Research Articles
Vol. 12 No. 2 (2025)
Impact of salinity stress on phytochemical profiles in Salvia officinalis
Department of Biological Sciences, Faculty of Science, The University of Jordan, Amman 11942, Jordan
Department of Biological Science, Faculty of Science, Mu’tah University, Mu’tah, Karak 61710, Jordan
Department of Biological Sciences, Faculty of Science, The University of Jordan, Amman 11942, Jordan
Abstract
This study examines how varying salinity levels (5, 25, 50, 100, 150 and 200 mM NaCl) affect the phytochemical composition of Salvia officinalis. Using LC-MS analysis, we observed significant alterations in secondary metabolite production under salt stress. Monoterpenes, such as thujone and borneol, increased notably at 100-200 mM NaCl, indicating an upregulation of terpenoid biosynthesis as a protective response. Sesquiterpenes like Ledene and Humulene rose under moderate salinity (50-150 mM NaCl) but declined at 200 mM, possibly due to disrupted biosynthetic pathways. Diterpenes showed enhanced yields under moderate to severe stress, suggesting a role in augmenting plant resilience. Phenolic compounds, known for antioxidant properties, peaked at 100 mM NaCl, while flavonoid content decreased under higher salinity, implying suppression of their biosynthesis. Unsaturated fatty acids, including oleic and arachidonic acids, increased under stress levels of 150-200 mM NaCl, aiding in membrane stability. Additionally, under salt stress (50-200 mM NaCl), elevated levels of β-carotene, beta-sitosterol and malic acid were observed, supporting their roles in osmotic adjustment and mitigating oxidative stress. These findings underscore S. officinalis adaptive mechanisms to salinity through the accumulation of protective metabolites and metabolic adjustments. Future research should delve into the molecular mechanisms driving these changes to develop salt-tolerant crops and optimize sage cultivation in saline environments.
References
- 1. Lopresti AL. Salvia (sage): A review of its potential cognitive-enhancing and protective effects. Drugs in R&D. 2017;17(1):53-64. https://doi.org/10.1007/s40268-016-0157-5
- 2. Mansinhos I, Gonçalves S, Romano A. How climate change-related abiotic factors affect the production of industrial valuable compounds in Lamiaceae plant species: a review. Front Plant Sci. 2024;15:1370810. https://doi.org/10.3389/fpls.2024.1370810
- 3. Ashraf M, Harris PJC. Photosynthesis under stressful environments: An overview. Photosynthetica. 2013;51(2):163-90. https://doi.org/10.1007/s11099-013-0021-6
- 4. Bistgani ZE, Siadat SA, Bakhshandeh A, Pirbalouti AG, Hashemi M. Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. Crop J. 2017;5(5):407-15. https://doi.org/10.1016/j.cj.2017.04.003
- 5. Ghorbani A, Razavi SM, Ghasemi Omran VO, Pirdashti H. Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.). Plant Biol. 2018;22(2): 317-26. https://doi.org/10.1111/plb.12717
- 6. Borges CV, Minatel IO, Gomez-Gomez HA, Lima GPP. Medicinal plants: Influence of environmental factors on the content of secondary metabolites. In: Ghorbanpour M, Varma A. editors. Medicinal Plants and Environmental Challenges. Springer, Cham. 2017:259-77. https://doi.org/10.1007/978-3-319-68717-9_15
- 7. Laftouhi A, Eloutassi N, Ech-Chihbi E, Kara M, Assouguem A, Ali EA, et al. Impact of climatic disturbances on the chemical compositions and metabolites of Salvia officinalis. Open Chem. 2023;21(1):20230115. https://doi.org/10.1515/chem-2023-0115
- 8. Zhang M, Xing Y, Ma J, Zhang Y, Yu J, Wang X, Jia X. Investigation of the response of Platycodongrandiflorus (Jacq.) A. DC to salt stress using combined transcriptomics and metabolomics. BMC Plant Biol. 2023;23(1):589. https://doi.org/10.1186/s12870-023-04536-w
- 9. Nasr A, Yosuf I, Turki Z, Abozeid A. LC-MS metabolomics profiling of Salvia aegyptiaca L. and S. lanigera Poir. with the antimicrobial properties of their extracts. BMC Plant Biol. 2023;23(1):340. https://doi.org/10.1186/s12870-023-04341-5
- 10. Qadir RU, Bhat IA, Javid H, Wani BA, Magray JA, Nawchoo IA, et al. Exploring morphological variability, in vitro antioxidant potential and HR-LCMS phytochemical profiling of Phlomis cashmeriana Royle ex Benth. across different habitats of Kashmir Himalaya. Environ Monit Assess. 2024;196(3):241. https://doi.org/10.1007/s10661-024-12338-2
- 11. Taarit MB, Msaada K, Hosni K, Hammami M, Kchouk ME, Marzouk B. Plant growth, essential oil yield and composition of sage (Salvia officinalis L.) fruits cultivated under salt stress conditions. Ind Crops Prod. 2009;30(3):333-37. https://doi.org/10.1016/j.indcrop.2009.06.001
- 12. Olennikov DN, Chirikova NK, Kashchenko NI, Gornostai TYG, Selyutina IY, Zilfikarov IN. Effect of low temperature cultivation on the phytochemical profile and bioactivity of Arctic plants: A case of Dracocephalum palmatum. Int JMol Sci. 2017;18(12):2579. https://doi.org/10.3390/ijms18122579
- 13. Borgognone D, Cardarelli M, Rea E, Lucini L, Colla G. Salinity source‐induced changes in yield, mineral composition, phenolic acids and flavonoids in leaves of artichoke and cardoon grown in floating system. J Sci Food Agric. 2014;94(6):1231-37. https://doi.org/10.1002/jsfa.6403
- 14. Corrado G, Vitaglione P, Chiaiese P, Rouphael Y. Unraveling the modulation of controlled salinity stress on morphometric traits, mineral profile and bioactive metabolome equilibrium in hydroponic basil. Horticulturae. 2021;7(9):273. https://doi.org/10.3390/horticulturae7090273
- 15. Al-Sammarraie ON, Alsharafa KY, Al-limoun MO, Khleifat KM, Al-Sarayreh SA, Al-Shuneigat JM, Kalaji HM. Effect of various abiotic stressors on some biochemical indices of Lepidium sativum plants. Sci Repo. 2020;10:21131. https://doi.org/10.1038/s41598-020-78330-1
- 16. Alsharafa KY. Exploring the interplay of phytohormones and polyamines in drought-stressed Cress (Lepidium sativum L.) leaves. J Biol Res. 2023;96(2):11706. https://doi.org/10.4081/jbr.2023.11706
- 17. Selmar D, Kleinwächter M. Stress enhances the synthesis of secondary plant products: the impact of stress-related over-reduction on the accumulation of natural products. Plant Cell Physiol. 2013;54(6):817-26. https://doi.org/10.1093/pcp/pct054
- 18. Loreto F, Schnitzler JP. Abiotic stresses and induced BVOCs. Trends Plant Sci. 2010;15(3):154-66. https://doi.org/10.1016/j.tplants.2009.12.006
- 19. Perez-Gil J, Behrendorff J, Douw A, Vickers CE. The methylerythritol phosphate pathway as an oxidative stress sense and response system. Nat Commun. 2024;15(1):5303. https://doi.org/10.1038/s41467-024-49483-8
- 20. Wei H, Movahedi A, Xu C, Sun W, Almasi Zadeh Yaghuti A, Wang P, et al. Overexpression of PtDXS enhances stress resistance in poplars. Int J Mol Sci. 2019;20(7):1669. https://doi.org/10.3390/ijms20071669
- 21. Dudareva N, Klempien A, Muhlemann JK, Kaplan I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013;198(1):16-32. https://doi.org/10.1111/nph.12145
- 22. Ahmed AF, Attia FAK, Liu H, Li C. Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L.) plants. Food Chem. 2018;256:247-53. https://doi.org/10.1016/j.foodchem.2018.02.128
- 23. Karalija E, Dahija S, Tarkowski PZeljković SĆ. Influence of climate-related environmental stresses on economically important essential oils of Mediterranean Salvia sp. Front Plant Sci. 2022; 13: 864807. https://doi.org/10.3389/fpls.2022.864807
- 24. Caser M, Chitarra W, D'Angiolillo F, Perrone I, Demasi S, Lovisolo C, et al. Drought stress adaptation modulates plant secondary metabolite production in Salvia dolomitica Codd. Ind Crops Prod. 2019;129:85-96. https://doi.org/10.1016/j.indcrop.2018.11.068
- 25. Dudareva N, Negre F, Nagegowda DA, Orlova I. Plant volatiles: Recent advances and future perspectives. Critical Rev Plant Sci. 2006; 25(5):417–40. https://doi.org/10.1080/07352680600899973
- 26. Munné-Bosch S, Mueller M, Schwarz K, Alegre L. Diterpenes and antioxidative protection in drought-stressed Salvia officinalis plants. J Plant Physiol. 2001;158(11):1431-37. https://doi.org/10.1078/0176-1617-00578
- 27. Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Mol. 2019;24(13):2452. https://doi.org/10.3390/molecules24132452
- 28. Taârit MB, Msaada K, Hosni K, Marzouk B. Physiological changes, phenolic content and antioxidant activity of Salvia officinalis L. grown under saline conditions. J Sci Food and Agric. 2012;92(8):1614-19. https://doi.org/10.1002/jsfa.4746.
- 29. Valifard M, Mohsenzadeh S, Niazi A, Moghadam A. Phenylalanine ammonia lyase isolation and functional analysis of phenylpropanoid pathway under salinity stress in Salvia species. Aust J Crop Sci. 2015;9(7):656-65.
- 30. He M, Ding NZ. Plant unsaturated fatty acids: multiple roles in stress response. Front. Plant Sci. 2020;11:562785. https://doi.org/10.3389/fpls.2020.562785
- 31. Ashraf MPJC, Harris PJ. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 2004;166(1):3-16. https://doi.org/10.1016/j.plantsci.2003.10.024
- 32. Li Z, Cheng B, Yong B, Liu T, Peng Y, Zhang X, et al. Metabolomics and physiological analyses reveal β-sitosterol as an important plant growth regulator inducing tolerance to water stress in white clover. Planta. 2019;250:2033-46. https://doi.org/10.1007/s00425-019-03277-1
- 33. Babaei M, Shabani L, Hashemi-Shahraki S. Improving the effects of salt stress by β-carotene and gallic acid using increasing antioxidant activity and regulating ion uptake in Lepidium sativum L. Bot Stud. (2022);63(1):22. https://doi.org/10.1186/s40529-022-00352-x
Downloads
Download data is not yet available.