Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Isolation and characterization of plant-growth promoting bacteria from Irish potato rhizosphere in Nyandarua county, Kenya

DOI
https://doi.org/10.14719/pst.8463
Submitted
23 March 2025
Published
07-07-2025 — Updated on 14-07-2025
Versions

Abstract

Irish potato, rich in antioxidants and minerals, is an important food source but faces challenges due to yield losses and excessive use of agrochemicals. To address these challenges, biological controls methods are gaining attention as eco-friendly alternatives. The rhizosphere hosts a complex interplay of roots, microbiota and soil, making it a key focus for sustainable agricultural practices. This study aimed to identify and characterize rhizosphere bacteria from Irish potato roots in Nyandarua county, Kenya. Root samples were collected using purposive and zigzag methods. Bacterial isolates were characterized through 16S rRNA gene sequencing and biochemical tests. Twenty-seven bacterial isolates with diverse morphological traits of colonies, including creamy-white, white and pink colonies of varying shapes and sizes were identified. Biochemical tests demonstrated all isolates as catalase and oxidase producers, with 14 isolates producing indole acetic acid (IAA) and 13 isolates producing hydrogen cyanide (HCN). Five isolates KG02 (9), KG02 (1), KG02 (2), KG02 (5) and KLm02 (1) were closely related to Bacillus aerius, Paenibacillus xylanexedens, Alcaligenes faecalis and Providencia huashanensis with 100 % sequence identity to known sequences in the NCBI database. This study highlights the importance of microbial diversity in soil ecosystems and their potential applications in sustainable agriculture. Further greenhouse experiments are recommended to evaluate their antagonistic and growth-promoting effects on Irish potatoes.

References

  1. 1. Camire ME, Kubow S, Donnelly DJ. Potatoes and human health. Crit Rev Food Sci Nutr. 2009;49(10):823-40. https://doi.org/10.1080/10408390903041996
  2. 2. Lal P, Tiwari RK, Behera B, Yadav MR, Sharma E, Altaf MA, et al. Exploring potato seed research: a bibliometric approach towards sustainable food security. Front Sustain Food Syst. 2023;7. https://doi.org/10.3389/fsufs.2023.1229272
  3. 3. Muthoni J, Shimelis H. An overview of potato production in Africa. In: Potato production worldwide. Elsevier; 2023. p. 435-56.
  4. 4. Muthoni J, Nyamongo DO. A review of constraints to ware Irish potatoes production in Kenya. J Hortic For. 2009;1(7):98-102.
  5. 5. Ogolla F. Occurrence of bacterial wilt pathogen in soils and potato tubers in Runyenjes in Embu County, Kenya. 2021;8(4)(June).
  6. 6. Munyaneza JE, Bizimungu B. Management of potato pests and diseases in Africa. In: Insect Pests of Potato. Elsevier; 2022. p. 407-26.
  7. 7. CGIAR. The potato of the future: opportunities and challenges in sustainable agri-food systems. Roots, Tubers and Bananas; 2021. Available from: https://www.rtb.cgiar.org/news/the-potato-of-the-future-opportunities-and-challenges-in-sustainable-agri-food-systems/
  8. 8. Beneduzi A, Ambrosini A, Passaglia LMP. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet Mol Biol. 2012;35(4 Suppl.):1044-51. https://doi.org/10.1590/s1415-47572012000600020
  9. 9. Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A. Role of plant growth promoting rhizobacteria in agricultural sustainability-A review. Molecules. 2016;21(5):1-17. https://doi.org/10.3390/molecules21050573
  10. 10. Verma P, Kumar Shahi S. Isolation and characterization of bacterial isolates from potato rhizosphere as potent plant growth promoters. Int J Curr Microbiol App Sci. 2015;4(3):521-8. https://doi.org/10.20546/ijcmas.2019.804.164
  11. 11. Khoso MA, Wagan S, Alam I, Hussain A, Ali Q, Saha S, et al. Impact of plant growth-promoting rhizobacteria (PGPR) on plant nutrition and root characteristics: Current perspective. Plant Stress. 2024;11(August):100341. https://doi.org/10.1016/j.stress.2023.100341
  12. 12. Panetto LD, Doria J, Santos CHB, Frezarin ET, Sales LR, de Andrade LA, et al. Lactic bacteria with plant-growth-promoting properties in potato. Microbiol Res (Pavia). 2023;14(1):279-88. https://doi.org/10.3390/microbiolres14010022
  13. 13. Naqqash T, Hameed S, Imran A, Hanif MK, Majeed A, van Elsas JD. Differential response of potato toward inoculation with taxonomically diverse plant growth promoting rhizobacteria. Front Plant Sci. 2016;7(Feb):1-12. https://doi.org/10.3389/fpls.2016.00144
  14. 14. Bevivino A, Sarrocco S, Dalmastri C, Tabacchioni S, Cantale C, Chiarini L. Characterization of a free-living maize-rhizosphere population of Burkholderia cepacia: Effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiol Ecol. 1998;27(3):225-37. https://doi.org/10.1111/j.1574-6941.1998.tb00539.x
  15. 15. Pathak D, Lone R, Nazim N, Alaklabi A, Khan S, Koul KK. Plant growth promoting rhizobacterial diversity in potato grown soil in the Gwalior region of India. Biotechnol Reports. 2022;33:e00713. https://doi.org/10.1016/j.btre.2022.e00713
  16. 16. El-Saadony MT, Saad AM, Soliman SM, Salem HM, Ahmed AI, Mahmood M, et al. Plant growth-promoting microorganisms as biocontrol agents of plant diseases: Mechanisms, challenges and future perspectives. Front Plant Sci. 2022;13:1-19. https://doi.org/10.3389/fpls.2022.923880
  17. 17. Martínez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML. Mechanisms and practical considerations involved in plant growth promotion by Rhizobacteria. J Soil Sci Plant Nutr. 2010;10(3):293-319. http://doi.org/10.4067/S0718-95162010000100006
  18. 18. Elsie, Riyana R, Harahap I. Isolation of Actinomycetes from mangrove soil in the village of Sungai Rawa, Sungai Apit Sub-District, Siak Regency, Riau Province and antimicrobial test against Escherichia coli and Staphylococcus aureus; 2019. p. 84-91.
  19. 19. Saini N, Dhyani S, Dimri D. Isolation and identification of fungi from soil sample of different localities of agricultural land in Dehradun Neha Saini Sandeep Dhyani Divya Dimri Biotechnology. Int J Sci Res. 2016;5(2):406-8.
  20. 20. Poorniammal R, Sundaram SP, Kumutha K. In vitro biocontrol activity of Methylobacterium extorquens against fungal pathogens. 2009;2(1):59-60. https://doi.org/10.13140/2.1.3086.0163
  21. 21. Saeed SWZ, Naseer I, Zahir ZA, Hilger T, Shahid S, Iqbal Z, et al. Bacillus strains with catalase enzyme improve the physiology and growth of rice (Oryza sativa L.). Stresses. 2023;3(4):736-48. https://doi.org/10.3390/stresses3040050
  22. 22. Chavan DD, Khatoon H, Anokhe A, Kalia V. AgriCos e-Newsletter; 2022 (January).
  23. 23. Gordon SA, Paleg LG. Observations on the quantitative determination of indoleacetic acid. Physiol Plant. 1957;10(1):39-47. https://doi.org/10.1111/j.1399-3054.1957.tb07608.x
  24. 24. Lorck H. Production of hydrocyanic acid by bacteria. Physiol Plant. 1948;1(2):142-6. https://doi.org/10.1111/j.1399-3054.1948.tb07118.x
  25. 25. Wekesa TB, Wekesa VW, Onguso JM, Wafula EN, Kavesu N. Isolation and characterization of Bacillus velezensis from lake Bogoria as a potential biocontrol of Fusarium solani in Phaseolus vulgaris L. bacteria. 2022;1(4):279-93. https://doi.org/10.3390/bacteria1040021
  26. 26. Hall TA. BioEdit a user friendly biological seque. Oxford University Press; 1999. p. 95-8.
  27. 27. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792-7. https://doi.org/10.1093/nar/gkh340
  28. 28. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-4. https://doi.org/10.1093/molbev/msw054
  29. 29. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406-25. https://doi.org/10.1093/oxfordjournals.molbev.a040454
  30. 30. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA. 2004;101(30):11030-5. https://doi.org/10.1073/pnas.0404206101
  31. 31. Cliff JB, Kreuzer HW, Ehrhardt CJ, Wunschel DS. Chemical and physical signatures for microbial forensics. Chem Phys Signatures Microb Forensics; 2012. p. 1-138. https://doi.org/10.1007/978-1-60327-219-3
  32. 32. Das T, Sen A, Mahapatra S. Characterization of plant growth-promoting bacteria isolated from rhizosphere of lentil (Lens culinaris L.) grown in two different soil orders of eastern India. Brazilian J Microbiol. 2023;54(4):3101-11. https://doi.org/10.1007/s42770-023-01100-4
  33. 33. Anand A, Chinchilla D, Tan C, Mène-Saffrané L, L’haridon F, Weisskopf L. Contribution of hydrogen cyanide to the antagonistic activity of Pseudomonas strains against Phytophthora infestans. Microorganisms. 2020;8(8):1-10. https://doi.org/10.3390/microorganisms8081144
  34. 34. Chandran H, Meena M, Swapnil P. Plant growth-promoting rhizobacteria as a green alternative for sustainable agriculture. Sustain. 2021;13(19):1-30. https://doi.org/10.3390/su131910986
  35. 35. Jeyanthi V, Kanimozhi S. Plant growth promoting rhizobacteria (PGPR)-prospective and mechanisms: A review. J Pure Appl Microbiol. 2018;12(2):733-49. https://doi.org/10.22207/JPAM.12.2.34
  36. 36. de Andrade LA, Santos CHB, Frezarin ET, Sales LR, Rigobelo EC. Plant growth-promoting rhizobacteria for sustainable agricultural production. Microorganisms. 2023;11(4):1088. https://doi.org/10.3390/microorganisms11041088
  37. 37. Zhang Z, Zhang L, Zhang L, Chu H, Zhou J, Ju F. Diversity and distribution of biosynthetic gene clusters in agricultural soil microbiomes. mSystems. 2024;9(4):e01263-23. https://doi.org/10.1128/msystems.01263-23
  38. 38. Zheng Q, Hu Y, Zhang S, Noll L, Böckle T, Dietrich M, et al. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biol Biochem. 2019;136(April):107521. https://doi.org/10.1016/j.soilbio.2019.107521

Downloads

Download data is not yet available.