
  23. 23. Wagner M, Lambert S. Freshwater microplastics: emerging environmental contaminants?. Springer Nature; 2018. https://doi.org/10.1007/978-3-319-61615-5
  24. 24. Barboza LG, Gimenez BC. Microplastics in the marine environment: Current trends and future perspectives. Marine Pollution Bulletin. 2015;97(1-2):5-12. https://doi.org/10.1016/j.marpolbul.2015.06.008
  25. 25. Qadeer A, Ajmal Z, Usman M, Zhao X, Chang S. Agricultural plastic mulching as a potential key source of microplastic pollution in the terrestrial ecosystem and consequences. Resources, Conservation and Recycling. 2021;175:105855. https://doi.org/10.1016/j.resconrec.2021.105855
  26. 26. Bläsing M, Amelung W. Plastics in soil: Analytical methods and possible sources. Science of the Total Environment. 2018;612:422-35. https://doi.org/10.1016/j.scitotenv.2017.08.086
  27. 27. Zhou B, Wang J, Zhang H, Shi H, Fei Y, Huang S, et al. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, East China: Multiple sources other than plastic mulching film. Journal of Hazardous Materials. 2020;388:121814. https://doi.org/10.1016/j.jhazmat.2019.121814
  28. 28. Li W, Wufuer R, Duo J, Wang S, Luo Y, Zhang D, et al. Microplastics in agricultural soils: Extraction and characterization after different periods of polythene film mulching in an arid region. Science of the Total Environment. 2020;749:141420. https://doi.org/10.1016/j.scitotenv.2020.141420
  29. 29. Piehl S, Leibner A, Löder MG, Dris R, Bogner C, Laforsch C. Identification and quantification of macro-and microplastics on an agricultural farmland. Scientific Reports. 2018;8(1):17950. https://doi.org/10.1038/s41598-018-36172-y
  30. 30. Yang L, Zhang Y, Kang S, Wang Z, Wu C. Microplastics in soil: A review on methods, occurrence, sources, and potential risk. Science of the Total Environment. 2021;780:146546. https://doi.org/10.1016/j.scitotenv.2021.146546
  31. 31. Di M, Wang J. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China. Science of the Total Environment. 2018;616:1620-7. https://doi.org/10.1016/j.scitotenv.2017.10.150
  32. 32. Lwanga EH, Beriot N, Corradini F, Silva V, Yang X, Baartman J, et al. Review of microplastic sources, transport pathways and correlations with other soil stressors: a journey from agricultural sites into the environment. Chemical and Biological Technologies in Agriculture. 2022;9(1):20. https://doi.org/10.1186/s40538-021-00278-9
  33. 33. Corradini F, Meza P, Eguiluz R, Casado F, Huerta LE, Geissen V. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of the Total Environment. 2019;671:411-20. https://doi.org/10.1016/j.scitotenv.2019.03.368
  34. 34. Gao D, Li XY, Liu HT. Source, occurrence, migration and potential environmental risk of microplastics in sewage sludge and during sludge amendment to soil. Science of the Total Environment. 2020;742:140355. https://doi.org/10.1016/j.scitotenv.2020.140355
  35. 35. He D, Luo Y, Lu S, Liu M, Song Y, Lei L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends in Analytical Chemistry. 2018;109:163-72. https://doi.org/10.1016/j.trac.2018.10.006
  36. 36. Weithmann N, Möller JN, Löder MG, Piehl S, Laforsch C, Freitag R. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Science Advances. 2018;4(4):eaap8060. https://doi.org/10.1126/sciadv.aap8060
  37. 37. Gui J, Sun Y, Wang J, Chen X, Zhang S, Wu D. Microplastics in composting of rural domestic waste: abundance, characteristics and release from the surface of macroplastics. Environmental Pollution. 2021;274:116553. https://doi.org/10.1016/j.envpol.2021.116553
  38. 38. Du CW, Zhou JM, Shaviv A. Release characteristics of nutrients from polymer-coated compound controlled release fertilizers. Journal of Polymers and the Environment. 2006;14:223-30. https://doi.org/10.1007/s10924-006-0025-4
  39. 39. Guerrini S, Borreani G, Voojis H. Biodegradable materials in agriculture: Case histories and perspectives. In Soil degradable bioplastics for a sustainable modern agriculture 2017; 35-65.. https://doi.org/10.1007/978-3-662-54130-2_3
  40. 40. Yu M, Van DPM, Lwanga EH, Yang X, Zhang S, Ma X, et al. Leaching of microplastics by preferential flow in earthworm (Lumbricus terrestris) burrows. Environmental Chemistry. 2019;16(1):31-40. https://doi.org/10.1071/EN18161
  41. 41. Zhang Y, Gao T, Kang S, Sillanpää M. Importance of atmospheric transport for microplastics deposited in remote areas. Environmental Pollution. 2019;254:112953. https://doi.org/10.1016/j.envpol.2019.07.121
  42. 42. Maaß S, Daphi D, Lehmann A, Rillig MC. Transport of microplastics by two Collembolan species. Environmental Pollution. 2017 ;225:456-9. https://doi.org/10.1016/j.envpol.2017.03.009
  43. 43. Tisdall JM, Oades JM. Organic matter and water‐stable aggregates in soils. Journal of Soil Science. 1982;33(2):141-63. https://doi.org/10.1111/j.1365-2389.1982.tb01755.x
  44. 44. Rillig MC, Ingraffia R, Souza dMAA. Microplastic incorporation into soil in agroecosystems. Frontiers in Plant Science. 2017;8:1805. https://doi.org/10.3389/fpls.2017.01805
  45. 45. Dong Z, Zhu L, Zhang W, Huang R, Lv X, Jing X, et al. Role of surface functionalities of nanoplastics on their transport in seawater-saturated sea sand. Environmental Pollution. 2019;255:113177. https://doi.org/10.1016/j.envpol.2019.113177
  46. 46. Windsor FM, Durance I, Horton AA, Thompson RC, Tyler CR, Ormerod SJ. A catchment‐scale perspective of plastic pollution. Global Change Biology. 2019;25(4):1207-21. https://doi.org/10.1111/gcb.14572
  47. 47. Wong JK, Lee KK, Tang KH, Yap PS. Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions. Science of the Total Environment. 2020;719:137512. https://doi.org/10.1016/j.scitotenv.2020.137512
  48. 48. Rillig MC, Lehmann A. Microplastic in terrestrial ecosystems. Science. 2020;368(6498):1430-1. https://doi.org/10.1126/science.abb5979
  49. 49. Yang W, Cheng P, Adams CA, Zhang S, Sun Y, Yu H, et al. Effects of microplastics on plant growth and arbuscular mycorrhizal fungal communities in a soil spiked with ZnO nanoparticles. Soil Biology and Biochemistry. 2021;155:108179. https://doi.org/10.1016/j.soilbio.2021.108179
  50. 50. Wang J, Liu X, Li Y, Powell T, Wang X, Wang G, et al. Microplastics as contaminants in the soil environment: A mini-review. Science of the Total Environment. 2019;691:848-57. https://doi.org/10.1016/j.scitotenv.2019.07.209
  51. 51. Liu H, Yang X, Liu G, Liang C, Xue S, Chen H, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere. 2017;185:907-17. https://doi.org/10.1016/j.chemosphere.2017.07.064
  52. 52. Huang Y, Zhao Y, Wang J, Zhang M, Jia W, Qin X. LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environmental Pollution. 2019;254:112983. https://doi.org/10.1016/j.envpol.2019.112983
  53. 53. DeForest JL, Zak DR, Pregitzer KS, Burton AJ. Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest. Soil Biology and Biochemistry. 2004;36(6):965-71. https://doi.org/10.1016/j.soilbio.2004.02.011
  54. 54. Iqbal B, Zhao T, Yin W, Zhao X, Xie Q, Khan KY, et al. Impacts of soil microplastics on crops: A review. Applied Soil Ecology. 2023;181:104680. https://doi.org/10.1016/j.apsoil.2022.104680
  55. 55. Bosker T, Bouwman LJ, Brun NR, Behrens P, Vijver MG. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere. 2019;226:774-81. https://doi.org/10.1016/j.chemosphere.2019.03.163
  56. 56. Zhang Q, Zhao M, Meng F, Xiao Y, Dai W, Luan Y. Effect of polystyrene microplastics on rice seed germination and antioxidant enzyme activity. Toxics. 2021;9(8):179. https://doi.org/10.3390/toxics9080179
  57. 57. Jiang X, Chen H, Liao Y, Ye Z, Li M, Klobučar G. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environmental Pollution. 2019;250:831-8. https://doi.org/10.1016/j.envpol.2019.04.055
  58. 58. Urbina MA, Correa F, Aburto F, Ferrio JP. Adsorption of polyethylene microbeads and physiological effects on hydroponic maize. Science of the Total Environment. 2020;741:140216. https://doi.org/10.1016/j.scitotenv.2020.140216
  59. 59. Wu J, Liu W, Zeb A, Lian J, Sun Y, Sun H. Polystyrene microplastic interaction with Oryza sativa: toxicity and metabolic mechanism. Environmental Science: Nano. 2021;8(12):3699-710. https://doi.org/10.1039/D1EN00636C
  60. 60. Li S, Wang T, Guo J, Dong Y, Wang Z, Gong L, et al. Polystyrene microplastics disturb the redox homeostasis, carbohydrate metabolism and phytohormone regulatory network in barley. Journal of Hazardous Materials. 2021;415:125614. https://doi.org/10.1016/j.jhazmat.2021.125614
  61. 61. Kalčíková G, Gotvajn AŽ, Kladnik A, Jemec A. Impact of polyethylene microbeads on the floating freshwater plant duckweed Lemna minor. Environmental Pollution. 2017;230:1108-15. https://doi.org/10.1016/j.envpol.2017.07.050
  62. 62. Gao M, Liu Y, Song Z. Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (Lactuca sativa L. var. ramosa Hort). Chemosphere. 2019;237:124482. https://doi.org/10.1016/j.chemosphere.2019.124482
  63. 63. Dong Y, Gao M, Song Z, Qiu W. Microplastic particles increase arsenic toxicity to rice seedlings. Environmental Pollution. 2020;259:113892. https://doi.org/10.1016/j.envpol.2019.113892
  64. 64. Colzi I, Renna L, Bianchi E, Castellani MB, Coppi A, Pignattelli S, et al. Impact of microplastics on growth, photosynthesis and essential elements in Cucurbita pepo L. Journal of Hazardous Materials. 2022 ;423:127238. https://doi.org/10.1016/j.jhazmat.2021.127238
  65. 65. Li J, Zhang H, Zhu J, Shen Y, Zeng N, Liu S, et al. Role of miR164 in the growth of wheat new adventitious roots exposed to phenanthrene. Environmental Pollution. 2021;284:117204. https://doi.org/10.1016/j.envpol.2021.117204
  66. 66. Ding L, Luo Y, Yu X, Ouyang Z, Liu P, Guo X. Insight into interactions of polystyrene microplastics with different types and compositions of dissolved organic matter. Science of the Total Environment. 2022;824:153883. https://doi.org/10.1016/j.scitotenv.2022.153883
  67. 67. Van Der Heijden MG, Bruin DS, Luckerhoff L, Van Logtestijn RS, Schlaeppi K. A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. The ISME journal. 2016;10(2):389-99. https://doi.org/10.1038/ismej.2015.120
  68. 68. Zhou CQ, Lu CH, Mai L, Bao LJ, Liu LY, Zeng EY. Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage. Journal of Hazardous Materials. 2021;401:123412. https://doi.org/10.1016/j.jhazmat.2020.123412
  69. 69. Lian J, Wu J, Xiong H, Zeb A, Yang T, Su X, et al. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.). Journal of Hazardous Materials. 2020;385:121620. https://doi.org/10.1016/j.jhazmat.2019.121620
  70. 70. Dong Y, Gao M, Qiu W, Song Z. Uptake of microplastics by carrots in presence of As (III): Combined toxic effects. Journal of Hazardous Materials. 2021;411:125055. https://doi.org/10.1016/j.jhazmat.2021.125055
  71. 71. Li Z, Li R, Li Q, Zhou J, Wang G. Physiological response of cucumber (Cucumis sativus L.) leaves to polystyrene nanoplastics pollution. Chemosphere. 2020;255:127041. https://doi.org/10.1016/j.chemosphere.2020.127041
  72. 72. Esterhuizen M, Vikfors S, Penttinen OP, Kim YJ, Pflugmacher S. Lolium multiflorum germination and growth affected by virgin, naturally, and artificially aged high-density polyethylene microplastic and leachates. Frontiers in Environmental Science. 2022;10:964230. https://doi.org/10.3389/fenvs.2022.964230
  73. 73. Maity S, Chatterjee A, Guchhait R, De S, Pramanick K. Cytogenotoxic potential of a hazardous material, polystyrene microparticles on Allium cepa L. Journal of Hazardous Materials. 2020;385:121560. https://doi.org/10.1016/j.jhazmat.2019.121560
  74. 74. Fajardo C, Martín C, Costa G, Sánchez FS, Rodríguez C, de Lucas BJJ, et al. Assessing the role of polyethylene microplastics as a vector for organic pollutants in soil: Ecotoxicological and Molecular Approaches. Chemosphere. 2022;288:132460. https://doi.org/10.1016/j.chemosphere.2021.132460
  75. 75. Liu XD, Gong YF, Li J, Xue JY, Wu F, Pan JX. Mechanism of the programmed cell death triggered by plasticizers in the germination process of wheat seeds. Journal of Triticeae Crops. 2013;33(2):350-6.
  76. 76. Wang W, Ge J, Yu X, Li H. Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective. Science of the Total Environment. 2020;708:134841. https://doi.org/10.1016/j.scitotenv.2019.134841
  77. 77. Shi M, Sun Y, Wang Z, He G, Quan H, He H. Plastic film mulching increased the accumulation and human health risks of phthalate esters in wheat grains. Environmental Pollution. 2019;250:1-7. https://doi.org/10.1016/j.envpol.2019.03.064
  78. 78. Xie HJ, Shi YJ, Zhang J, Cui Y, Teng SX, Wang SG, et al. Degradation of phthalate esters (PAEs) in soil and the effects of PAEs on soil microcosm activity. Journal of Chemical Technology & Biotechnology. 2010;85(8):1108-16. https://doi.org/10.1002/jctb.2406
  79. 79. Mercogliano R, Avio CG, Regoli F, Anastasio A, Colavita G, Santonicola S. Occurrence of microplastics in commercial seafood under the perspective of the human food chain. A review. Journal of Agricultural and Food Chemistry. 2020;68(19):5296-301. https://doi.org/10.1021/acs.jafc.0c01209
  80. 80. Vethaak AD, Leslie HA. Plastic debris is a human health issue.2016: 6825-26.
  81. 81. Fackelmann G, Sommer S. Microplastics and the gut microbiome: How chronically exposed species may suffer from gut dysbiosis. Marine Pollution Bulletin. 2019;143:193-203. https://doi.org/10.1016/j.marpolbul.2019.04.030
  82. 82. Watkins E, Schweitzer JP. Moving towards a circular economy for plastics in the EU by 2030. Institute for European Environmental Policy. 2018.
  83. 83. van Der Marel ER. Trading plastic waste in a global economy: soundly regulated by the Basel Convention?. Journal of Environmental Law. 2022;34(3):477-97. https://doi.org/10.1093/jel/eqac017
  84. 84. Kasirajan S, Ngouajio M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agronomy for Sustainable Development. 2012;32:501-29. https://doi.org/10.1007/s13593-011-0068-3
  85. 85. Kyrikou I, Briassoulis D. Biodegradation of agricultural plastic films: A critical review. Journal of Polymers and the Environment. 2007;15:125-50. https://doi.org/10.1007/s10924-007-0053-8
  86. 86. Lee SY. Bacterial polyhydroxyalkanoates. Biotechnology and Bioengineering. 1996;49(1):1-4. https://doi.org/10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.3.CO;2-1
  87. 87. Wu WM, Yang J, Criddle CS. Microplastics pollution and reduction strategies. Frontiers of Environmental Science & Engineering. 2017;11:1-4. https://doi.org/10.1007/s11783-017-0897-7
  88. 88. Reichenauer TG, Germida JJ. Phytoremediation of organic contaminants in soil and groundwater. ChemSusChem: Chemistry & Sustainability Energy & Materials. 2008;1(8‐9):708-17. https://doi.org/10.1002/cssc.200800125
  89. 89. Goss H, Jaskiel J, Rotjan R. Thalassia testudinum as a potential vector for incorporating microplastics into benthic marine food webs. Marine Pollution Bulletin. 2018;135:1085-9. https://doi.org/10.1016/j.marpolbul.2018.08.024
  90. 90. Gudeta K, Kumar V, Bhagat A, Julka JM, Bhat SA, Ameen F, et al. Ecological adaptation of earthworms for coping with plant polyphenols, heavy metals and microplastics in the soil: A review. Heliyon. 2023;9(3). https://doi.org/10.1016/j.heliyon.2023.e14572
  91. 91. Yang Y, Suyamud B, Liang S, Liang X, Wan W, Zhang W. Distinct spatiotemporal succession of bacterial generalists and specialists in the lacustrine plastisphere. Environmental Microbiology. 2023;25(12):2746-60. https://doi.org/10.1111/1462-2920.16400
  92. 92. Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, Jang JH, et al. Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering. 2020;8(9):3494-511. https://doi.org/10.1021/acssuschemeng.9b06635
  93. 93. Rambabu K, Bharath G, Govarthanan M, Kumar PS, Show PL, Banat F. Bioprocessing of plastics for sustainable environment: Progress, challenges and prospects. TrAC Trends in Analytical Chemistry. 2023; 166:117189. https://doi.org/10.1016/j.trac.2023.117189
  94. 94. Yoshida S, Hiraga K, Taniguchi I, Oda K. Ideonella sakaiensis, PETase and MHETase: From identification of microbial PET degradation to enzyme characterization. In Methods in enzymology 2021;648:187-205. https://doi.org/10.1016/bs.mie.2020.12.007
  95. 95. Jia H, Zhang M, Weng Y, Li C. Degradation of polylactic acid/polybutylene adipate-co-terephthalate by coculture of Pseudomonas mendocina and Actinomucor elegans. Journal of Hazardous Materials. 2021;403:123679. https://doi.org/10.1016/j.jhazmat.2020.123679
  96. 96. Kitadokoro K, Thumarat U, Nakamura R, Nishimura K, Karatani H, Suzuki H, et al. Crystal structure of cutinase Est119 from Thermobifida alba AHK119 that can degrade modified polyethylene terephthalate at 1.76 Å resolution. Polymer Degradation and Stability. 2012;97(5):771-5. https://doi.org/10.1016/j.polymdegradstab.2012.02.003
  97. 97. Nag M, Lahiri D, Dutta B, Jadav G, Ray RR. Biodegradation of used polyethylene bags by a new marine strain of Alcaligenes faecalis LNDR-1. Environmental Science and Pollution Research. 2021; 28:41365-79. https://doi.org/10.1007/s11356-021-13704-0
  98. 98. Fukuzaki H, Yoshida M, Asano M, Kumakura M. Synthesis of copoly (D, L-lactic acid) with relatively low molecular weight and in vitro degradation. European Polymer Journal. 1989;25(10):1019-26. https://doi.org/10.1016/0014-3057(89)90131-6
  99. 99. Gogoi J, Singh R, Singh SB, Feroze SM, Choudhury A, Hemochandra L, et al. Utilization pattern of bamboo in North eastern region of India. Indian Journal of Extension Education. 2022;58(2):115-9. https://doi.org/10.48165/IJEE.2022.58222
  100. 100. Kumar S, Nigam M. Advances in commercial biodegradable products in India: Alternatives to Plastics. International Journal of Science and Research. 2023;12(3):271-4. https://doi.org/10.21275/SR23306180640

Downloads

Download data is not yet available.