Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Transforming forage nutrition: Advances in silage additives for enhanced preservation and feed quality

DOI
https://doi.org/10.14719/pst.8548
Submitted
27 March 2025
Published
21-06-2025
Versions

Abstract

Global demand for livestock products increases the need for high-quality fodder. However, urbanization resulted in the depletion of agricultural lands expanding the demand for food, feed and fodder. To overcome this issue, the available fodder and agricultural wastes are preserved anaerobically to feed animals. This efficient process of preserving the fodder anaerobically throughout the year is known as ensiling and the preserved fodder is known as silage. To improve the quality and longevity of silage, various additives such as microbial inoculants (bacterial inoculants, yeast), enzymes, chemical additives (organic and mineral acids), nutrients (urea, ammonia, sodium chloride, sodium di acetate) and fermentation accelerators (molasses, starchy substance, grains) are added. Addition of these additives reduces pH to below 4.2, proteolysis up to 40 %, ammonia volatilization, population of yeasts, molds and enhances fermentation, improves the aerobic stability by 2-5 days, optimizes nutrient retention and quality of silage. By supporting better livestock nutrition, silage additives increase 5 to 20% milk production, lactation period and promote beneficial microbial populations in the rumen of cattle. This review describes the usage and effectiveness of various additives that are used to enhance the silage quality in terms of storage and nutritional content.

References

  1. 1. Van Soest PJ. Nutritional Ecology of The Ruminant. Ithaca, NY, USA: Cornell University Press; 2018.
  2. 2. Saha SK. Scope of unconventional feeds in India on rumen fermentation methane inhibition gastro intestinal nematodes and performance of the ruminants. Research and Reviews: Journal of Veterinary Medicine and Allied Science. 2020; 4(1):1-11. https://doi.org/10.4172/2157-7579-C2-039
  3. 3. Chaudhary RS, Gupta S, Kohli A, Roy S, Choudhury A, Singh MK. Studies on green fodder yield, quality and economics of cereal forage sown alone and intercrop with cowpea. Int J Curr Microbiol Appl Sci. 2020;9:1893-1902. https://doi.org/10.20546/ijcmas.2020.911.224
  4. 4. Devi RU, Balakrishna K. Crop waste management: perspectives on alternative uses in India. CABI Rev. 2022;202217022. https://doi.org/10.1079/cabireviews202217022
  5. 5. Sahoo A. Silage for climate resilient small ruminant production [Internet]. Ruminants - The Husbandry, Economic and Health Aspects. 2018. https://doi.org/10.5772/intechopen.74667
  6. 6. Zhumei D, Fuyu Y, Yang F, Fang J, Yamasaki S, Oya T, et al. Silage preparation and sustainable livestock production of natural woody plant. Front Plant Sci. 2023;14:1253178. https://doi.org/10.3389/fpls.2023.1253178
  7. 7. Kumar B, Brar N, Verma H, Kumar A, Singh R. Nutritious feed for farm animals during lean period: Silage and Hay-A Review. Forage Research. 2019;45(1):10-22.
  8. 8. Hartinger T, Gruber T, Fliegerova K, Terler G, Zebeli Q. Mixed ensiling with by-products and silage additives significantly valorizes drought-impaired whole-crop corn. Anim Feed Sci Technol. 2024;309:115899. https://doi.org/10.1016/j.anifeedsci.2024.115899
  9. 9. Duniere L, Sindou J, Chaucheyras-Durand F, Chevallier I, Thevenot-Sergentet D. Silage processing and strategies to prevent persistence of undesirable microorganisms. Anim Feed Sci Technol. 2013;182:1-15. https://doi.org/10.1016/j.anifeedsci.2013.04.006
  10. 10. Muck RE, Nadeau EMG, McAllister TA, Contreras-Govea FE, Santos MC, Kung Jr. L. Silage review: Recent advances and future uses of silage additives. J Dairy Sci. 2018;101:3980–4000. https://doi.org/10.3168/jds.2017-13839
  11. 11. Moss N, Havilah EJ. Annual forage and pasture crops – Establishment and management. In: Encyclopaedia of Dairy Sciences (ed. by Roginski H, Fuquay JW, Fox PF.). 2022;71131. https://doi.org/10.1016/B978-0-12-818766-1.00060-X
  12. 12. Rooke JA, Hatfield RD. Biochemistry of ensiling. Silage Sci Technol. 2003;42:95-139. https://doi.org/10.2134/agronmonogr42.c3
  13. 13. Kim D, Lee KD, Choi KC. Role of LAB in silage fermentation: Effect on nutritional quality and organic acid production-an overview. AIMS Agric Food. 2021;6. https://doi.org/10.3934/agrfood.2021014
  14. 14. Guo X, Xu D, Li F, Bai J, Su R. Current approaches on the roles of lactic acid bacteria in crop silage. Microb Biotechnol. 2023;16:67-87. https://doi.org/10.1111/1751-7915.14184
  15. 15. Driehuis F, Elferink SO. The impact of the quality of silage on animal health and food safety: A review. Vet Quart. 2000;22:212-6. https://doi.org/10.1080/01652176.2000.9695061
  16. 16. Muck RE, Kung L, Collins M. Silage production. In: Forages (ed. by Moore KJ, Collins M, Nelson CJ, Redfearn DD). 2020.p.767-87. https://doi.org/10.1002/9781119436669.ch42
  17. 17. Wilkinson JM, Davies DR. The aerobic stability of silage: Key findings and recent developments. Grass Forage Sci. 2013;68:1-9. https://doi.org/10.1111/j.1365-2494.2012.00891.x
  18. 18. Mishra DB, Tyagi N. Silage additives. In: Feed additives and supplements for ruminants (ed. by Mahesh MS, Yata VK). 2024; 1-14. https://doi.org/10.1007/978-981-97-0794-2_20
  19. 19. Neto JM, Santos BRCD, Perazzo AF, Silva ALD, Santos FNDS, Pereira DM, et al. Additives and premises used to obtain high quality silages. Nucleus Anim. 2020;12:57-78. https://doi.org/10.3738/21751463.3668
  20. 20. Muck RE. Silage microbiology and its control through additives. R Bras Zootec. 2010; 39:183-191. https://doi.org/10.1590/S1516-35982010001300021
  21. 21. Blajman J, Vinderola G, Paez R, Signorini M. The role of homofermentative and heterofermentative lactic acid bacteria for alfalfa silage: A meta-analysis. J Agric Sci. 2020;158:1-12. https://doi.org/10.1017/s0021859620000386
  22. 22. Zhang F, Miao F, Wang X, Lu W, Ma C. Effects of homo and heterofermentative lactic acid bacteria on the quality and aerobic stability of corn silage. Can J Anim Sci.2021;101:761–70. https://doi.org/10.1139/cjas-2019-0170
  23. 23. Zhang J, Liu Y, Wang Z, Bao J, Zhao M, Si Q, et al. Effects of different types of LAB on dynamic fermentation quality and microbial community of native grass silage during anaerobic fermentation and aerobic exposure. Microorganisms. 2023;11:513. https://doi.org/10.3390/microorganisms11020513
  24. 24. Pruckler M, Lorenz C, Endo A, Kraler M, Durrschmid K, Hendriks K, et al. Comparison of homo and heterofermentative lactic acid bacteria for implementation of fermented wheat bran in bread. Food Microbiol. 2015;49:211-19. https://doi.org/10.1016/j.fm.2015.02.014
  25. 25. Da Silva NC, Nascimento CF, Campos VMA, Alves MAP, Resende FD, Daniel JLP, et al. Influence of storage length and inoculation with Lactobacillus buchneri on the fermentation, aerobic stability and ruminal degradability of high-moisture corn and rehydrated corn grain silage. Anim Feed Sci Technol. 2019;251:12433. https://doi.org/10.1016/j.anifeedsci.2019.03.003
  26. 26. Zielinska KJ, Fabiszewska AU. Improvement of the quality of maize grain silage by a synergistic action of selected Lactobacilli strains. World J Microbiol Biotechnol. 2018;34:9. https://doi.org/10.1007/s11274-017-2400-9
  27. 27. Xu Z, He H, Zhang S, Kong J. Effects of inoculants Lactobacillus brevis and Lactobacillus parafarraginis on the fermentation characteristics and microbial communities of corn stover silage. Sci Rep. 2017;7:13614. https://doi.org/10.1038/s41598-017-14052-1
  28. 28. Puntillo M, Gaggiotti M, Oteiza JM, Binetti A, Massera A, Vinderola G. Potential of lactic acid bacteria isolated from different forages as silage inoculants for improving fermentation quality and aerobic stability. Front Microbiol. 2020;11:586716. https://doi.org/10.3389/fmicb.2020.586716
  29. 29. Gunaydin T, Akbay F, Arikan S, Kizilsimsek M. Effects of different lactic acid bacteria inoculants on alfalfa silage fermentation and quality. J Agr Sci-Tarim Bili. 2023;29(2):555-60. https://doi.org/10.15832/ankutbd.1136844
  30. 30. Olstorpe M, Borling J, Schnurer J, Passoth V. Pichia anomala yeast improves feed hygiene during storage of moist crimped barley grain under Swedish farm conditions. Anim Feed Sci Technol. 2010;156:47-56. https://doi.org/10.1016/j.anifeedsci.2009.12.008
  31. 31. Duniere L, Jin L, Smiley B, Qi M, Rutherford W, Wang Y, et al. Impact of adding Saccharomyces strains on fermentation, aerobic stability, nutritive value, and select lactobacilli populations in corn silage. J Anim Sci. 2015;93:2322-35. https://doi.org/10.2527/jas.2014-8287
  32. 32. Ferreira DJ, Zanine AM, Lana RP, Ribeiro MD, Alves GR, Mantovani HC. Chemical composition and nutrient degradability in elephant grass silage inoculated with Streptococcus bovis isolated from the rumen. An Acad Bras Cienc. 2014;86:465-74. https://doi.org/10.1590/0001-3752014112312
  33. 33. Ok JU, Lee SM, Lee SJ, Lim JH, Kang TW, Jung HY, et al. Effect of yeast addition in rice straw silage fermentation. J Anim Sci Technol. 2006;48(5):691-98. https://doi.org/10.5187/JAST.2006.48.5.691
  34. 34. Kamphayae S, Kumagai H, Bureenok S, Narmseelee R, Butcha P. Effects of graded levels of liquid brewer's yeast on chemical composition and fermentation quality in cassava pulp and rice straw-based total mixed ration silage. Anim Sci J. 2017;88:618–24. https://doi.org/10.1111/asj.12682
  35. 35. Cherdthong A, Uriyapongson S, Wanapat M, Pin C, Chanjula. Effects of ruminal crabtree-negative yeast ensiled rice straw on feed intake, rumen fermentation, and performance in tropical crossbred lactating holstein cows. https://doi.org/10.21203/rs.3.rs-144298/v1
  36. 36. Getabalew M, Mindaye A, Alemneh T. Silage and enzyme additives as animal feed and animals response. Agric Anim Health Dev. 2022;2:1-6. https://doi.org/10.33552/AAHDS.2022.02.000543
  37. 37. EFSA Panel on Additives and Products or Substances Used in Animal Feed (FEEDAP), Rychen G, Aquilina G, Azimonti G, Bampidis V, Bastos ML, et al. Safety and efficacy of alpha-amylase from Bacillus amyloliquefaciens DSM 9553, Bacillus amyloliquefaciens NCIMB 30251, Aspergillus oryzae CBS 585.94 and Aspergillus oryzae ATTC SD-5374, Endo-1,4-Beta-Glucanase from Trichoderma reesei ATCC PTA-10001, Trichoderma reesei ATCC SD-6331 and Aspergillus niger CBS 120604, Endo-1,4-Beta-Xylanase from Trichoderma koningii MUCL 39203 and Trichoderma citrinoviride CBS 614.94 and Endo-1,3(4)-Beta-Glucanase from Aspergillus tubingensis MUCL 39199 as silage additives for all animal species. EFSA J. 2018;16:E05224. https://doi.org/10.2903/j.efsa.2018.5224
  38. 38. Sun Y, Liu M, Bai B, Liu Y, Sheng P, An J, et al. Effect of enzyme preparation and extrusion puffing treatment on sorghum straw silage fermentation. Sci Rep. 2024;14:25237. https://doi.org/10.1038/s41598-024-76469-9
  39. 39. Hu Z, Ma D, Niu H, Chang J, Yu J, Tong Q, et al. Enzyme additives influence bacterial communities of Medicago sativa silage as determined by Illumina sequencing. AMB Express. 2021;11:5. https://doi.org/10.1186/s13568-020-01158-5
  40. 40. Liu EY, Wang S, Wang S, Khan NA, Zhou X, Tang S, et al. Bacterial inoculants and enzymes-based silage cocktails boost the ensiling quality of biomasses from reed, corn and rice straw. Chem Biol Technol Agric. 2024;11:29. https://doi.org/10.1186/s40538-024-00549-1
  41. 41. Jacob SJL, McAllan AB. Enzymes as silage additives: Silage quality, digestion, digestibility and performance in growing cattle. Grass Forage Sci. 2006;46:63-73. https://doi.org/10.1111/j.1365-2494.1991.tb02208.x
  42. 42. Windle MC, Walker N, Kung L. Effects of an exogenous protease on the fermentation and nutritive value of corn silage harvested at different dry matter contents and ensiled for various lengths of time. J Dairy Sci. 2014;97:3053-60. https://doi.org/10.3168/jds.2013-7586
  43. 43. Oliveira ER, Takiya CS, Valle TAD, Renno FP, Goes RHTB, Leite RS, et al. Effects of exogenous amylolytic enzymes on fermentation, nutritive value and in vivo digestibility of rehydrated corn silage. Anim Feed Sci Technol. 2019;251:86-95. https://doi.org/10.1016/j.anifeedsci.2019.03.001
  44. 44. Mu L, Wang Q, Wang Y, Zhang Z. Effects of cellulase and xylanase on fermentative profile, bacterial diversity, in vitro degradation of mixed silage of agro-residue and alfalfa. Chem Biol Technol Agric. 2023;10:40. https://doi.org/10.1186/s40538-023-00409-4
  45. 45. Weinberg ZG, Ashbell G, Hen Y, Azrieli A. The effect of cellulase and hemicellulase plus pectinase on the aerobic stability and fibre analysis of peas and wheat silages. Anim Feed Sci Technol. 1995;55:287-93. https://doi.org/10.1016/0377-8401(95)00785-L
  46. 46. Lancaster RJ, Brunswick LFC. Comparison of formic acid with a formaldehyde and formic acid mixture as additives for lucerne silage. NZ J Exp Agric. 1977;5:113-14. https://doi.org/10.1080/03015521.1977.10425947
  47. 47. Xie H, Xie F, Guo Y, Liang X, Peng L, Li M, et al. Fermentation quality, nutritive value and in vitro ruminal digestion of Napier grass, sugarcane top and their mixed silages prepared using lactic acid bacteria and formic acid. Grassl Sci. 2023;69:23-32. https://doi.org/10.1111/grs.12382
  48. 48. Gheller LS, Ghizzi LG, Takiya CS, Grigoletto NTS, Silva TBP, Marques JA, et al. Different organic acid preparations on fermentation and microbiological profile chemical composition and aerobic stability of whole-plant corn silage. Anim Feed Sci Technol. 2021;281:115083. https://doi.org/10.1016/j.anifeedsci.2021.115083
  49. 49. Oliveira KDS, Salvati GGDS, Morais GD, Estrada CPDA, Santos WPD, Salvatte JMS, et al. Effect of length of storage and chemical additives on the nutritive value and starch degradability of reconstituted corn grain silage. Agronomy. 2023;13:209. https://doi.org/10.3390/agronomy13010209
  50. 50. Zhao J, Tao X, Wang S, Li J, Shao T. Effect of sorbic acid and dual-purpose inoculants on the fermentation quality and aerobic stability of high dry matter rice straw silage. J Appl Microbiol. 2021;130:1456-65. https://doi.org/10.1111/jam.14882
  51. 51. Zhang L, Li X, Wang S, Zhao J, Dong Z, Zhao Q, et al. Effect of sorbic acid, ethanol, molasses, previously fermented juice and combined additives on ensiling characteristics and nutritive value of Napiergrass (Pennisetum purpureum) silage. Fermentation. 2022;8:528. https://doi.org/10.3390/fermentation8100528
  52. 52. Alli I, Pabari S, Fairbairn R, Baker BE. The effects of sorbates on the ensilage of chopped whole-plant maize and lucerne. J Sci Food Agric. 1985;36:63-70. https://doi.org/10.1002/jsfa.2740360202
  53. 53. Danner H, Holzer M, Mayrhuber E, Braun R. Acetic acid increases stability of silage under aerobic conditions. Appl Environ Microbiol. 2003;69:562-67. https://doi.org/10.1128/aem.69.1.562-567.2003
  54. 54. Spoelstra SF, Courtin MG, Beers JACV. Acetic acid bacteria can initiate aerobic deterioration of whole crop maize silage. J Agric Sci. 1988;111:127-32. https://doi.org/10.1017/S0021859600082915
  55. 55. Ohyama Y, Hara S, Masaki S. The influence of hydrochloric acid on the effect of caproic acid in preventing aerobic deterioration of silages. J Sci Food Agric. 1979;30:107-11. https://doi.org/10.1002/jsfa.2740300203
  56. 56. OKiely P, Flynn AV, Poole DBR. Sulphuric acid as a silage preservative: 1. Silage preservation, animal performance and copper status. Ir J Agric Res. 1989;28:1-9.
  57. 57. Direkvandi E, Mohammadabadi T, Chaji M, Elghandour MMMY, Pleigo BA, Salem AZM. Effect of sulfuric acid and molasses on the chemical composition, ruminal fermentation and digestibility of silage of Conocarpus erectus L. tree leaves and branches. Agrofor Syst. 2020;94:1601-09. https://doi.org/10.1007/s10457-020-00495-5
  58. 58. Shockey WL, Borger DC. Effect of salt on fermentation of alfalfa. 2. Treatment with sodium chloride, Clostridium butyricum and lactic acid bacteria. J Dairy Sci. 1991;74:160-6. https://doi.org/10.3168/jds.S0022-0302(91)78157-5
  59. 59. Kung L, Robinson JR, Ranjit NK, Chen JH, Golt CM, Pesek JD. Microbial populations, fermentation end-products and aerobic stability of corn silage treated with ammonia or a propionic acid-based preservative. J Dairy Sci. 2000;83:1479–86. https://doi.org/10.3168/jds.S0022-0302(00)75020-X
  60. 60. Kung L. A review on silage additives and enzymes. In: Proceedings of The 59th Minneapolis Nutrition Conference. 1998;12135.
  61. 61. Qiu X, Guo G, Yuan X, Shao T. Effects of adding acetic acid and molasses on fermentation quality and aerobic stability of total mixed ration silage prepared with hulless barley straw in Tibet. Grassl Sci. 2014;60:20613. https://doi.org/10.1111/grs.12062
  62. 62. Li Y, Du S, Sun L, Cheng Q, Hao J, Lu Q, et al. Effects of lactic acid bacteria and molasses additives on dynamic fermentation quality and microbial community of native grass silage. Front Microbiol. 2022;13:830121. https://doi.org/10.3389/fmicb.2022.830121
  63. 63. Da Silva NC, Nascimento CF, Campos VMA, Alves MAP, Resende FD, Daniel JLP, et al. Influence of storage length and inoculation with Lactobacillus buchneri on the fermentation, aerobic stability and ruminal degradability of high-moisture corn and rehydrated corn grain silage. Anim Feed Sci Technol. 2019;251:124-33. https://doi.org/10.1016/j.anifeedsci.2019.03.003
  64. 64. Purwin C, Pysera B, Sederevicius A, Makauskas S, Traidaraite A, Lipinski K. Effect of silage made from different plant raw materials with the addition of a fermentation inhibitor on the production results of dairy cows. Vet Zootech. 2010;51(73):44-54.
  65. 65. Saeed A. The effect of addition urea and ensiling period on the quality and chemical composition of wheat straw silages. Al Qadisiay J Agric Sci. 2012;2(2):1-14. https://doi.org/10.33794/qjas.2012.68150
  66. 66. Yunus M, Ohba N, Shimojo M, Furuse M, Masuda Y. Effects of adding urea and molasses on napiergrass silage quality. Asian-Australas J Anim Sci. 2000;13:1542-47. https://doi.org/10.5713/ajas.2000.1542
  67. 67. Santos APM, Santos EM, Araujo GGL, Oliveira JS, Zanine AM, Pinho RMA, et al. Effect of inoculation with preactivated Lactobacillus buchneri and urea on fermentative profile, aerobic stability and nutritive value in corn silage. Agriculture. 2020;10:335. https://doi.org/10.3390/agriculture10080335
  68. 68. Hassan A, Alsamaraee W. Effect of probiotic and urea on nutritive value of malva and barley silage. Agric J. 2016. https://doi.org/10.13140/RG.2.2.15216.92163
  69. 69. Lei Y, Li M, Liu Y, Wang J, He X, Zhao Y, et al. Lactic acid bacteria and formic acid improve fermentation quality and beneficial predicted functional characteristics in mixed silage consisting of alfalfa and perennial ryegrass. Fermentation. 2024;10:43. https://doi.org/10.3390/fermentation10010043
  70. 70. Zong C, Jiang W, Shao T, Liu Q. Investigation of fermentation profiles, bacterial community structure and bacterial β-carotene synthesis of alfalfa silage treated with propionic acid or its combination with squalene. J Agric Sci. 2024;1–12. https://doi.org/10.1017/S0021859624000194
  71. 70. Dai T, Dong D, Wang S, Zong C, Yin X, Jia Y, et al. The effectiveness of chemical additives on fermentation profiles, aerobic stability and in vitro ruminal digestibility of total mixed ration ensiled with Napier napier grass and wet distillers’ grains in Southeast China. Ital J Anim Sci. 2022;21:979-89. https://doi.org/10.1080/1828051x.2022.2078234
  72. 71. Yitbarek MB, Tamir B. Silage Additives: Review. Open J Appl Sci. 2014;4:258-74. https://doi.org/10.4236/ojapps.2014.45026
  73. 72. Santos A, Santos E, De Oliveira R, Ossival P, Perazzo A, Pinho R, et al. Effects of urea addition on the fermentation of sorghum (Sorghum bicolor) silage. Afr J Range Forage Sci. 2018;35(1):55-62. https://doi.org/10.2989/10220119.2018.1458751
  74. 73. Ozkan F, Deniz S. Determining the quality of sugar beet pulp, lenox and ryegrass silages used in feeding dairy cattle, in comparison to corn silage. Turk J Vet Anim Sci. 2023;47(6):7. https://doi.org/10.55730/1300-0128.4326
  75. 74. Demirci M, Kara K, Karsli MA. Determination of quality and nutrient content of artichoke by-products ensilaged with barley and molasses. J Anim Feed Sci. 2023;32:324-30. https://doi.org/10.22358/jafs/159346/2023
  76. 75. Kazemi M, Mokhtarpour A, Saleh H. Toward making a high-quality silage from common reed (Phragmites australis). J Anim Physiol Anim Nutr. 2024;108(2):338-45. https://doi.org/10.1111/jpn.13895
  77. 76. Sutaryono Y, Putra R, Mardiansyah M, Yuliani E, Harjono H, Mastur M, et al. Mixed Leucaena and molasses can increase the nutritional quality and rumen degradation of corn stover silage. J Adv Vet Anim Res. 2023;10(1):118-125. https://doi.org/10.5455/javar.2023.j660
  78. 77. Luo R, Zhang Y, Wang F, Liu K, Huang G, Zheng N, et al. Effects of sugar cane molasses addition on the fermentation quality, microbial community and tastes of alfalfa silage. Animals. 2021;11(2):355. https://doi.org/10.3390/ani11020355
  79. 78. Ni K, Wang F, Zhu B, Yang J, Zhuo G,Pan Y, et al. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour Technol. 2017;238:706-15. https://doi.org/10.1016/j.biortech.2017.04.055
  80. 79. Castano GA, Villa LM. Use of whey and molasses as additive for producing silage of Cuba OM-22 (Cenchrus purpureus X Cenchrus glaucum). Cub J Agri Sci. 2017;51:61-70.
  81. 80. Lukkananukool A, Srikijkasemwat K, Promnaret A, Aung M, YIN YK. Fermented juice of epiphytic lactic acid bacteria and molasses addition on the fermentation characteristics and nutrient compositions of sorghum silage. Adv Anim Vet Sci. 2019;7(8):668-73. https://doi.org/10.17582/journal.aavs/2019/7.8.668.673
  82. 81. Xie Y, Bao J, Li W, Sun Z, Gao R, Wu Z, et al. Effects of applying lactic acid bacteria and molasses on the fermentation quality, protein fractions and in vitro digestibility of baled alfalfa silage. Agronomy. 2021;11(1):91. https://doi.org/10.3390/agronomy11010091
  83. 82. Cigari HF, Khorvash M, Ghorbani GR, Ghasemi E, Taghizadeh A, Kargar S, et al. Interactive effects of molasses by homofermentative and heterofermentative inoculants on fermentation quality, nitrogen fractionation, nutritive value and aerobic stability of wilted alfalfa (Medicago sativa L) silage. J Anim Physiol Anim Nutr. 2014;98:290-99. https://doi.org/10.1111/jpn.12079
  84. 83. Chalisty VD, Utomo R, Bachruddin Z. The effect of molasses, Lactobacillus plantarum, Trichoderma viride and its mixtures addition on the quality of total mixed forage silage. Bull Anim Sci. 2017;41(4):431-38. https://doi.org/10.21059/buletinpeternak.v41i4.17337
  85. 84. Seale D, Henderson A, Pettersson K, Lowe J. The effect of addition of sugar and inoculation with two commercial inoculants on the fermentation of lucerne silage. Grass Forage Sci. 1986;41:61-70. https://doi.org/10.1111/j.1365-2494.1986.tb01793.x
  86. 85. Das BD, Avci M, Das A, Kirar N, Kahraman M, Aydemir ME. Effect of use of potato chips waste as a source of easily soluble carbohydrates in alfalfa silage on silage quality. Vet J Mehmet Akif Ersoy Univ. 2023;8(1):26-9. https://doi.org/10.24880/maeuvfd.1204050
  87. 86. Seppala A, Heikkila T, Maki M, Rinne M. Effects of additives on the fermentation and aerobic stability of grass silages and total mixed rations. Grass Forage Sci. 2016;71:458-71. https://doi.org/10.1111/gfs.12221
  88. 87. Bernardes TF, Daniel JLP, Adesogan AT, Mcallister TA, Drouin P, Nussio LG, et al. Silage Review: Unique challenges of silages made in hot and cold regions. J Dairy Sci. 2018;101:4001-19. https://doi.org/10.3168/jds.2017-13703
  89. 88. Juracek M, Bíro D, Simko M, Galik B, Rolinec M, Hanusovsky O, et al. Effect of various additives on the fermentation quality of corn silage. J Cent Eur Agric. 2024;25:146-53. https://doi.org/10.5513/jcea01/25.1.4120
  90. 89. Tian H, Zhu Y, Dai M, Li T, Guo Y, Deng M, et al. Additives altered bacterial communities and metabolic profiles in silage hybrid Pennisetum. Front Microbiol. 2022;12 770728. https://doi.org/10.3389/fmicb.2021.770728
  91. 90. Li M, Yu Q, Xu J, Sun H, Cheng Q, Xie Y, et al. Effect of different organic acid additives on the fermentation quality and bacterial community of paper mulberry (Broussonetia papyrifera) silage. Front Microbiol. 2022;13:1038549. https://doi.org/10.3389/fmicb.2022.1038549
  92. 91. Kung L. Silage fermentation and additives. Arch Latinoam Prod Anim. 2018; 26:3-4.

Downloads

Download data is not yet available.