Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Machine learning techniques for forest fire prediction: Current trends, challenges and future directions

DOI
https://doi.org/10.14719/pst.8399
Submitted
20 March 2025
Published
01-07-2025 — Updated on 14-07-2025
Versions

Abstract

Forest fires pose a significant threat to ecosystems, biodiversity and human livelihoods, necessitating the development of advanced predictive models for timely intervention. Machine learning (ML) techniques have emerged as effective tools for predicting forest fires by utilizing various environmental, meteorological and topographical datasets. This review explores recent advancements in ML-based fire prediction, highlighting key methodologies such as Random Forest, Support Vector Machines, Neural Networks and hybrid models. The combination of remote sensing data, real-time observation and cloud computing has notably improved the prediction accuracy. Moreover, the growth of Explainable AI (XAI) has enhanced the interpretability of ML models. Despite advancements, challenges such as data imbalances, model generalization issues and computational constraints persist. Future research must focus on refining ML algorithms to improve regional adaptability, integrating climate change forecasts and establishing real-time early warning systems. By bridging the gap between theoretical advancements and practical applications, ML-driven forest fire prediction models can significantly contribute to mitigating the devastating impact of forest fire and enhancing global fire management strategies.

References

  1. 1. Sewak R, Vashisth M, Gupta L. Forest Fires in India: A Review. J Univ Shanghai Sci Technol. 2021;23(07):247-59. https://doi.org/10.51201/JUSST/21/07129
  2. 2. Bisquert M, Caselles E, Sánchez JM, Caselles V. Application of artificial neural networks and logistic regression to the prediction of forest fire danger in Galicia using MODIS data. Int J Wildland Fire. 2012;21(8):1025. https://doi.org/10.1071/WF11105
  3. 3. Eugenio FC, Dos Santos AR, Fiedler NC, Ribeiro GA, Da Silva AG, Dos Santos ÁB, et al. Applying GIS to develop a model for forest fire risk: A case study in Espírito Santo, Brazil. J Environ Manage. 2016;173:65-71. https://doi.org/10.1016/j.jenvman.2016.02.021
  4. 4. Pivovaroff AL, McDowell NG, Rodrigues TB, Brodribb T, Cernusak LA, Choat B, et al. Stability of tropical forest tree carbon‐water relations in a rainfall exclusion treatment through shifts in effective water uptake depth. Glob Change Biol. 2021;27(24):6454–66. https://doi.org/10.1111/gcb.15869
  5. 5. Priya A, Kumar R, Lal AK, Singh US. Forest fire in India: A threat to Indian forest. Int J Creat Res Thoughts. 2024;12(1):a185-a193.
  6. 6. Rabin SS, Gérard FN, Arneth A. The influence of thinning and prescribed burning on future forest fires in fire-prone regions of Europe. Environ Res Lett. 2022;17(5):055010. https://doi.org/10.1088/1748-9326/ac6312
  7. 7. Mina U, Dimri AP, Farswan S. Forest fires and climate attributes interact in central Himalayas: an overview and assessment. Fire Ecol. 2023;19(1):14. https://doi.org/10.1186/s42408-023-00177-4
  8. 8. Sharma RK, Sharma N, Shrestha DG, Luitel KK, Arrawatia ML, Pradhan S. Study of forest fires in Sikkim himalayas, India using remote sensing and GIS techniques. Climate Change in Sikkim–Patterns, impacts and initiatives. 2012:233-44.
  9. 9. Mukhopadhyay D. Impact of climate change on forest ecosystem and forest fire in India. In: Proceedings of IOP conference series. Earth and environmental science; 2009 Feb 1; IOP Publishing. https://doi.org/10.1088/1755-1307/6/38/382027
  10. 10. Flannigan MD, Krawchuk MA, De Groot WJ, Wotton BM, Gowman LM. Implications of changing climate for global wildland fire. Int J Wildland Fire. 2009;18(5):483. https://doi.org/10.1071/WF08187
  11. 11. Roy PS. Forest fire and degradation assessment using satellite remote sensing and geographic information system. In Proceedings of the training workshop on Satellite remote sensing and GIS applications in agricultural meteorology; 2005 July 7-11; Dehra Dun, India [cited 2024 May 14].
  12. 12. Chuvieco E, Aguado I, Jurdao S, Pettinari ML, Yebra M, Salas J, et al. Integrating geospatial information into fire risk assessment. Int J Wildland Fire. 2014;23(5):606. https://doi.org/10.1071/WF12052
  13. 13. Jain P, Coogan SCP, Subramanian SG, Crowley M, Taylor S, Flannigan MD. A review of machine learning applications in wildfire science and management. Environ Rev. 2020;28(4):478-505. https://doi.org/10.1139/er-2020-0019
  14. 14. Karpatne A, Ebert-Uphoff I, Ravela S, Babaie HA, Kumar V. Machine learning for the Geosciences: Challenges and opportunities. IEEE Trans Knowl Data Eng. 2019;31(8):1544–54. https://doi.org/10.1109/TKDE.2018.2861006
  15. 15. McGovern A, Elmore KL, Gagne DJ, Haupt SE, Karstens CD, Lagerquist R, et al. Using artificial intelligence to improve real-time decision-making for high-impact weather. Bull Am Meteorol Soc. 2017;98(10):2073–90. https://doi.org/10.1175/BAMS-D-16-0123.1
  16. 16. Liu Z, Peng C, Work T, Candau JN, DesRochers A, Kneeshaw D. Application of machine-learning methods in forest ecology: recent progress and future challenges. Environ Rev. 2018;26(4):339–50. https://doi.org/10.1139/er-2018-0034
  17. 17. Mosavi A, Ozturk P, Chau K wing. Flood prediction using machine learning models: Literature review. Water. 2018;10(11):1536. https://doi.org/10.3390/w10111536
  18. 18. Vandal T, Kodra E, Ganguly AR. Intercomparison of machine learning methods for statistical downscaling: the case of daily and extreme precipitation. Theor Appl Climatol. 2019;137(1-2):557-70. https://doi.org/10.1007/s00704-018-2613-3
  19. 19. Lary DJ, Alavi AH, Gandomi AH, Walker AL. Machine learning in geosciences and remote sensing. Geosci Front. 2016;7(1):3–10. https://doi.org/10.1016/j.gsf.2015.07.003
  20. 20. Li Y, Li G, Wang K, Wang Z, Chen Y. Forest fire risk prediction based on stacking ensemble learning for yunnan province of China. Fire. 2023 Dec;7(1):13. https://doi.org/10.3390/fire7010013
  21. 21. Grari M, Yandouzi M, Idrissi I, Boukabous M, Moussaoui O, Azizi M, et al. Using IoT and ml for forest fire detection, monitoring and prediction: a literature review. J Theor Appl Inf Technol. 2022;100:5445-61
  22. 22. Chen D, Zeng A, He Y, Ouyang Y, Li C, Tigabu M, et al. Study on small-scale forest fire risk zoning based on random forest and the fuzzy analytic network process. Forests. 2025;16(1):97. https://doi.org/10.3390/f16010097
  23. 23. Bargali H, Pandey A, Bhatt D, Sundriyal RC, Uniyal VP. Forest fire management, funding dynamics and research in the burning frontier: A comprehensive review. Trees For People. 2024:100526. https://doi.org/10.1016/j.tfp.2024.100526
  24. 24. Dastour H, Ahmed MR, Hassan QK. Analysis of forest fire patterns and their relationship with climate variables in Alberta’s natural subregions. Ecol Inform. 2024 ;80:102531. https://doi.org/10.1016/j.ecoinf.2024.102531
  25. 25. Pati PK, Kaushik P, Malasiya D, Ray T, Khan ML, Khare PK. Impacts of forest fire frequency on structure and composition of tropical moist deciduous forest communities of Bandhavgarh Tiger Reserve, Central India. Trees For People. 2024;15:100489. https://doi.org/10.1016/j.tfp.2023.100489
  26. 26. Zhang Z, Tian Y, Wang G, Zheng C, Zhao F. A forest fire prediction method for lightning stroke based on remote sensing data. Forests. 2024;15(4):647. https://doi.org/10.3390/f15040647
  27. 27. Berčák R, Holuša J, Trombik J, Resnerová K, Hlásny T. A combination of human activity and climate drives forest fire occurrence in Central Europe: The case of the Czech Republic. Fire. 2024;7(4):109. https://doi.org/10.3390/fire7040109
  28. 28. Ngoc Thach N, Bao-Toan Ngo D, Xuan-Canh P, Hong-Thi N, Hang Thi B, Nhat-Duc H, et al. Spatial pattern assessment of tropical forest fire danger at Thuan Chau area (Vietnam) using GIS-based advanced machine learning algorithms: A comparative study. Ecol Inform. 2018;46:74-85. https://doi.org/10.1016/j.ecoinf.2018.05.009
  29. 29. Pourtaghi ZS, Pourghasemi HR, Aretano R, Semeraro T. Investigation of general indicators influencing on forest fire and its susceptibility modelling using different data mining techniques. Ecol Indic. 2016;64:72–84. https://doi.org/10.1016/j.ecolind.2015.12.030
  30. 30. Singha C, Swain KC, Moghimi A, Foroughnia F, Swain SK. Integrating geospatial, remote sensing and machine learning for climate-induced forest fire susceptibility mapping in Similipal Tiger Reserve, India. For Ecol Manag. 2024;555:121729. https://doi.org/10.1016/j.foreco.2024.121729
  31. 31. Li W, Xu Q, Yi J, Liu J. Predictive model of spatial scale of forest fire driving factors: A case study of Yunnan Province, China. Sci Rep. 2022;12(1):19029. https://doi.org/10.1038/s41598-022-23697-6
  32. 32. Florath J, Keller S. Supervised machine learning approaches on multispectral remote sensing data for a combined detection of fire and burned area. Remote Sens. 2022;14(3):657. https://doi.org/10.3390/rs14030657
  33. 33. Ibrahim S, Kose M, Adamu B, Jega IM. Remote sensing for assessing the impact of forest fire severity on ecological and socio-economic activities in Kozan District, Turkey. J Environ Stud Sci. 2024;1-3. https://doi.org/10.1007/s13412-024-00951-z
  34. 34. Abdessemed F, Bouam S, Arar C. Forest fire prediction using machine learning methods.In: Proceedings of First National Conference in Computer Science Research and its Applications; 2023.
  35. 35. Barbierato E, Gatti A. The challenges of machine learning: A critical review. Electronics. 2024;13(2):416. https://doi.org/10.3390/electronics13020416
  36. 36. Arif M, Alghamdi K, Salma AS, Samar OA, Mashael EA, Maram AA, et al. Role of machine learning algorithms in forest fire management: A literature review. J Robot Autom . 2021;5(1):212-26. https://doi.org/10.36959/673/372
  37. 37. Yakubu I, Mireku-Gyimah D, Duker AA. Review of methods for modelling forest fire risk and hazard. Afr J Environ Sci Technol. 2015;9(3):155-65. https://doi.org/10.5897/AJEST2014.1820
  38. 38. Patil R, Pawar J, Shah K, Shetty D, Ajith A, Jadhav S. Machine learning based forest fire prediction: A comparative approach. Int Res J Multidiscip Technovation. 2024;32–9. https://doi.org/10.54392/irjmt2413
  39. 39. Andrianarivony HS, Akhloufi MA. Machine learning and deep learning for wildfire spread prediction: A review. Fire. 2024;7(12):482. https://doi.org/10.3390/fire7120482
  40. 40. Lin X, Li Z, Chen W, Sun X, Gao D. Forest fire prediction based on long- and short-term time-series network. Forests. 2023;14(4):778. https://doi.org/10.3390/f14040778
  41. 41. Graff CA, Coffield SR, Chen Y, Foufoula-Georgiou E, Randerson JT, Smyth P. Forecasting daily wildfire activity using poisson regression. IEEE Trans Geosci Remote Sens. 202058(7):4837–51. https://doi.org/10.1109/TGRS.2020.2968029
  42. 42. Shadrin D, Illarionova S, Gubanov F, Evteeva K, Mironenko M, Levchunets I, et al. Wildfire spreading prediction using multimodal data and deep neural network approach. Sci Rep. 2024;14(1):2606. https://doi.org/10.1038/s41598-024-52821-x
  43. 43. Ghibeche Y, Sellam A, Nouri N, Khaldi A, Harrane A, Ghibeche I. Machine learning for forest fire prediction: A case study in North Algeria. Ingenierie des Systemes d’Information. 2024;29(1):337. https://doi.org/10.18280/isi.290133
  44. 44. Liu X, Liang S, Ma H, Li B, Zhang Y, Li Y, et al. Landsat-observed changes in forest cover and attribution analysis over Northern China from 1996‒2020. GIScience Remote Sens. 2024;61(1):2300214. https://doi.org/10.1080/15481603.2023.2300214
  45. 45. Chen X, Zhang Y, Wang S, Zhao Z, Liu C, Wen J. Comparative study of machine learning methods for mapping forest fire areas using Sentinel-1B and 2A imagery. Front Remote Sens. 2024;5:1446641. doi: 10.3389/frsen.2024.1446641
  46. 46. Vaz B, Figueira Á. GANs in the panorama of synthetic data generation methods. ACM Trans Multimed Comput Commun Appl. 2025;21(1):1–28. https://doi.org/10.1145/3657294
  47. 47. Saleh A, Zulkifley MA, Harun HH, Gaudreault F, Davison I, Spraggon M. Forest fire surveillance systems: A review of deep learning methods. Heliyon. 2024;10(1):e23127. https://doi.org/10.1016/j.heliyon.2023.e23127
  48. 48. Sun X, Li N, Chen D, Chen G, Sun C, Shi M, et al. A forest fire prediction model based on cellular automata and machine learning. IEEE Access. 2024;12:55389-403. https://doi.org/10.1109/ACCESS.2024.3389035
  49. 49. Hai Q, Han X, Vandansambuu B, Bao Y, Gantumur B, Bayarsaikhan S, et al. Predicting the occurrence of forest fire in the Central-South Region of China. Forests. 2024;15(5):844. https://doi.org/10.3390/f15050844
  50. 50. Cazzolla Gatti R, Cortès Lobos RB, Torresani M, Rocchini D. An early warning system based on machine learning detects huge forest loss in Ukraine during the war. Glob Ecol Conserv. 2025;58:e03427. https://doi.org/10.1016/j.gecco.2025.e03427
  51. 51. Rösch M, Nolde M, Ullmann T, Riedlinger T. Data-driven wildfire spread modeling of European wildfires using a spatiotemporal graph neural network. Fire. 2024;7(6):207. https://doi.org/10.3390/fire7060207
  52. 52. Chen X, Tian Y, Zheng C, Liu X. AutoST-Net: A spatiotemporal feature-driven approach for accurate forest fire spread prediction from remote sensing data. Forests. 2024;15(4):705. https://doi.org/10.3390/f15040705
  53. 53. Marjani M, Mahdianpari M, Mohammadimanesh F. CNN-BiLSTM: A Novel Deep Learning Model for Near-Real-Time Daily Wildfire Spread Prediction. Remote Sens. 2024;16(8):1467. https://doi.org/10.3390/rs16081467
  54. 54. Dastour H, Hassan QK. Utilizing MODIS remote sensing and integrated data for forest fire spread modeling in the southwest region of canada [Internet]. Vol. 6, Environmental Research Communications. 2024. https://doi.org/10.1088/2515-7620/ad248f
  55. 55. Liu X, Zheng C, Wang G, Zhao F, Tian Y, Li H. Integrating multi-source remote sensing data for forest fire risk assessment. Forests. 2024;15(11):2028. https://doi.org/10.3390/f15112028
  56. 56. Ge X, Yang Y, Peng L, Chen L, Li W, Zhang W, et al. Spatio-Temporal Knowledge Graph Based Forest Fire Prediction with Multi Source Heterogeneous Data. Remote Sens. 2022;14(14):3496. https://doi.org/10.3390/rs14143496
  57. 57. Talukdar NR, Ahmad F, Goparaju L, Choudhury P, Qayum A, Rizvi J. Forest fire in Thailand: Spatio-temporal distribution and future risk assessment. Nat Hazards Res. 2024;4(1):87-96. https://doi.org/10.1016/j.nhres.2024.01.007
  58. 58. Liu P, Zhang G. A case study on the integration of remote sensing for predicting complicated forest fire spread. Remote Sens. 2024;16(21):3969. https://doi.org/10.3390/rs16213969
  59. 59. Dong H, Wu H, Sun P, Ding Y. Wildfire prediction model based on spatial and temporal characteristics: A case study of a wildfire in Portugal’s Montesinho Natural Park. Sustain. 2022;14(16):10107. https://doi.org/10.3390/su141610107
  60. 60. Alkhatib AAA, Jaber KM. FDPA internet of things system for forest fire detection, prediction and behaviour analysis. IET Wirel Sens Syst. 2024;14(3):56–71. https://doi.org/10.1049/wss2.12076
  61. 61. Jadouli A, Amrani CE. Enhancing wildfire forecasting through multisource spatio-temporal data, deep learning, ensemble models and transfer learning. Adv Artif Intell Mach Learn. 2024;04(03):2614–28. https://doi.org/10.54364/AAIML.2024.43152
  62. 62. Shang D, Zhang F, Yuan D, Hong L, Zheng H, Yang F. Deep learning-based forest fire risk research on monitoring and early warning algorithms. Fire. 2024;7(4):151. https://doi.org/10.3390/fire7040151
  63. 63. Talukdar NR, Ahmad F, Goparaju L, Choudhury P, Arya R, Qayum A, et al. Forest fire estimation and risk prediction using multispectral satellite images: Case study. Nat Hazards Res. 2024;4(2):304–19. https://doi.org/10.1016/j.nhres.2024.01.007
  64. 64. Zhang L, Shi C, Zhang F. Predicting forest fire area growth rate using an ensemble algorithm. Forests. 2024;15(9):1493. https://doi.org/10.3390/f15091493
  65. 65. Thi Hang H, Mallick J, Alqadhi S, Bindajam AA, Abdo HG. Exploring forest fire susceptibility and management strategies in Western Himalaya: Integrating ensemble machine learning and explainable AI for accurate prediction and comprehensive analysis. Environ Technol Innov. 2024;35:103655. https://doi.org/10.1016/j.eti.2024.103655
  66. 66. Sobha P, Latifi S. A survey of the machine learning models for forest fire prediction and detection. Int J Commun Netw Syst Sci. 2023;16(07):131–50. https://doi.org/10.4236/ijcns.2023.167010
  67. 67. Alkhatib R, Sahwan W, Alkhatieb A, Schütt B. A brief review of machine learning algorithms in forest fires science. Appl Sci. 2023;13(14):8275. https://doi.org/10.3390/app13148275
  68. 68. Yunusov N, Islam BMS, Abdusalomov A, Kim W. Robust forest fire detection method for surveillance systems based on you only look once version 8 and transfer learning approaches. Processes. 2024;12(5):1039. https://doi.org/10.3390/pr12051039
  69. 69. Cao Y, Zhou X, Yu Y, Rao S, Wu Y, Li C, et al. Forest fire prediction based on time series networks and remote sensing images. Forests. 2024;15(7):1221. https://doi.org/10.3390/f15071221
  70. 70. Ramadan MNA, Basmaji T, Gad A, Hamdan H, Akgün BT, Ali MAH, et al. Towards early forest fire detection and prevention using AI-powered drones and the IoT. Internet Things. 2024;27:101248. https://doi.org/10.1016/j.iot.2024.101248
  71. 71. Basu I, Sarkar S, Biswas S. Prediction of forest fires using machine learning. In: Saha S, Nayak SR, editors. Artificial intelligence and data science: Advances and applications. Aalborg: River Publishers; 2021. p. 195–210.
  72. 72. Sharma S, Khanal P. Forest fire prediction: A spatial machine learning and neural network approach. Fire. 2024;7(6):205. https://doi.org/10.3390/fire7060205
  73. 73. Wu X, Zhang G, Yang Z, Tan S, Yang Y, Pang Z. Machine learning for predicting forest fire occurrence in Changsha: An innovative investigation into the introduction of a forest fuel factor. Remote Sens. 2023;15(17):4208. https://doi.org/10.3390/rs1517420874
  74. 74. Kar A, Nath N, Kemprai U, Aman. Performance analysis of support vector machine (SVM) on challenging datasets for forest fire detection. Int J Commun Netw Syst Sci. 2024;17(02):11-29. https://doi.org/10.4236/ijcns.2024.17200275
  75. 75. Diaconu BM. Recent advances and Emerging Directions in Fire Detection Systems Based on Machine Learning Algorithms. Fire. 2023;6(11):441. https://doi.org/10.3390/fire611044176
  76. 76. Safi Y, Bouroumi A. Prediction of forest fires using artificial neural networks. Appl Math Sci. 2013;7:271–86. https://doi.org/10.12988/ams.2013.1302577
  77. 77. Zheng S, Zou X, Gao P, Zhang Q, Hu F, Zhou Y, et al. A forest fire recognition method based on modified deep CNN model. Forests. 2024;15(1):111. https://doi.org/10.3390/f15010111
  78. 78. Pham BT, Jaafari A, Avand M, Al-Ansari N, Dinh Du T, Yen HPH, et al. Performance evaluation of machine learning methods for forest fire modeling and prediction. Symmetry. 2020;12(6):1022. https://doi.org/10.3390/sym12061022
  79. 79. Ahajjam A, Allgaier M, Chance R, Chukwuemeka E, Putkonen J, Pasch T. Enhancing prediction of wildfire occurrence and behavior in Alaska using spatio-temporal clustering and ensemble machine learning. Ecol Inform. 2025;85:102963. https://doi.org/10.1016/j.ecoinf.2024.102963
  80. 80. Karurung WS, Lee K, Lee W. Assessment of forest fire vulnerability prediction in Indonesia: Seasonal variability analysis using machine learning techniques. Int J Appl Earth Obs Geoinformation. 2025;138:104435. https://doi.org/10.1016/j.jag.2025.104435
  81. 81. Henderson K, Chakrabortty RK. A machine learning predictive model for bushfire ignition and severity: The Study of Australian black summer bushfires. Decis Anal J. 2025;14:100529. https://doi.org/10.1016/j.dajour.2024.100529
  82. 82. Haque A, Soliman H. Smart wireless sensor networks with virtual sensors for forest fire evolution prediction using machine learning. Electronics. 2025;14(2):223. https://doi.org/10.3390/electronics14020223
  83. 83. Ali AW, Kurnaz S. Optimizing deep learning models for fire detection, classification and segmentation using satellite images. Fire. 2025;8(2):36. https://doi.org/10.3390/fire8020036
  84. 84. Vergara AJ, Valqui-Reina SV, Cieza-Tarrillo D, Gómez-Santillán Y, Chapa-Gonza S, Ocaña-Zúñiga CL, et al. Modeling of forest fire risk areas of Amazonas Department, Peru: Comparative evaluation of three machine learning methods. Forests. 2025;16(2):273. https://doi.org/10.3390/f16020273
  85. 85. Wang C, Liu H, Xu Y, Zhang F. A forest fire prediction framework based on multiple machine learning models. Forests. 2025;16(2):329. https://doi.org/10.3390/f16020329
  86. 86. Ismail FN, Woodford BJ, Licorish SA. Atmospheric modeling for wildfire prediction. Atmosphere. 2025;16(4):441. https://doi.org/10.20944/preprints202502.1528.v1
  87. 87. Klimas KB, Yocom LL, Murphy BP, David SR, Belmont P, Lutz JA, et al. A machine learning model to predict wildfire burn severity for pre-fire risk assessments, Utah, USA. Fire Ecol. 2025;21(1):8. https://doi.org/10.1186/s42408-024-00346-z
  88. 88. Lee D, Perez Tellez F, Jaiswal R. Predicting fire incidents with ML: an XAI approach. AI Ethics. 2025.; https://doi.org/10.1007/s43681-025-00683-y
  89. 89. Chen J, Chang H. Predicting post-wildfire stream temperature and turbidity: A Machine learning approach in Western U.S. Watersheds. Water. 2025;17(3):359. https://doi.org/10.3390/w17030359
  90. 90. Geng X, Han X, Cao X, Su Y, Shu D. YOLOV9-CBM: An improved fire detection algorithm based on YOLOV9. IEEE Access. 2025;13:19612-23. https://doi.org/10.1109/ACCESS.2025.3534782

Downloads

Download data is not yet available.