Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Integrating genetic diversity and biochemical profiling for biofuel-efficient maize genotypes

DOI
https://doi.org/10.14719/pst.8465
Submitted
23 March 2025
Published
25-06-2025 — Updated on 01-07-2025
Versions

Abstract

This study explores the genetic diversity, biochemical composition and trait associations in maize (Zea mays L.) to assess its potential as a dual-purpose crop for food and biofuel production. Significant variations in lignocellulosic traits among the evaluated genotypes indicate opportunities for enhancing bioethanol yields. A comparative biochemical study reveals the cellulose content in the kernel is 2.15 times higher than in stover, whereas the hemicellulose and lignin content in stover are 4.6 times and 5.3 times higher, respectively, compared to the kernel. The inbred lines DQL 2159, DQL 222-1-1 and DQL 2272 exhibited significantly higher cellulose contents of 37.05 %, 35.98 % and 35.53 %, respectively, along with significantly lower lignin contents of 20.65 %, 22.25 % and 22.53 % in maize stover. Correlation analysis shows that shoot dry weight (rp = 0.29), stalk diameter (rp = 0.33) and plant height (rp = 0.48) are positively associated with biomass yield. Biochemical studies reveal a strong negative correlation (rp = -0.59) between kernel lignin and kernel cellulose content, indicating that higher cellulose leads to lower lignin. This finding is valuable for selecting high-cellulose, low-lignin genotypes. Path coefficient analysis further identifies plant height, number of leaves per plant, stalk diameter and kernel cellulose content as key contributors to grain yield, suggesting that selection for these traits could enhance biofuel production. Identifying desirable traits that enhance biofuel efficiency, such as high cellulose and low lignin content, enables targeted breeding for improved biomass conversion. Cluster analysis revealed that Cluster III exhibited superior performance across the majority of traits evaluated, making it the most promising group for utilization in biofuel breeding programs. Notably, genotypes such as DQL 2037, DQL 2272, DQL 2159 and DQL 222-1-1 emerge as promising candidates for biofuel applications due to their high grain and stover yields, alongside elevated cellulose and hemicellulose content. Collectively, these findings provide a comprehensive framework for targeted breeding strategies aimed at developing high-yielding, biofuel-efficient maize cultivars for climate smart agriculture systems.

References

  1. 1. FAO Stat. Food and Agriculture Organization of the United Nations, Rome, Italy; 2025. Available from: https://www.fao.org/faostat/en/#home [accessed on 18th March, 2025].
  2. 2. (N.d.). Usda.gov. Retrieved March 22, 2025. Available from: https://www.usda.gov/
  3. 3. Gramig BM, Reeling CJ, Cibin R, Chaubey I. Environmental and economic trade-offs in a watershed when using corn stover for bioenergy. Environ Sci Technol. 2013;47(4):1784-91. https://doi.org/10.1021/es303459h
  4. 4. ICAR-Indian institute of maize research. (n.d.). Gov.in. Retrieved March 2, 2025. Available from: https://iimr.icar.gov.in/
  5. 5. Agricultural area: Foodgrains: Rice: Odisha. (2024, December 23). Available from: https://www.ceicdata.com/en/india/area-of-foodgrains-in-major-states rice/agricultural-area-foodgrains-rice-odisha
  6. 6. Singh S, Singh P, Sharma A, Choudhury M, editors. Agriculture waste management and bioresource: the circular economy perspective. John Wiley & Sons; 2022. https://doi.org/10.1002/9781119808428
  7. 7. Kocaturk E, Salan T, Ozcelik O, Alma MH, Candan Z. Recent advances in lignin-based biofuel production. Energies. 2023;16(8):3382. https://doi.org/10.3390/en16083382
  8. 8. Kurowska K, Marks-Bielska R, Bielski S, Kryszk H, Jasinskas A. Food security in the context of liquid biofuels production. Energies. 2020;13(23):6247. https://doi.org/10.3390/en13236247
  9. 9. Gesteiro N, Butrón A, Santiago R, Gomez LD, López-Malvar A, Álvarez-Iglesias L, et al. Breeding dual-purpose maize: grain production and biofuel conversion of the stover. Agronomy. 2023;13(5):1352. https://doi.org/10.3390/agronomy13051352
  10. 10. Adeoye PA, Adebayo SE, Musa JJ. Agricultural post-harvest waste generation and management for selected crops in Minna, Niger State, North Central Nigeria. J Appl Sci Environ Sanit. 2011;6(4).
  11. 11. Mishra A, Sahoo JP, Swain B, Nanda S, Mishra TK, Dwibedi SK, et al. Biochemical and SSR based molecular characterization of elite rice varieties for straw lignocellulose. Mol Biol Rep. 2023;50(7):5535-45. https://doi.org/10.1007/s11033-023-08454-w
  12. 12. Mishra A, Mishra TK, Nanda S, Jena PK, Dwibedi SK, Jena B, et al. Bioenergy potential of different varieties of paddy straw biomass. Bioresour Technol. 2022;20:101229. https://doi.org/10.1016/j.biteb.2022.101229
  13. 13. Mishra A, Mishra TK, Swain B, Priyadarsini A, Nanda S, Dwibedi SK, et al. Molecular heterosis for biomass and biofuel related traits in rice. Cereal Res Commun. 2024;52(3):919-36. https://doi.org/10.1007/s42976-023-00454-7
  14. 14. Das N, Jena PK, Padhi D. A comprehensive review of characterization, pretreatment and its applications on different lignocellulosic biomass for bioethanol production. Biomass Convers Biorefin. 2023;13:1503-27. https://doi.org/10.1007/s13399-021-01294-3
  15. 15. Roy PR, Haque MA, Ferdausi A, Al Bari MA. Genetic variability, correlation and path coefficients analyses of selected maize (Zea mays L.) genotypes. Fundam Appl Agric. 2018;3(1):382-9. https://doi.org/10.5455/faa.284502
  16. 16. Matin MQI, Uddin MS, Rohman MM, Amiruzzaman M, Azad AK, Banik BR. Genetic variability and path analysis studies in hybrid maize (Zea mays L.). Am J Plant Sci. 2017;8(12):3101-9. https://doi.org/10.4236/ajps.2017.812209
  17. 17. Mahalanobis PC. A note on the statistical and biometric writings of Karl Pearson. Sankhyā. Indian J Stat. 1936;2(4):411-22.
  18. 18. Rao CR. Advanced statistical methods in biometric research; 1952. p. 390.
  19. 19. Wojcieszak D, Przybył J, Ratajczak I, Goliński P, Janczak D, Waśkiewicz A, et al. Chemical composition of maize stover fraction versus methane yield and energy value in fermentation process. Energy. 2020;198:117258. https://doi.org/10.1016/j.energy.2020.117258
  20. 20. Padhan SR, Jat SL, Mishra P, Darjee S, Saini S, Padhan SR, et al. Corn for biofuel: status, prospects and implications. IntechOpen. 2024. https://doi.org/10.5772/intechopen.112227
  21. 21. Chowdhury P, Mahi NA, Yeassin R, Chowdhury N, Farrok O. Biomass to biofuel: Impacts and mitigation of environmental, health, and socioeconomic challenges. Energy Convers Manage. 2024;25:100889. https://doi.org/10.1016/j.ecmx.2025.100889
  22. 22. Mukri G, Patil MS, Motagi BN, Bhat JS, Singh C, Jeevan Kumar SP, et al. Genetic variability, combining ability and molecular diversity-based parental line selection for heterosis breeding in field corn (Zea mays L.). Mol Biol Rep. 2022;49(6):4517-24. https://doi.org/10.1007/s11033-022-07295-3
  23. 23. Munaiz ED, Albrecht KA, Ordas B. Genetic diversity for dual use maize: grain and second-generation biofuel. Agronomy. 2021;11(2):230. https://doi.org/10.3390/agronomy11020230
  24. 24. Kharel R, Ghimire SK, Ojha BR, Koirala KB. Estimation of genetic parameters, correlation and path coefficient analysis of different genotypes of maize (Zea mays L.). Int J Agric Innov. 2017;6(1):191-5.
  25. 25. Prasad BVVV, Shivani D. Correlation and path analysis in maize (Zea mays L.). JGGPB. 2017;1(2):1-7.
  26. 26. Nataraj V, Shahi JP, Agarwal V. Correlation and path analysis in certain inbred genotypes of maize (Zea mays L.) at Varanasi. IJIRD. 2014;3(1):14-7.
  27. 27. Baretta D, Nardino M, Carvalho IR, Nornberg R, Souza VD, Konflanz VA, et al. Path analysis for morphological characters and grain yield of maize hybrids. AJCS. 2016;10(12):1655-61. https://doi.org/10.21475/ajcs.2016.10.12.p7707
  28. 28. Bhusal TN, Lal GM, Marker S, Synrem GJ. Discrimination of maize (Zea mays L.) inbreds for morphophysiological and yield traits by D2 statistics and principal component analysis (PCA). Asian J Biol Sci. 2016;11(1):77-84. https://doi.org/10.15740/HAS/AJBS/11.1/77-84
  29. 29. Singh SK, Pandey V, Mounika K, Singh DK, Khaire AR, Majhi SHAP. Study of genetic divergence in rice (Oryza sativa L.) genotypes with high grain zinc using Mahalanobis’ D2 analysis. EJPB. 2020;11(02):367-72. https://doi.org/10.37992/2020.1102.065
  30. 30. Al-Naggar AMM, Shafik MM, Musa RYM. Genetic diversity based on morphological traits of 19 maize genotypes using principal component analysis and GT biplot. ARRB. 2020;35(2):68-85. https://doi.org/10.9734/arrb/2020/v35i230191
  31. 31. Jakhar DH, Ray A, Singh R. Genetic diversity analysis in maize (Zea mays L.) by D2 clustering of yield and yield accredited traits. Int J Agric. 2018:833-6.
  32. 32. Mishra P, Padhan SR. Speed breeding technique in maize: status and prospects. Biotica Res Today. 2023;5(7):543-6.
  33. 33. Vanhevel Y, De Moor A, Muylle H, Vanholme R, Boerjan W. Breeding for improved digestibility and processing of lignocellulosic biomass in Zea mays. Front Plant Sci. 2024;15:1419796. https://doi.org/10.3389/fpls.2024.1419796

Downloads

Download data is not yet available.