Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Review on genomic selection in plant breeding

DOI
https://doi.org/10.14719/pst.8556
Submitted
27 March 2025
Published
21-06-2025
Versions

Abstract

Genomic selection has been considered as a novel methodology beyond traditional marker assisted selection methods (MAS). GS can be considered as a variant of MAS selecting favourable individuals largely based on estimated breeding values derived genomically. It involves genotyping markers and phenotyping individuals in reference population then predicting phenotypes of candidates for selection using statistical machine learning models. New candidate individuals get predictions performed on them post trained model output if genotypic information happens to be available somehow. Selection of training population proves highly crucial for testing purposes and ultimately determines accuracy in genomic selection processes. Genomic selection models frequently utilize involve stepwise regression, ridge regression, genomic best linear unbiased prediction, Ridge regression best linear unbiased Prediction, Bayes A, Bayes B, Bayes care Bayesian model and least absolute shrinkage selection operator. This review aims to present an overview of genomic selection as an advanced breeding strategy that integrates genome wide markers and statistical model to accelerate genetic improvement in plants. It highlights the principles, methods and applications of genomic selection in enhancing crop traits and breeding efficiency.

References

  1. 1. Meuwissen TH, Hayes BJ, Goddard M. Prediction of total genetic value using genome-wide dense marker maps. Genet. 2001;(4)157(4):1819-29. https://doi.org/10.1093/genetics/157.4.1819
  2. 2. Goddard ME, Hayes BJ. Genomic selection. J Anim Breed Genet. 2007;124(6):323-30. https://doi.org/10.1111/j.1439-0388.2007.00702.x
  3. 3. Chesnais JP, Cooper TA, Wiggans GR, Sargalzaei M, Pryce JE, Miglior F. Using genomics to enhance selection of novel traits in North American dairy cattle. J Dairy Sci. 2016;99(3):2413-27
  4. 4. Crossa J, Burgueño J, Cornelius PL, McLaren G, Trethowan R, Krishnamachari A. Modeling genotype× environment interaction using additive genetic covariances of relatives for predicting breeding values of wheat genotypes. Crop Sci. 2006;46(4):1722-33. https://doi.org/10.2135/cropsci2005.11-0427
  5. 5. Piepho HP. Ridge regression and extensions for genomewide selection in maize. Crop Sci. 2009;49(4):1165-76 https://doi.org/10.2135/cropsci2008.10.0595
  6. 6. Burgueño J, Crossa J, Cornelius PL, Trethowan R, McLaren G, Krishnamachari A. Modeling additive× environment and additive× additive× environment using genetic covariances of relatives of wheat genotypes. Crop science. 2007;47(1):311-20. https://doi.org/10.2135/cropsci2006.09.0564
  7. 7. González-Recio O, Gianola D, Long N, Weigel KA, Rosa GJ, Avendano S. Nonparametric methods for incorporating genomic information into genetic evaluations: an application to mortality in broilers. Genet. 2008;178(4):2305-13. https://doi.org/10.1534/genetics.107.084293
  8. 8. Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME. Invited review: Genomic selection in dairy cattle: Progress and challenges. J Dairy Sci. 2009;92(2):433-43. https://doi.org/10.3168/jds.2008-1646
  9. 9. VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor JF, et al. Invited review: Reliability of genomic predictions for North American Holstein bulls. J Dairy Sci. 2009;92(1):16-24. https://doi.org/10.3168/jds.2008-1514
  10. 10. Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA. The impact of genetic architecture on genome-wide evaluation methods. Genet. 2010;185(3):1021-31. https://doi.org/10.1534/genetics.110.116855
  11. 11. Stuber CW, Goodman MM, Moll RH. Improvement of yield and ear number resulting from selection at allozyme loci in a Maize population 1. Crop Sci. 1982;22(4):737-40. https://doi.org/10.2135/cropsci1982.0011183X002200040010x
  12. 12. Tanksley SD, Young ND, Paterson AH, Bonierbale MW. RFLP mapping in plant breeding: new tools for an old science. Biotechnol. 1989;7(3):257-64. https://doi.org/10.1038/nbt0389-257
  13. 13. Xu Y, Crouch JH. Marker‐assisted selection in plant breeding: From publications to practice. Crop Sci. 2008;48(2):391-407. https://doi.org/10.2135/cropsci2007.04.0191
  14. 14. Moreau L, Charcosset A, Gallais A. Experimental evaluation of several cycles of marker-assisted selection in maize. Euphytica. 2004;137(1):111-8. https://doi.org/10.1023/B:EUPH.0000040508.01402.21
  15. 15. Varshney RK, Graner A, Sorrells ME. Genomics-assisted breeding for crop improvement. Trends Plant Sci. 2005;10(12):621-30. https://doi.org/10.1016/j.tplants.2005.10.004
  16. 16. Varshney RK, Hoisington DA, Tyagi AK. Advances in cereal genomics and applications in crop breeding. Trends Biotechnol. 2006;24(11):490-9. https://doi.org/10.1016/j.tibtech.2006.08.006
  17. 17. Hayes B, Goddard M. Genome-wide association and genomic selection in animal breeding. Genome. 2010;53(11):876-83. https://doi.org/10.1139/G10-076
  18. 18. Colombani C, Croiseau P, Fritz S, Guillaume F, Legarra A, Ducrocq V, et al. A comparison of partial least squares (PLS) and sparse PLS regressions in genomic selection in French dairy cattle. J Dairy Sci. 2012;95(4):2120-31. https://doi.org/10.3168/jds.2011-4647
  19. 19. De Los Campos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E, et al. Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genet. 2009;182(1):375-85. https://doi.org/10.1534/genetics.109.101501
  20. 20. McGowan M, Wang J, Dong H, Liu X, Jia Y, Wang X, et al. Ideas in genomic selection with the potential to transform plant molecular breeding: a review. Plant Breed Rev. 2021;45:273-319. https://doi.org/10.1002/9781119828235.ch7
  21. 21. Raymond B, Bouwman AC, Schrooten C, Houwing-Duistermaat J, Veerkamp RF. Utility of whole-genome sequence data for across-breed genomic prediction. Genet Sel Evol. 2018;50:1-2. https://doi.org/10.1186/s12711-018-0396-8
  22. 22. Bernardo R, Yu J. Prospects for genomewide selection for quantitative traits in maize. Crop Sci. 2007;47(3):1082-90. https://doi.org/10.2135/cropsci2006.11.0690
  23. 23. Heffner EL, Sorrells ME, Jannink JL. Genomic selection for crop improvement. Crop Sci. 2009;49(1):1-2. https://doi.org/10.2135/cropsci2008.08.0512
  24. 24. Wang X, Yang Z, Xu C. A comparison of genomic selection methods for breeding value prediction. Sci Bull. 2015;60:925-35.25. https://doi.org/10.1007/s11434-015-0791-2
  25. 25. Crossa J, Pérez P, de los Campos G, Mahuku G, Dreisigacker S, Magorokosho C. Genomic selection and prediction in plant breeding. J Crop Improv. 2011;25(3):239-61. https://doi.org/10.1080/15427528.2011.558767
  26. 26. Wang K, Abid MA, Rasheed A, Crossa J, Hearne S, Li H. DNNGP. DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants. Mol Plant. 2023;16(1):279-93. https://doi.org/10.1016/j.molp.2022.11.004
  27. 27. Choudhary K, Choudhary OP, Shekhawat NS. Marker assisted selection: a novel approach for crop improvement. Am-Eurasian J Agron. 2008;1(2):26-30.
  28. 28. Babu R, Nair SK, Prasanna BM, Gupta HS. Integrating marker-assisted selection in crop breeding–prospects and challenges. Curr Sci. 2004:607-19.
  29. 29. Lande R, Thompson R. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genet. 1990;124(3):743-56. https://doi.org/10.1093/genetics/124.3.743
  30. 30. Henderson CR. Best linear unbiased estimation and prediction under a selection model. Biom. 1975:423-47. https://doi.org/10.2307/2529430
  31. 31. Habier D, Fernando RL, Dekkers J. The impact of genetic relationship information on genome-assisted breeding values. Genet. 2007;177(4):2389-97. https://doi.org/10.1534/genetics.107.081190
  32. 32. Lee YS, Kim HJ, Cho S, Kim H. The usage of an SNP-SNP relationship matrix for best linear unbiased prediction (BLUP) analysis using a community-based cohort study. Genomics Inform. 2014;12:254-60. https://doi.org/10.5808/GI.2014.12.4.254
  33. 33. Su H, Fernando RL, Garrick DJ, Golden B. Accuracy of genomic predictions for birth, weaning and yearling weights in US Simmental beef cattle. Iowa State University Animal Industry Report. 2015;12(1). https://doi.org/10.31274/ans_air-180814-1279
  34. 34. Speed D, Balding DJ. MultiBLUP: improved SNP-based prediction for complex traits. Genome Res. 2014;24(9):1550-7. http://www.genome.org/cgi/doi/10.1101/gr.169375.113.
  35. 35. Abdollahi‐Arpanahi R, Morota G, Valente BD, Kranis A, Rosa GJ, Gianola D. Assessment of bagging GBLUP for whole‐genome prediction of broiler chicken traits. J AnimBreed Genet. 2015;132(3):218-28. https://doi.org/10.1111/jbg.12131
  36. 36. Bernardo R. Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci. 2008;48(5):1649-64. https://doi.org/10.2135/cropsci2008.03.0131
  37. 37. Beales J, Turner A, Griffiths S, Snape JW, Laurie DA. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet. 2007;115:721-33. https://doi.org/10.1007/s00122-0070603-4
  38. 38. Ellis M, Spielmeyer W, Gale K, Rebetzke G, Richards R. "Perfect" markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet. 2002;105:1038-42. https://doi.org/10.1007/s00122-002-1048-4
  39. 39. Xu S, Zhu D, Zhang Q. Predicting hybrid performance in rice using genomic best linear unbiased prediction. Proceedings of the National Academy of Sciences. 2014;111(34):12456-61. https://doi.org/10.1073/pnas.1413750111
  40. 40. Matei G, Woyann LG, Milioli AS, de Bem Oliveira I, Zdziarski AD, Zanella R, Coelho AS, Finatto T, Benin G. Genomic selection in soybean: accuracy and time gain in relation to phenotypic selection. Mol Breed. 2018;38:1-3. https://doi.org/10.1007/s11032-0180872-4
  41. 41. Korte A, Farlow A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods. 2013;9:1-9. https://doi.org/10.1186/1746-4811-9-29
  42. 42. Pierce SE, Booms A, Prahl J, van der Schans EJ, Tyson T, Coetzee GA. Post-GWAS knowledge gap: the how, where and when. npj Parkinson's Disease. 2020;6(1):23. https://doi.org/10.1038/s41531-020-00125-y
  43. 43. March RE. Gene mapping by linkage and association analysis. Mol Biotechnol. 1999;13:113-22. https://doi.org/10.1385/MB:13:2:113
  44. 44. Syvänen AC. Toward genome-wide SNP genotyping. Nat Genet. 2005;37(Suppl 6):S5-10. https://doi.org/10.1038/ng1558
  45. 45. Tibbs Cortes L, Zhang Z, Yu J. Status and prospects of genome‐wide association studies in plants. Plant Genome. 2021;14(1):e20077. https://doi.org/10.1002/tpg2.20077
  46. 46. International Wheat Genome Sequencing Consortium (IWGSC), Appels R, Eversole K, Stein N, Feuillet C, Keller B, Rogers J, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Sci. 2018;361(6403):eaar7191. https://doi.org/10.1126/science.aar7191
  47. 47. Sabatti, C. Multivariate linear models for gwas (Cambridge, UK: Cambridge University Press), 2013. p. 188–207. https://doi.org/10.1017/CBO9781139226448.010
  48. 48. Uffelmann E, Huang QQ, Munung NS, De Vries J, Okada Y, Martin AR, et al. Genome-wide association studies. Nat Rev Methods Primers. 2021;1(1):59. https://doi.org/10.1038/s43586-021-00056-9
  49. 49. Heino M, Kinnunen P, Anderson W, Ray DK, Puma MJ, Varis O, et al. Increased probability of hot and dry weather extremes during the growing season threatens global crop yields. Sci Repo. 2023;13(1):3583. https://doi.org/10.1038/s41598-023-29378-2
  50. 50. Peng Z. A brief overview of GWAS: discover genetic variations of diseases and phenotypes. In E3S Web of Conferences; 2020 (Vol. 185, p. 03014). EDP Sciences. https://doi.org/10.1051/e3sconf/202018503014
  51. 51. Zhang YM, Jia Z, Dunwell JM. The applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits. Front Plant Sci. 2019;10:100. https://doi.org/10.3389/fpls.2019.00100
  52. 52. Nicholls HL, John CR, Watson DS, Munroe PB, Barnes MR, Cabrera CP. Reaching the end-game for GWAS: machine learning approaches for the prioritization of complex disease loci. Front Genet. 2020;11:350. https://doi.org/10.3389/fgene.2020.00350
  53. 53. Enoma DO, Bishung J, Abiodun T, Ogunlana O, Osamor VC. Machine learning approaches to genome-wide association studies. J King Saud Univ Sci. 2022;34(4):101847. https://doi.org/10.1016/j.jksus.2022.101847
  54. 54. Hammer G, Cooper M, Tardieu F, Welch S, Walsh B, van Eeuwijk F, et al. Models for navigating biological complexity in breeding improved crop plants. Trends Plant Sci. 2006;11(12):587-93. https://doi.org/10.1007/s10681-007-9449-8
  55. 55. Whittaker JC, Thompson R, Denham MC. Marker-assisted selection using ridge regression. Genet Res. 2000;75(2):249-52. https://doi.org/10.1017/S0016672399004462
  56. 56. Piepho HP, Möhring J, Melchinger AE, Büchse A. BLUP for phenotypic selection in plant breeding and variety testing. Euphytica. 2008;161(1):209-28. https://doi.org/10.1007/s10681-007-9449-8
  57. 57. Team RD. R: A language and environment for statistical computing. (No Title). 2010. https://doi.org/10.17615/nbbv-eg92
  58. 58. Rice B, Lipka AE. Evaluation of RR‐BLUP genomic selection models that incorporate peak genome‐wide association study signals in maize and sorghum. Plant Genome. 2019;12(1):180052. https://doi.org/10.3835/plantgenome2018.07.0052
  59. 59. Riedelsheimer C, Endelman JB, Stange M, Sorrells ME, Jannink JL, Melchinger AE. Genomic predictability of interconnected biparental maize populations. Genet. 2013;194(2):493-503. https://doi.org/10.1534/genetics.113.150227
  60. 60. Henderson CR. Rapid method for computing the inverse of a relationship matrix. JDairy Sci. 1975;58(11):1727-30. https://doi.org/10.3168/jds.S0022-0302(75)84776-X
  61. 61. Zhang Z, Todhunter RJ, Buckler ES, Van Vleck LD. Use of marker-based relationships with multiple-trait derivative-free restricted maximal likelihood. J Anim Sci. 2007;85(4):881-5. https://doi.org/10.2527/jas.2006-656
  62. 62. Visscher PM, Medland SE, Ferreira MA, Morley KI, Zhu G, Cornes BK, et al. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet. 2006;2(3):e41. https://doi.org/10.1371/journal.pgen.0020041
  63. 63. Habier D, Fernando RL, Dekkers J. The impact of genetic relationship information on genomeassisted breeding values. Genet. 2007;177(4):2389-97. https://doi.org/10.1534/genetics.107.081190
  64. 64. Hayes BE, Goddard ME. The distribution of the effects of genes affecting quantitative traits in livestock. Genet Sel Evol. 2001;33(3):209. https://doi.org/10.1186/12979686-33-3-209
  65. 65. VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008;91(11):4414-23. https://doi.org/10.3168/jds.2007-0980
  66. 66. Xu S. An empirical Bayes method for estimating epistatic effects of quantitative trait loci. Biomet. 2007;63(2):513-21. https://doi.org/10.1111/j.1541-0420.2006.00711.x
  67. 67. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B: Stat Methodol. 1996;58(1):267-88. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
  68. 68. Vitezica ZG, Varona L, Legarra A. On the additive and dominant variance and covariance of individuals within the genomic selection scope. Genet. 201;195(4):1223-30. https://doi.org/10.1534/genetics.113.155176
  69. 69. Su G, Guldbrandtsen B, Gregersen VR, Lund MS. Preliminary investigation on reliability of genomic estimated breeding values in the Danish Holstein population. J Dairy Sci. 2010;93(3):1175-83. https://doi.org/10.3168/jds.2009-2192
  70. 70. Zaabza HB, Gara AB, Rekik B. Bayesian modeling in genetics and genomics. In: Tejedor JP, Bayesian Inference. InTech; 2017. p. 207-220
  71. 71. Moser G, Tier B, Crump RE, Khatkar MS, Raadsma HW. A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers. Genet Sel Evol. 2009;41:1-6. https://doi.org/10.1186/1297-9686-41-56
  72. 72. Colombani C, Legarra A, Fritz S, Guillaume F, Croiseau P, Ducrocq V, Robert-Granié C.
  73. a. Application of Bayesian least absolute shrinkage and selection operator (LASSO) and BayesCπ methods for genomic selection in French Holstein and Montbéliarde breeds. J Dairy Sci. 2013;96(1):575-91. https://doi.org/10.3168/jds.2011-5225
  74. 73. Clark SA, Hickey JM, Van der Werf JH. Different models of genetic variation and their effect on genomic evaluation. Genet Sel Evol. 2011;43:1-9. https://doi.org/10.1186/1297-9686-43-18
  75. 74. Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Extension of the Bayesian alphabet for genomic selection. BMC Bioinformatics. 2011;12:1-2. https://doi.org/10.1186/1471-210512-186
  76. 75. Silva FA, Viana AP, Corrêa CC, Santos EA, Oliveira JA, Andrade JD, et al. Bayesian ridge regression shows the best fit for SSR markers in Psidium guajava among Bayesian models. Sci Repo. 2021;11(1):13639.https://doi.org/10.21203/rs.3.rs-284606/v1
  77. 76. Waldmann P. Easy and flexible Bayesian inference of quantitative genetic parameters. Evol. 2009;63(6):1640-3. https://doi.org/10.1111/j.1558-5646.2009.00645.x
  78. 77. Halprr J, Waldmann P, Wang C, Sillanpaa MJ. Bayesian inference of genetic parameters based on conditional decompositions of multivariate normal distributions. Genet. 2010 ;185(2):645-54. https://doi.org/10.1534/genetics.110.114249
  79. 78. Ben Zaabza H, Ben Gara A, Hammami H, Amine Ferchichi M, Rekik B. Estimation of variance components of milk, fat and protein yields of Tunisian Holstein dairy cattle using Bayesian and REML methods. Arch Anim Breed. 2016;59(2):243-8. https://doi.org/10.5194/aab-59-243-2016
  80. 79. Harris BL, Johnson DL. Genomic predictions for New Zealand dairy bulls and integration with national genetic evaluation. J Dairy Sci. 2010;93(3):1243-52. https://doi.org/10.3168/jds.2009-2619
  81. 80. Xu S. An expectation–maximization algorithm for the Lasso estimation of quantitative trait locus effects. Heredity. 2010;105(5):483-94. https://doi.org/10.1038/hdy.2009.180
  82. 81. Powell JE, Visscher PM, Goddard ME. Reconciling the analysis of IBD and IBS in complex trait studies. Nat Rev Genet. 2010;11(11):800-5. https://doi.org/10.1038/nrg2865
  83. 82. Kärkkäinen HP, Sillanpää MJ. Back to basics for Bayesian model building in genomic selection. Genet. 2012;191(3):969-87. https://doi.org/10.1534/genetics.112.139014
  84. 83. Jazayeri SM, Torres RO. Genomic and transcriptomic approaches toward plant selection. J Sci Res: Rev Cienc Investig. 2017;2(8):54-64.
  85. 84. Suravajhala P, Kogelman LJ, Kadarmideen HN. Multi-omic data integration and analysis using systems genomics approaches: methods and applications in animal production, health and welfare. Genet Sel Evol. 2016;48:1-4. https://doi.org/10.1186/s12711-016-0217-x
  86. 85. McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics. 2010;26(16):2069-70. https://doi.org/10.1093/bioinformatics/btq330
  87. 86. Westra HJ, Franke L. From genome to function by studying eQTLs. BiochimBiophys Acta (BBA)- Molecular Basis Dis. 2014;1842(10):1896-902. https://doi.org/10.1016/j.bbadis.2014.04.024
  88. 87. Fortes MR, Reverter A, Zhang Y, Collis E, Nagaraj SH, Jonsson NN, et al. Association weight matrix for the genetic dissection of puberty in beef cattle. Proceedings of the National Academy of Sciences. 2010;107(31):13642-7.
  89. https://doi.org/10.1073/pnas.1002044107
  90. 88. Kadarmideen HN, Von Rohr P, Janss LL. From genetical genomics to systems genetics: potential applications in quantitative genomics and animal breeding. Mamm Genome. 2006;17:548-64. https://doi.org/10.1007/s00335-005-0169-x
  91. 89. Subramanian I, Verma S, Kumar S, Jere A, Anamika K. Multi-omics data integration, interpretation and its application. Bioinformatics Biol Insights. 2020;14:1177932219899051. https://doi.org/10.1177/1177932219899051
  92. 90. Ranjan A, Budke JM, Rowland SD, Chitwood DH, Kumar R, Carriedo L, et al. eQTL regulating transcript levels associated with diverse biological processes in tomato. Plant Physiol. 2016;172(1):328-40. https://doi.org/10.1104/pp.16.00289
  93. 91. Zhang L, Yu Y, Shi T, Kou M, Sun J, Xu T, et al. Genome-wide analysis of expression quantitative trait loci (eQTLs) reveals the regulatory architecture of gene expression variation in the storage roots of sweet potato. Hortic Res. 2020;7:90. https://doi.org/10.1038/s41438-020-0314-4
  94. 92. Viot C. Biotechnology and its use in the conservation and characterization of Gossypium barbadense genetic resources and in cotton improvement. MINAM. 2016.
  95. 93. Borrill P, Adamski N, Uauy C. Genomics as the key to unlocking the polyploid potential of wheat. New Phytol. 2015;208(4):1008-22.
  96. 94. Bevan MW, Uauy C, Wulff BB, Zhou J, Krasileva K, Clark MD. Genomic innovation for crop improvement. Nat. 2017;543(7645):346-54. https://doi.org/10.1038/nature22011
  97. 95. Shendure J, Aiden EL. The expanding scope of DNA sequencing. Nat Biotechnol. 2012;30(11):1084-94. https://doi.org/10.1038/nbt.2421
  98. 96. Jazayeri SM, Melgarejo Munoz LM, Romero HM. RNA-Seq: a glance at technologies and methodologies. Acta Biol Colomb. 2015;20(2):23-35. https://doi.org/10.15446/abc.v20n2.43639
  99. 97. Brozynska M, Furtado A, Henry RJ. Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol J. 2016;14(4):1070-85.
  100. a. https://doi.org/10.1111/pbi.12454
  101. 98. Khan S, Nabi G, Ullah MW, Yousaf M, Manan S, Siddique R, et al. Overview on the role of advance genomics in conservation biology of endangered species. Int J Genomics. 2016;2016(1):3460416.
  102. a. https://doi.org/10.1155/2016/3460416
  103. 99. Jin M, Liu H, He C, Fu J, Xiao Y, Wang Y, et al. Maize pan-transcriptome provides novel insights into genome complexity and quantitative trait variation. Sci Repo. 2016;6(1):18936. https://doi.org/10.1038/srep18936
  104. 100. Hamid JS, Hu P, Roslin NM, Ling V, Greenwood CM, Beyene J. Data integration in genetics and genomics: methods and challenges. Hum Genom Proteom. 2009;2009:869093. https://doi.org/10.4061/2009/869093
  105. 101. Gracie S, Pennell C, Ekman-Ordeberg G, Lye S, McManaman J, Williams S, Palmer L, Kelley M, Menon R, Gravett M, PREBIC"-Omics" Research Group. An integrated systems biology approach to the study of preterm birth using"-omic" technology-a guideline for research. BMC Pregnancy Childbirth. 2011;11:1-2. https://doi.org/10.1186/1471-2393-11-71
  106. 102. Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cellular Biol. 1999. https://doi.org/10.1128/MCB.19.3.1720
  107. 103. Zhang Y, Fonslow BR, Shan B, Baek MC, Yates III JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev. 2013;113(4):2343-94. https://doi.org/10.1021/cr3003533
  108. 104. Schneider MV, Orchard S. Omics technologies, data and bioinformatics principles. In: Mayer B, editors. Bioinformatics for Omics Data: Methods and Protocols. Springer; 2011. p. 3-0 https://doi.org/10.1007/978-1-61779-027-0_1
  109. 105. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011 ;144(5):646-74. https://doi.org/10.1016/j.cell.2011.02.013
  110. 106. Altelaar AM, Heck AJ. Trends in ultrasensitive proteomics. Curr Opin Chem Biol. 2012;16(1-2):206-13. https://doi.org/10.1016/j.cbpa.2011.12.011
  111. 107. Potgieter MG, Nakedi KC, Ambler JM, Nel AJ, Garnett S, Soares NC, et al. Proteogenomic analysis of mycobacterium smegmatis using high resolution mass spectrometry. Front Microbiol. 2016;7:427. https://doi.org/10.3389/fmicb.2016.00427
  112. 108. Sanders WS, Wang N, Bridges SM, Malone BM, Dandass YS, McCarthy FM, et al. The proteogenomic mapping tool. BMC Bioinformatics. 2011;12:1-7. https://doi.org/10.1186/1471-2105-12-115
  113. 109. Friedrich N. Metabolomics in diabetes research. J Endocrinol. 2012;215(1):29. https://doi.org/10.1530/JOE-12-0120
  114. 110. Wikoff WR, Grapov D, Fahrmann JF, DeFelice B, Rom WN, Pass HI, et al. Metabolomic markers of altered nucleotide metabolism in early stage adenocarcinoma. Cancer Prev Res. 2015;8(5):410-8. https://doi.org/10.1158/1940-6207.CAPR-14-0329
  115. 111. Fernie AR, Tadmor Y, Zamir D. Natural genetic variation for improving crop quality. Curr Opin Plant Biol. 2006;9(2):196-202. https://doi.org/10.1016/j.pbi.2006.01.010
  116. 112. Kusano M, Fukushima A, Kobayashi M, Hayashi N, Jonsson P, Moritz T, et al. Application of a metabolomic method combining one-dimensional and two-dimensional gas chromatography-time-of-flight/mass spectrometry to metabolic phenotyping of natural variants in rice. J Chromatogr B. 2007;855(1):71-9. https://doi.org/10.1016/j.jchromb.2007.05.002
  117. 113. Maier R, Moser G, Chen GB, Ripke S, Absher D, Agartz I, et al. Joint analysis of psychiatric disorders increases accuracy of risk prediction for schizophrenia, bipolar disorder and major depressive disorder. Am J Hum Genet. 2015;96(2):283-94.
  118. 114. Dos Santos JP, Fernandes SB, McCoy S, Lozano R, Brown PJ, Leakey AD, et al. Novel bayesian networks for genomic prediction of developmental traits in biomass sorghum. G3: Genes, Genomes, Genetics. 2020;10(2):769-81. https://doi.org/10.1534/g3.119.400759
  119. 115. Volpato L, Alves RS, Teodoro PE, Vilela de Resende MD, Nascimento M, Nascimento AC, et al. Multi-trait multi-environment models in the genetic selection of segregating soybean progeny. PloS one. 2019;14(4):e0215315. https://doi.org/10.1371/journal.pone.0215315
  120. 116. Schulthess AW, Zhao Y, Longin CF, Reif JC. Advantages and limitations of multiple-trait genomic prediction for Fusarium head blight severity in hybrid wheat (Triticum aestivum L.). Theor Appl Genet. 2018;131:685-701. https://doi.org/10.1007/s00122-0173029-7
  121. 117. Covarrubias-Pazaran G, Schlautman B, Diaz-Garcia L, Grygleski E, Polashock J, JohnsonCicalese J, et al. Multivariate GBLUP improves accuracy of genomic selection for yield and fruit weight in biparental populations of Vaccinium macrocarpon Ait. Front Plant Sci. 2018;9:1310. https://doi.org/10.3389/fpls.2018.01310
  122. 118. Calus MP, Veerkamp RF. Accuracy of multi-trait genomic selection using different methods. Genet Sel Evol. 2011;43:1-4. https://doi.org/10.1186/1297-9686-43-26
  123. 119. Montesinos-López OA, Montesinos-López A, Crossa J, Toledo FH, Pérez-Hernández O, Eskridge KM, et al. A genomic Bayesian multi-trait and multi-environment model. G3: Genes, Genomes, Genetics. 2016;6(9):2725-44. https://doi.org/10.1534/g3.116.032359
  124. 120. Fernandes SB, Dias KO, Ferreira DF, Brown PJ. Efficiency of multi-trait, indirect, and trait-assisted genomic selection for improvement of biomass sorghum. Theor Appl Genet. 2018;131:747-55. https://doi.org/10.1007/s00122-017-3033-y
  125. 121. Zhao Y, Gowda M, Würschum T, Longin CF, Korzun V, Kollers S, et al. Dissecting the genetic architecture of frost tolerance in Central European winter wheat. J Exp Bot. 2013;64(14):4453-60 https://doi.org/10.1093/jxb/ert259
  126. 122. Möhring J, Piepho HP. Comparison of weighting in two‐stage analysis of plant breeding trials. Crop Sci. 2009;49(6):1977-88. https://doi.org/10.2135/cropsci2009.02.0083
  127. 123. Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, et al. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci. 2013;110(20):8057-62. https://doi.org/10.1073/pnas.1217133110
  128. 124. Li B, Zhang N, Wang YG, George AW, Reverter A, Li Y. Genomic prediction of breeding values using a subset of SNPs identified by three machine learning methods. Front Genet. 2018;9:237. https://doi.org/10.3389/fgene.2018.00237
  129. 125. Hill WG. Understanding and using quantitative genetic variation. Philos Trans R Soc B: Biol Sci. 2010;365(1537):73-85. https://doi.org/10.1098/rstb.2009.0203
  130. 126. Hickey JM, Chiurugwi T, Mackay I, Powell W. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nat Genet. 2017;49(9):1297-303. https://doi.org/10.1038/ng.3920
  131. 127. Weller JI, Ezra E, Ron M. Invited review: A perspective on the future of genomic selection in dairy cattle. J Dairy Sci. 2017;100(11):8633-44. https://doi.org/10.3168/jds.2017-12879
  132. 128. González-Camacho JM, de Los Campos G, Pérez P, Gianola D, Cairns JE, Mahuku G, et al. Genome-enabled prediction of genetic values using radial basis function neural networks. Theor Appl Genet. 2012;125:759-71. https://doi.org/10.1007/s00122-012-1868-9
  133. 129. Lubke GH, Laurin C, Walters R, Eriksson N, Hysi P, Spector TD, et al. Gradient boosting as a SNP filter: an evaluation using simulated and hair morphology data. Journal of Data Mining in Genomics & Proteomics. 2013;4:104172. https://doi.org/10.4172/2153-0602.1000143
  134. 130. Friedman J. The elements of statistical learning: Data mining, inference and prediction. Math Intell. 2009;27(2):83-85. https://doi.org/10.1371/journal.pone.0123524
  135. 131. Khaki S, Wang L. Crop yield prediction using deep neural networks. Front Plant Sci. 2019;10:621. https://doi.org/10.3389/fpls.2019.00621
  136. 132. Jeong S, Kim JY, Kim N. GMStool: GWAS-based marker selection tool for genomic prediction from genomic data. Sci Repo. 2020;10(1):19653. https://doi.org/10.1038/s41598-020-76759-y
  137. 133. Bernardo R. Breeding for quantitative traits in plants. Woodbury, MN: Stemma press; 2002
  138. 134. Hickey JM, Dreisigacker S, Crossa J, Hearne S, Babu R, Prasanna BM, et al. Evaluation of genomic selection training population designs and genotyping strategies in plant breeding programs using simulation. Crop Sci. 2014;54(4):1476-88. https://doi.org/10.2135/cropsci2013.03.0195
  139. 135. Endelman JB, Atlin GN, Beyene Y, Semagn K, Zhang X, Sorrells ME, et al. Optimal design of preliminary yield trials with genome‐wide markers. Crop Sci. 2014 ;54(1):4859. https://doi.org/10.2135/cropsci2013.03.0154
  140. 136. Cantelmo NF, Von Pinho RG, Balestre M. Genomic breeding value prediction for simple maize hybrid yield using total effects of associated markers, under different imbalance levels and environments. Genet Mol Res. 2016;15(1):15017232. http://dx.doi.org/10.4238/gmr.15017232
  141. 137. Ahsan A, Monir M, Meng X, Rahaman M, Chen H, Chen M. Identification of epistasis loci underlying rice flowering time by controlling population stratification and polygenic effect. DNA Res. 2019;26(2):119-30. https://doi.org/10.1093/dnares/dsy043
  142. 138. Krishnappa G, Savadi S, Tyagi BS, Singh SK, Mamrutha HM, Kumar S, et al. Integrated genomic selection for rapid improvement of crops. Genomics. 2021;113(3):1070-86. https://doi.org/10.1016/j.ygeno.2021.02.007
  143. 139. World Health Organization. Diet, nutrition and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation. World Health Organization; 2003.
  144. 140. Furbank RT, Tester M. Phenomics–technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011;16(12):635-44.
  145. 141. Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, et al. Genomic selection in plant breeding: knowledge and prospects. Advances in agronomy. 2011;110:77-123. https://doi.org/10.1016/B978-0-12-385531-2.00002-5
  146. 142. Janila P, Variath MT, Pandey MK, Desmae H, Motagi BN, Okori P, et al. Genomic tools in groundnut breeding program: status and perspectives. Front Plant Sci. 2016;7:289. https://doi.org/10.3389/fpls.2016.00289
  147. 143. Pandey MK, Chaudhari S, Jarquin D, Janila P, Crossa J, Patil SC, et al. Genome-based trait prediction in multi-environment breeding trials in groundnut. Theor Appl Genet. 2020;133:3101-17. https://doi.org/10.1007/s00122-020-03658-1
  148. 144. Mangin B, Bonnafous F, Blanchet N, Boniface MC, Bret-Mestries E, Carrère S, et al. Genomic prediction of sunflower hybrids oil content. Front Plant Sci. 2017;8:1633. https://doi.org/10.3389/fpls.2017.01633
  149. 145. Beche E, Gillman JD, Song Q, Nelson R, Beissinger T, Decker J, et al. Genomic prediction using training population design in interspecific soybean populations. Mol Breed. 2021;41:1-5. https://doi.org/10.1007/s11032-021-01203-6
  150. 146. Haile TA, Heidecker T, Wright D, Neupane S, Ramsay L, Vandenberg A, et al. Genomic selection for lentil breeding: Empirical evidence. Plant Genome. 2020;13(1):e20002. https://doi.org/10.1002/tpg2.20002
  151. 147. Diaz S, Ariza-Suarez D, Ramdeen R, Aparicio J, Arunachalam N, Hernandez C, et al. Genetic architecture and genomic prediction of cooking time in common bean (Phaseolus vulgaris L.). Frontiers in Plant Science. 2021 11;11:622213. https://doi.org/10.3389/fpls.2020.622213
  152. 148. Heffner EL, Jannink JL, Sorrells ME. Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome. 2011;4(1). https://doi.org/10.3835/plantgenome2010.12.0029
  153. 149. Crossa J, Perez P, de los Campos G, Mahuku G, Dreisigacker S, Magorokoshol C. Genomic prediction of quantitative traits in plant breeding using molecular markers and pedigree.
  154. 150. Lin Z, Robinson H, Godoy J, Rattey A, Moody D, Mullan D, Keeble‐Gagnere G, Forrest K, Tibbits J, Hayden MJ, Daetwyler H. Genomic prediction for grain yield in a barley breeding program using genotype× environment interaction clusters. Crop Science. 2021;61(4):2323-35. https://doi.org/10.1002/csc2.20460
  155. 151. Li Y, Kaur S, Pembleton LW, Valipour-Kahrood H, Rosewarne GM, Daetwyler HD. Strategies of preserving genetic diversity while maximizing genetic response from implementing genomic selection in pulse breeding programs. Theor Appl Genet. 2022;135(6):1813-28. https://doi.org/10.1007/s00122-022-04071-6
  156. 152. Hastie T. The elements of statistical learning: data mining, inference and prediction. Springer; 2001 https://doi.org/10.1007/978-0-387-21606-5
  157. 153. Wasserman L. All of nonparametric statistics. Springer Science & Business Media; 2006
  158. 154. Ma W, Qiu Z, Song J, Li J, Cheng Q, Zhai J, et al. A deep convolutional neural network approach for predicting phenotypes from genotypes. Planta. 2018;248:1307-18. https://doi.org/10.1007/s00425-018-2976-9
  159. 155. Mangin B, Pouilly N, Boniface MC, Langlade NB, Vincourt P, Vear F, et al. Molecular diversity of sunflower populations maintained as genetic resources is affected by multiplication processes and breeding for major traits. Theor Appl Genet. 2017;130:1099-112. https://doi.org/10.1007/s00122-017-2872-x
  160. 156. Xavier CA, Godinho MT, Mar TB, Ferro CG, Sande OF, Silva JC, et al. Evolutionary dynamics of bipartite begomoviruses revealed by complete genome analysis. Mol Ecol. 2021 ;30(15):3747-67. https://doi.org/10.1111/mec.15997
  161. 157. Zeng W, Guo L, Xu S, Chen J, Zhou J. High-throughput screening technology in industrial biotechnology. Trends Biotechnol. 2020;38(8):888-906. https://doi.org/10.1016/j.tibtech.2020.01.001
  162. 158. Soltani A, Walter K, Lowry DB. A major reproductive isolation QTL is associated with F1 sterility in common bean× tepary bean hybrids. Bean Improvement Cooperative Annual Report. 2020;63:153-54.
  163. 159. Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redona E, et al. Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet. 2015;11(2):e1004982. https://doi.org/10.1371/journal.pgen.1004982

Downloads

Download data is not yet available.