Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Black soldier fly (Hermetia illucens): Driving circular agriculture through organic waste recovery

DOI
https://doi.org/10.14719/pst.8629
Submitted
2 April 2025
Published
07-07-2025
Versions

Abstract

The black soldier fly (BSF), Hermetia illucens has gained global attention for its diverse applications, particularly its efficiency in organic waste conversion, achieving 50-70 % waste reduction. The larvae produce high-value biomass containing 30-57 % protein and 21-42 % lipids, making them an excellent protein-rich feed ingredient. Additionally, BSF shows strong potential for biodiesel production, with conversion yields reaching up to 94 %. Key biological traits such as global adaptability, rapid development and efficient feed conversion make BSF suitable for scalable farming. Recent advances in genetic research, microbiome optimization and selective breeding are examined, highlighting their potential to enhance productivity and adaptability. The environmental and economic advantages of BSF-based bioconversion systems such as reduced greenhouse gas emissions, effective nutrient recycling and job creation; especially in developing regions are also discussed. Despite its promise, challenges persist, including the need for genetic diversity conservation, consistent regulatory policies and increased public acceptance. Future research priorities include optimizing organic waste substrates, developing targeted breeding strategies and exploring novel applications such as antimicrobial peptide production, chitin recovery and pigment extraction. In addition, progress in automation and bioprocessing technologies can significantly boost operational efficiency and scalability. By integrating innovation and encouraging cross-sector collaboration, BSF-based solutions can play a vital role in advancing global sustainability, food and feed security and environmental resilience.

References

  1. 1. Chia SY, Tanga CM, van Loon JJ, Dicke M. Insects for sustainable animal feed: Inclusive business models involving smallholder farmers. Current Opinion in Environmental Sustainability. 2019;41:23-30. https://doi.org/10.1016/j.cosust.2019.09.003
  2. 2. De Smet J, Wynants E, Cos P, Van Campenhout L. Microbial community dynamics during rearing of black soldier fly larvae (Hermetia illucens) and impact on exploitation potential. Applied and Environmental Microbiology. 2018;84(9):e02722-17. https://doi.org/10.1128/AEM.02722-17
  3. 3. Wang YS, Shelomi M. Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods. 2017;6(10):91. https://doi.org/10.3390/foods6100091
  4. 4. Seyedalmoosavi MM, Mielenz M, Veldkamp T, Das G, Metges CC. Growth efficiency, intestinal biology and nutrient utilization and requirements of black soldier fly (Hermetia illucens) larvae compared to monogastric livestock species: A review. Journal of Animal Science and Biotechnology. 2022;13(1):31. https://doi.org/10.1186/s40104-022-00682-7
  5. 5. Singh A, Kumari K. An inclusive approach for organic waste treatment and valorisation using black soldier fly larvae: A review. Journal of Environmental Management. 2019;251:109569. https://doi.org/10.1016/j.jenvman.2019.109569
  6. 6. Spranghers T, Noyez A, Schildermans K, De Clercq P. Cold hardiness of the black soldier fly (Diptera: Stratiomyidae). Journal of Economic Entomology. 2017;110(4):1501-7. https://doi.org/10.1093/jee/tox142
  7. 7. Kaya C, Generalovic TN, Ståhls G, Hauser M, Samayoa AC, Nunes-Silva CG, et al. Global population genetic structure and demographic trajectories of the black soldier fly, Hermetia illucens. BMC Biology. 2021;19(1):94. https://doi.org/10.1186/s12915-021-01029-w
  8. 8. Van Huis A, Dicke M, van Loon JJ. Insects to feed the world. Journal of Insects as Food and Feed. 2015;1(1):3-6. http://dx.doi.org/10.3920/JIFF2015.x002
  9. 9. Alagappan S, Rowland D, Barwell R, Mantilla SM, Mikkelsen D, James P, et al. Legislative landscape of black soldier fly (Hermetia illucens) as feed. Journal of Insects as Food and Feed. 2022;8(4):343-56. https://doi.org/10.3920/jiff2021.0111
  10. 10. Ewald N, Vidakovic A, Langeland M, Kiessling A, Sampels S, Lalander C. Fatty acid composition of black soldier fly larvae (Hermetia illucens) - Possibilities and limitations for modification through diet. Waste Management. 2020;102:40-7. https://doi.org/10.1016/j.wasman.2019.10.014
  11. 11. Witono JR, Setyadi FF, Deandra PP, Wanta KC, Miryanti A, Santoso H, et al. A comprehensive analysis of chitin extraction from the black soldier fly for chitosan production. Periodica Polytechnica Chemical Engineering. 2024;68(3):507-22. https://doi.org/10.3311/PPch.23714
  12. 12. Miranda CD, Cammack JA, Tomberlin JK. Life-history traits of the black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), reared on three manure types. Animals. 2019;9(5):281. https://doi.org/10.3390/ani9050281
  13. 13. Tomberlin JK, Van Huis A. Black soldier fly from pest to ‘crown jewel’ of the insects as feed industry: an historical perspective. Journal of Insects as Food and Feed. 2020;6(1):1-4. http://doi.org/10.3920/JIFF2020.0003
  14. 14. Kumar S, Negi S, Mandpe A, Singh RV, Hussain A. Rapid composting techniques in Indian context and utilization of black soldier fly for enhanced decomposition of biodegradable wastes - A comprehensive review. Journal of Environmental Management. 2018;227:189-99. https://doi.org/10.1016/j.jenvman.2018.08.096
  15. 15. Jensen K, Kristensen TN, Heckmann LH, Sørensen JG. Breeding and maintaining high-quality insects. In: van Huis A, Tomberlin JK, editors. Insects as food and feed: from production to consumption. Wageningen, the Netherlands: Wageningen Academic Publishers; 2017. p. 174-98.
  16. 16. Ståhls G, Meier R, Sandrock C, Hauser M, Šašic Zoric L, Laiho E, et al. The puzzling mitochondrial phylogeography of the black soldier fly (Hermetia illucens), the commercially most important insect protein species. BMC Evolutionary Biology. 2020;20:1-0. https://doi.org/10.1186/s12862-020-01627-2
  17. 17. Rhode C, Badenhorst R, Hull KL, Greenwood MP, Bester-Van Der Merwe AE, Andere AA, et al. Genetic and phenotypic consequences of early domestication in black soldier flies (Hermetia illucens). Animal Genetics. 2020;51(5):752-62. https://doi.org/10.1111/age.12961
  18. 18. Ferdousi L, Sultana N, Al Helal MA, Momtaz N. Molecular identification and life cycle of black soldier fly (Hermetia illucens) in laboratory. Bangladesh Journal of Zoology. 2020;48(2):429-40. https://doi.org/10.3329/bjz.v48i2.52381
  19. 19. Diener S, Studt Solano NM, Roa Gutiérrez F, Zurbrügg C, Tockner K. Biological treatment of municipal organic waste using black soldier fly larvae. Waste and Biomass Valorization. 2011;2:357-63. https://doi.org/10.1007/s12649-011-9079-1
  20. 20. Chia SY, Tanga CM, Khamis FM, Mohamed SA, Salifu D, Sevgan S, et al. Threshold temperatures and thermal requirements of black soldier fly Hermetia illucens: Implications for mass production. PLoS One. 2018;13(11):e0206097. https://doi.org/10.1371/journal.pone.0206097
  21. 21. Caruso D, Devic E, Subamia IW, Talamond P, Baras E. Technical handbook of domestication and production of Diptera black soldier fly (BSF) Hermetia illucens, Stratiomyidae. IRD edition, Marseille; 2014.
  22. 22. Booth DC, Sheppard C. Oviposition of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae): eggs, masses, timing and site characteristics. Environmental Entomology. 1984;13(2):421-3. https://doi.org/10.1093/ee/13.2.421
  23. 23. Tomberlin JK, Sheppard DC. Factors influencing mating and oviposition of black soldier flies (Diptera: Stratiomyidae) in a colony. Journal of Entomological Science. 2002;37(4):345-52. http://doi.org/10.18474/0749-8004-37.4.345
  24. 24. Muraro T, Lalanne L, Pelozuelo L, Calas-List D. Mating and oviposition of a breeding strain of black soldier fly Hermetia illucens (Diptera: Stratiomyidae): polygynandry and multiple egg-laying. Journal of Insects as Food and Feed. 2024;10(8):1423-35. https://doi.org/10.1163/23524588-20220175
  25. 25. Bruno D, Bonacci T, Reguzzoni M, Casartelli M, Grimaldi A, Tettamanti G, et al. An in-depth description of head morphology and mouthparts in larvae of the black soldier fly Hermetia illucens. Arthropod Structure & Development. 2020;58:100969. https://doi.org/10.1016/j.asd.2020.100969
  26. 26. Fouche Q, Hedouin V, Charabidze D. Communication in necrophagous Diptera larvae: interspecific effect of cues left behind by maggots and implications in their aggregation. Scientific Reports. 2018;8(1):2844. https://doi.org/10.1038/s41598-018-21316-x
  27. 27. Shishkov O, Hu M, Johnson C, Hu DL. Black soldier fly larvae feed by forming a fountain around food. Journal of the Royal Society Interface. 2019;16(151):20180735. https://doi.org/10.1098/rsif.2018.0735
  28. 28. Makkar HP, Tran G, Heuzé V, Ankers P. State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology. 2014;197:1-33. https://doi.org/10.1016/j.anifeedsci.2014.07.008
  29. 29. Newton GL, Sheppard DC, Watson DW, Burtle GJ, Dove CR, Tomberlin JK, et al. The black soldier fly, Hermetia illucens, as a manure management/resource recovery tool. In: Proceedings of the Symposium on the state of the science of Animal Manure and Waste Management. San Antonio, TX: Citeseer; 5-7 January 2005. p. 57.
  30. 30. Bruno D, Bonelli M, De Filippis F, Di Lelio I, Tettamanti G, Casartelli M, et al. The intestinal microbiota of Hermetia illucens larvae is affected by diet and shows a diverse composition in the different midgut regions. Applied and Environmental Microbiology. 2019;85(2):e01864-18. https://doi.org/10.1128/AEM.01864-18
  31. 31. Kim WT, Bae SW, Park HC, Park KH, Lee SB, Choi YC, et al. The larval age and mouth morphology of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). International Journal of Industrial Entomology and Biomaterials. 2010;21(2):185-7.
  32. 32. Chen G, Zhang K, Tang W, Li Y, Pang J, Yuan X, Song X, et al. Feed nutritional composition affects the intestinal microbiota and digestive enzyme activity of black soldier fly larvae. Frontiers in Microbiology. 2023;14:1184139. https://doi.org/10.3389/fmicb.2023.1184139
  33. 33. IJdema F, De Smet J, Crauwels S, Lievens B, Van Campenhout L. Meta-analysis of the black soldier fly (Hermetia illucens) microbiota based on 16S rRNA gene amplicon sequencing. BioRxiv. 2022:2022-01. https://doi.org/10.1101/2022.01.17.476578
  34. 34. Lee CM, Lee YS, Seo SH, Yoon SH, Kim SJ, Hahn BS, et al. Screening and characterization of a novel cellulase gene from the gut microflora of Hermetia illucens using metagenomic library. Journal of Microbiology and Biotechnology. 2014;24(9):1196-206. https://doi.org/10.4014/jmb.1405.05001
  35. 35. Lee YS, Seo SH, Yoon SH, Kim SY, Hahn BS, Sim JS, et al. Identification of a novel alkaline amylopullulanase from a gut metagenome of Hermetia illucens. International Journal of Biological Macromolecules. 2016;82:514-21. https://doi.org/10.1016/j.ijbiomac.2015.10.067
  36. 36. Kim WT, Bae SW, Kim A, Park KH, Lee SB, Choi YC, et al. Characterization of the molecular features and expression patterns of two serine proteases in Hermetia illucens (Diptera: Stratiomyidae) larvae. BMB Reports. 2011;44(6):387-92. http://dx.doi.org/10.5483/BMBRep.2011.44.6.387
  37. 37. Amrul NF, Kabir Ahmad I, Ahmad Basri NE, Suja F, Abdul Jalil NA, Azman NA. A review of organic waste treatment using black soldier fly (Hermetia illucens). Sustainability. 2022;14(8):4565. https://doi.org/10.3390/su14084565
  38. 38. Nayak A, Rühl M, Klüber P. Hermetia illucens (Diptera: stratiomyidae): need, potentiality and performance measures. Agriculture. 2023;14(1):8. https://doi.org/10.3390/agriculture14010008
  39. 39. Bertinetti C, Samayoa AC, Hwang SY. Effects of feeding adults of Hermetia illucens (Diptera: Stratiomyidae) on longevity, oviposition and egg hatchability: Insights into optimizing egg production. Journal of Insect Science. 2019;19(1):19. https://doi.org/10.1093/jisesa/iez001
  40. 40. Gao Z, Wang W, Lu X, Zhu F, Liu W, Wang X, et al. Bioconversion performance and life table of black soldier fly (Hermetia illucens) on fermented maize straw. Journal of Cleaner Production. 2019;230:974-80. https://doi.org/10.1016/j.jclepro.2019.05.074
  41. 41. Wang SY, Wu L, Li B, Zhang D. Reproductive potential and nutritional composition of Hermetia illucens (Diptera: Stratiomyidae) prepupae reared on different organic wastes. Journal of Economic Entomology. 2020;113(1):527-37. https://doi.org/10.1093/jee/toz296
  42. 42. Barragan-Fonseca KB, Dicke M, van Loon JJ. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed - a review. Journal of Insects as Food and Feed. 2017;3(2):105-20. https://doi.org/10.3920/JIFF2016.0055
  43. 43. Pang W, Hou D, Chen J, Nowar EE, Li Z, Hu R, et al. Reducing greenhouse gas emissions and enhancing carbon and nitrogen conversion in food wastes by the black soldier fly. Journal of Environmental Management. 2020;260:110066. https://doi.org/10.1016/j.jenvman.2020.110066
  44. 44. Ganesan AR, Mohan K, Kandasamy S, Surendran RP, Kumar R, Rajan DK, et al. Food waste-derived black soldier fly (Hermetia illucens) larval resource recovery: A circular bioeconomy approach. Process Safety and Environmental Protection. 2024;184:170-89. https://doi.org/10.1016/j.psep.2024.01.084
  45. 45. Diener S, Zurbrügg C, Tockner K. Bioaccumulation of heavy metals in the black soldier fly, Hermetia illucens and effects on its life cycle. Journal of Insects as Food and Feed. 2015;1(4):261-70. http://dx.doi.org/10.3920/JIFF2015.0030
  46. 46. Wang F, Xie C, Tang H, Hao W, Wu J, Sun Y, et al. Development, characterization and application of intelligent/active packaging of chitosan/chitin nanofibers films containing eggplant anthocyanins. Food Hydrocolloids. 2023;139:108496. https://doi.org/10.1016/j.foodhyd.2023.108496
  47. 47. Siddiqui SA, Süfer Ö, Çaliskan Koç G, Lutuf H, Rahayu T, Castro-Muñoz R, et al. Enhancing the bioconversion rate and end products of black soldier fly (BSF) treatment - a comprehensive review. Environment, Development and Sustainability. 2025;27:9673-741. https://doi.org/10.1007/s10668-023-04306-6
  48. 48. Marangon A, Paul G, Zaghi R, Marchese L, Gatti G. Chitin extracted from black soldier fly larvae at different growth stages. Polymers. 2024;16(20):2861. https://doi.org/10.3390/polym16202861
  49. 49. Pedrazzani C, Righi L, Vescovi F, Maistrello L, Caligiani A. Black soldier fly as a new chitin source: Extraction, purification and molecular/structural characterization. LWT. 2024;191:115618. https://doi.org/10.1016/j.lwt.2023.115618
  50. 50. Lalander CH, Fidjeland J, Diener S, Eriksson S, Vinnerås B. High waste-to-biomass conversion and efficient Salmonella spp. reduction using black soldier fly for waste recycling. Agronomy for Sustainable Development. 2015;35:261-71. https://doi.org/10.1007/s13593-014-0235-4
  51. 51. Gärttling D, Schulz H. Compilation of black soldier fly frass analyses. Journal of Soil Science and Plant Nutrition. 2022;22:937-43. https://doi.org/10.1007/s42729-021-00703-w
  52. 52. Beesigamukama D, Mochoge B, Korir NK, Fiaboe KK, Nakimbugwe D, Khamis FM, et al. Exploring black soldier fly frass as novel fertilizer for improved growth, yield and nitrogen use efficiency of maize under field conditions. Frontiers in Plant Science. 2020;11:574592. https://doi.org/10.3389/fpls.2020.574592
  53. 53. Lopes IG, Yong JW, Lalander C. Frass derived from black soldier fly larvae treatment of biodegradable wastes. A critical review and future perspectives. Waste Management. 2022;142:65-76. https://doi.org/10.1016/j.wasman.2022.02.007
  54. 54. Adekiya AO, Ejue WS, Olayanju A, Dunsin O, Aboyeji CM, Aremu C, et al. Different organic manure sources and NPK fertilizer on soil chemical properties, growth, yield and quality of okra. Scientific Reports. 2020;10(1):16083. https://doi.org/10.1038/s41598-020-73291-x
  55. 55. Van Moll L, De Smet J, Paas A, Tegtmeier D, Vilcinskas A, Cos P, et al. In vitro evaluation of antimicrobial peptides from the black soldier fly (Hermetia illucens) against a selection of human pathogens. Microbiology Spectrum. 2022;10(1):e01664-21. https://doi.org/10.1128/spectrum.01664-21
  56. 56. Choi WH, Choi HJ, Goo TW, Quan FS. Novel antibacterial peptides induced by probiotics in Hermetia illucens (Diptera: Stratiomyidae) larvae. Entomological Research. 2018;48(4):237-47. https://doi.org/10.1111/1748-5967.12259
  57. 57. Huang Y, Yu Y, Zhan S, Tomberlin JK, Huang D, Cai M, et al. Dual oxidase Duox and Toll-like receptor 3 TLR3 in the Toll pathway suppress zoonotic pathogens through regulating the intestinal bacterial community homeostasis in Hermetia illucens L. PLoS One. 2020;15(4):e0225873. https://doi.org/10.1371/journal.pone.0225873
  58. 58. Janssen RH, Vincken JP, van den Broek LA, Fogliano V, Lakemond CM. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus and Hermetia illucens. Journal of Agricultural and Food Chemistry. 2017;65(11):2275-8. https://doi.org/10.1021/acs.jafc.7b00471
  59. 59. Wiryawan IK, Mandiling IH, Purnamasari DK, Maslami V. Chemical composition and protein quality of BSF larvae reared with different media in Lombok. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing; 2024 Jun 1. p. 012013. https://doi.org/10.1088/1755-1315/1360/1/012013
  60. 60. Kumar M, Tomar M, Potkule J, Verma R, Punia S, Mahapatra A, et al. Advances in the plant protein extraction: Mechanism and recommendations. Food Hydrocolloids. 2021;115:106595. https://doi.org/10.1016/j.foodhyd.2021.106595
  61. 61. Hoc B, Genva M, Fauconnier ML, Lognay G, Francis F, Caparros Megido R. About lipid metabolism in Hermetia illucens (L. 1758): on the origin of fatty acids in prepupae. Scientific Reports. 2020;10(1):11916. https://doi.org/10.1038/s41598-020-68784-8
  62. 62. Lalander CD, Diener S, Zurbrügg C, Vinnerås B. Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). Journal of Cleaner Production. 2019;208:211-9. https://doi.org/10.1016/j.jclepro.2018.10.017
  63. 63. Mutafela RN. High value organic waste treatment via black soldier fly bioconversion: onsite pilot study. M.Sc. [dissertation]. Stockholm: Royal Institute of Technology; 2015.
  64. 64. Leong SY, Kutty SR, Malakahmad A, Tan CK. Feasibility study of biodiesel production using lipids of Hermetia illucens larva fed with organic waste. Waste Management. 2016;47:84-90. https://doi.org/10.1016/j.wasman.2015.03.030
  65. 65. Koyunoglu C. Biofuel production utilizing black soldier fly (Hermetia illucens): A sustainable approach for organic waste management. International Journal of Thermofluids. 2024;23:100754. https://doi.org/10.1016/j.ijft.2024.100754
  66. 66. Mohan K, Sathishkumar P, Rajan DK, Rajarajeswaran J, Ganesan AR. Black soldier fly (Hermetia illucens) larvae as potential feedstock for the biodiesel production: Recent advances and challenges. Science of the Total Environment. 2023;859:160235. https://doi.org/10.1016/j.scitotenv.2022.160235
  67. 67. Li Q, Zheng L, Cai H, Garza E, Yu Z, Zhou S. From organic waste to biodiesel: Black soldier fly, Hermetia illucens, makes it feasible. Fuel. 2011;90(4):1545-8. https://doi.org/10.1016/j.fuel.2010.11.016
  68. 68. Zheng L, Hou Y, Li W, Yang S, Li Q, Yu Z. Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes. Energy. 2012;47(1):225-9. https://doi.org/10.1016/j.energy.2012.09.006
  69. 69. Jung S, Jung JM, Tsang YF, Bhatnagar A, Chen WH, Lin KY, et al. Biodiesel production from black soldier fly larvae derived from food waste by non-catalytic transesterification. Energy. 2022;238:121700. https://doi.org/10.1016/j.energy.2021.121700
  70. 70. Wong CY, Rosli SS, Uemura Y, Ho YC, Leejeerajumnean A, Kiatkittipong W, et al. Potential protein and biodiesel sources from black soldier fly larvae: Insights of larval harvesting instar and fermented feeding medium. Energies. 2019;12(8):1570. https://doi.org/10.3390/en12081570
  71. 71. Ushakova N, Dontsov A, Sakina N, Bastrakov A, Ostrovsky M. Antioxidative properties of melanins and ommochromes from black soldier fly Hermetia illucens. Biomolecules. 2019;9(9):408. https://doi.org/10.3390/biom9090408
  72. 72. Ushakova N?, Dontsov AE, S?kina NL, Brodsky ES, Ratnikova IA, Gavrilova NN, et al. Melanin properties at the different stages towards life cycle of the fly Hermetia illucens. Ukrainian Journal of Ecology. 2017;7(4):424-31. https://doi.org/10.15421/2017_137
  73. 73. Sakinah F, Mustakim Z, Handayani G, Wintoko J, Purnomo CW. Extraction and characteristics of melanin from black soldier fly (BSF) pupal skin as biopolymer raw material. Materials Science Forum. 2024;1134:3-10. https://doi.org/10.4028/p-4WaxPd
  74. 74. Grau MG, Dortmans BM, Egger J, Virard G, Zurbrügg C. Modelling the financial viability of centralised and decentralised black soldier fly larvae waste processing units in Surabaya, Indonesia. Journal of Insects as Food and Feed. 2022;9(3):303-16. https://doi.org/10.3920/JIFF2022.0012
  75. 75. Ebeneezar S, Tejpal CS, Jeena NS, Summaya R, Chandrasekar S, Sayooj P, et al. Nutritional evaluation, bioconversion performance and phylogenetic assessment of black soldier fly (Hermetia illucens, Linn. 1758) larvae valorized from food waste. Environmental Technology & Innovation. 2021;23:101783. https://doi.org/10.1016/j.eti.2021.101783
  76. 76. Generalovic TN, McCarthy SA, Warren IA, Wood JM, Torrance J, Sims Y, et al. A high-quality, chromosome-level genome assembly of the black soldier fly (Hermetia illucens L.). G3. 2021;11(5):jkab085. https://doi.org/10.1093/g3journal/jkab085
  77. 77. Guilliet J, Baudouin G, Pollet N, Filée J. What complete mitochondrial genomes tell us about the evolutionary history of the black soldier fly, Hermetia illucens. BMC Ecology and Evolution. 2022;22(1):72. https://doi.org/10.1186/s12862-022-02025-6
  78. 78. Hoffmann L, Hull KL, Bierman A, Badenhorst R, Bester-Van Der Merwe AE, Rhode C. Patterns of genetic diversity and mating systems in a mass-reared black soldier fly colony. Insects. 2021;12(6):480. https://doi.org/10.3390/insects12060480
  79. 79. Zhou F, Tomberlin JK, Zheng L, Yu Z, Zhang J. Developmental and waste reduction plasticity of three black soldier fly strains (Diptera: Stratiomyidae) raised on different livestock manures. Journal of Medical Entomology. 2013;50(6):1224-30. https://doi.org/10.1603/ME13021
  80. 80. Bosch G, Oonincx DG, Jordan HR, Zhang J, Van Loon JJ, Van Huis A, et al. Standardisation of quantitative resource conversion studies with black soldier fly larvae. Journal of Insects as Food and Feed. 2020;6(2):95-110. https://doi.org/10.3920/JIFF2019.0004
  81. 81. Sandrock C, Leupi S, Wohlfahrt J, Kaya C, Heuel M, Terranova M, et al. Genotype-by-diet interactions for larval performance and body composition traits in the black soldier fly, Hermetia illucens. Insects. 2022;13(3):285. https://doi.org/10.3390/insects13050424
  82. 82. Zhan S, Fang G, Cai M, Kou Z, Xu J, Cao Y, et al. Genomic landscape and genetic manipulation of the black soldier fly Hermetia illucens, a natural waste recycler. Cell Research. 2020;30(1):50-60. https://doi.org/10.1038/s41422-019-0252-6
  83. 83. Hillary VE, Ceasar SA. A review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering. Molecular Biotechnology. 2023;65(3):311-25. https://doi.org/10.1007/s12033-022-00567-0
  84. 84. Xu J, Xu X, Zhan S, Huang Y. Genome editing in insects: current status and challenges. National Science Review. 2019 May 1;6(3):399-401. https://doi.org/10.1093/nsr/nwz008
  85. 85. Donkpegan ASL, Guigue A, Boulanger FX, Brard-Fudulea S, Haffray P, Sourdioux M, et al. Development of genomic resources in black soldier fly (Hermetia illucens L.) via high-throughput DNA pool sequencing. In: Proceedings of the 12th World Congress on Genetics Applied to Livestock Production (WCGALP); 2023. https://doi.org/10.3920/978-90-8686-940-4_610
  86. 86. Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. Transcriptomics technologies. PLoS Computational Biology. 2017;13(5):e1005457. https://doi.org/10.1371/journal.pcbi.1005457
  87. 87. Thomas T, Gilbert J, Meyer F. Metagenomics-a guide from sampling to data analysis. Microbial Informatics and Experimentation. 2012;2:3. https://doi.org/10.1186/2042-5783-2-3
  88. 88. Bouwman AC, Nugroho JE, Wongso D, van Schelt J, Pannebakker BA, Zwaan BJ, et al. A full sib design is a practically feasible way to estimate genetic parameters in black soldier fly (Hermetia illucens). In: Proceedings of the Insects to Feed the World Conference. Wageningen Academic Publishers; 2022 Jun 12; p. S53.
  89. 89. Kou Z, Luo X, Jiang Y, Chen B, Song Y, Wang Y, et al. Establishment of highly efficient transgenic system for black soldier fly (Hermetia illucens). Insect Science. 2023;30(4):888-900. https://doi.org/10.1111/1744-7917.13147
  90. 90. Zhang J, Shi Z, Gao Z, Wen Y, Wang W, Liu W, et al. Identification of three metallothioneins in the black soldier fly and their functions in Cd accumulation and detoxification. Environmental Pollution. 2021;286:117146. https://doi.org/10.1016/j.envpol.2021.117146
  91. 91. Facchini E, Shrestha K, van den Boer E, Junes P, Sader G, Peeters K, et al. Long-term artificial selection for increased larval body weight of Hermetia illucens in industrial settings. Frontiers in Genetics. 2022;13:865490. https://doi.org/10.3389/fgene.2022.865490
  92. 92. Siddiqui SA, Snoeck ER, Tello A, Alles MC, Fernando I, Saraswati YR, et al. Manipulation of the black soldier fly larvae (Hermetia illucens; Diptera: Stratiomyidae) fatty acid profile through the substrate. Journal of Insects as Food and Feed. 2022;8(8):837-56. https://doi.org/10.3920/JIFF2021.0162
  93. 93. Gunther D, Alford R, Johnson J, Neilsen P, Zhang L, Harrell II R, et al. Transgenic black soldier flies for production of carotenoids. Insect Biochemistry and Molecular Biology. 2024;168:104110. https://doi.org/10.1016/j.ibmb.2024.104110
  94. 94. Ma C, Huang Z, Feng X, Memon FU, Cui Y, Duan X, et al. Selective breeding of cold-tolerant black soldier fly (Hermetia illucens) larvae: Gut microbial shifts and transcriptional patterns. Waste Management. 2024;177:252-65. https://doi.org/10.1016/j.wasman.2024.02.007
  95. 95. Khamis FM, Ombura FL, Akutse KS, Subramanian S, Mohamed SA, Fiaboe KK, et al. Insights in the global genetics and gut microbiome of black soldier fly, Hermetia illucens: implications for animal feed safety control. Frontiers in Microbiology. 2020;11:1538. https://doi.org/10.3389/fmicb.2020.01538
  96. 96. Klammsteiner T, Walter A, Bogataj T, Heussler CD, Stres B, Steiner FM, et al. Impact of processed food (canteen and oil wastes) on the development of black soldier fly (Hermetia illucens) larvae and their gut microbiome functions. Frontiers in Microbiology. 2021;12:619112. http://dx.doi.org/10.3389/fmicb.2021.619112
  97. 97. Xu J, Luo X, Fang G, Zhan S, Wu J, Wang D, Huang Y. Transgenic expression of antimicrobial peptides from black soldier fly enhance resistance against entomopathogenic bacteria in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology. 2020;127:103487. https://doi.org/10.1016/j.ibmb.2020.103487
  98. 98. Liu C, Yao H, Chapman SJ, Su J, Wang C. Changes in gut bacterial communities and the incidence of antibiotic resistance genes during degradation of antibiotics by black soldier fly larvae. Environment International. 2020;142:105834. https://doi.org/10.1016/j.envint.2020.105834
  99. 99. Liu Z, Minor M, Morel PC, Najar-Rodriguez AJ. Bioconversion of three organic wastes by black soldier fly (Diptera: Stratiomyidae) larvae. Environmental Entomology. 2018;47(6):1609-17. https://doi.org/10.1093/ee/nvy141

Downloads

Download data is not yet available.