Review Articles
Vol. 12 No. 3 (2025)
Application of artificial intelligence in agriculture and allied sectors: A comprehensive review towards sustainable solutions
Department of Agricultural Extension and Rural Sociology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Directorate of Research, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Department of Agricultural Extension and Rural Sociology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Abstract
Sustainability is a holistic goal that can be effectively achieved through the combined efforts of agriculture and its allied sectors. Artificial intelligence (AI) plays a transformative role in this endeavour by bridging sector-specific solutions and integrating them to promote environmental protection and food security. AI is revolutionizing sustainable agriculture, ensuring both food security and environmental protection. The main objective of this article is to comprehensively review the various applications of AI in agriculture and its interlinked sectors like fishery, animal husbandry, forestry, agricultural engineering, horticulture and food science by compiling several previous studies to highlight their role in achieving sustainability and identify research gaps. The literature review was done through databases like Scopus and Google Scholar. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) framework was used to identify, screen and select articles. This article explores the various applications of AI in pest and disease management, weed management, weather forecasting, soil management, greenhouse farming, precision agriculture and yield management. AI has numerous advantages, such as data-driven decision-making, resource management and reduced environmental impacts. This review highlights the implementation of inclusive strategies to achieve sustainability by pointing out the gaps in research, policy and implementation of technologies. The review concludes that integrating AI into agriculture and its allied sectors offer significant benefits that outweigh potential drawbacks, thereby fostering sustainable practices and environmentally friendly innovations.
References
- 1. Gustafson JP, Raven PH. World food supply: problems and prospects. In: Sivasankar S, Ellis N, Jankuloski L, Ingelbrecht I, editors. Mutation breeding, genetic diversity and crop adaptation to climate change. 1st ed. UK: CABI; 2021. p. 3-9. https://doi.org/10.1079/9781789249095.0001
- 2. Talaviya T, Shah D, Patel N, Yagnik H, Shah M. Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artif Intell Agric. 2020;4:58-73. https://doi.org/10.1016/j.aiia.2020.04.002
- 3. Merrill BF, Lu N, Yamaguchi T, Takagaki M, Maruo T, Kozai T, et al. Next evolution of agriculture : A review of innovations in plant factories. In: Pessarakli M, editor. Handbook of photosynthesis. CRC Press; 2018. https://doi.org/10.1201/9781315372136-40
- 4. Chandel N, Kumar A, Kumar R. Towards sustainable agriculture: Integrating agronomic practices, environmental physiology and plant nutrition. Int J Plant Soil Sci. 2024;36(6):492-503. https://doi.org/10.9734/ijpss/2024/v36i64651
- 5. Sonnino A. Towards Sustainable Food and Agriculture Systems. Rendiconti/Accademia Nazionale Del Xl XLII(Tomo I). 2018:103-14.
- 6. Naresh RK, Chandra MS, Vivek S, Charankumar GR, Chaitanya J, et al. The prospect of artificial intelligence (AI) in precision agriculture for farming systems productivity in sub-tropical India: A review. Curr J Appl Sci Technol. 2020;39(48):96-110. https://doi.org/10.9734/cjast/2020/v39i4831205
- 7. Nagendraswamy C, Salis A. A review article on artificial intelligence. Ann Biomed Sci Eng. 2021;5:013-4. https://doi.org/10.29328/journal.abse.1001012
- 8. Fadziso T. How artificial intelligence improves agricultural productivity and sustainability: A global thematic analysis. Asia Pac J Energy Environ. 2019;6:91-100. https://doi.org/10.18034/apjee.v6i2.542
- 9. Erh-Chun, Shan L, Chan P. How artificial intelligence is transforming agriculture. Rev Bus Res. 2023;23(1):59-70. https://doi.org/10.18374/RBR-23-1.6
- 10. Javaid M, Haleem A, Khan IH, Suman R. Understanding the potential applications of artificial intelligence in agriculture sector. Adv Agrochem. 2023;2(1):15-30. https://doi.org/10.1016/j.aac.2022.10.001
- 11. Kolikipogu R, Darak V, Yennapu R, Reddy S, Sureddi RMK, Kuchipudi R. Agriculture recommender system for precision farming using machine learning (ARS). In: 2023 3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). IEEE; 2023 Dec 21. p. 921-7. https://doi.org/10.1109/ICIMIA60377.2023.10426510
- 12. Begum M. Impact of climate change on agriculture and its allied sectors: An overview. Emerg Trends Clim Change. 2022;1(1):19-28. https://doi.org/10.18782/2583-4770.103
- 13. Jose Mekha, Parthasarathy V. An automated pest identification and classification in crops using artificial intelligence—A state-of-art-review. Autom Control Comput Sci. 2022;56(3):283-90. https://doi.org/10.3103/S0146411622030038
- 14. Prabha R, Kennedy JS, Vanitha G, Sathiah N, Priya MB. Artificial intelligence-powered expert system model for identifying fall armyworm infestation in maize (Zea mays L.). J Appl Nat Sci. 2021;13(4):1339-49. https://doi.org/10.31018/jans.v13i4.3040
- 15. Susheel KS, Rajkumar R. A comprehensive review on intelligent techniques in crop pests and diseases. Int J Recent Innov Trends Comput Commun. 2023;11(9):137-49. https://doi.org/10.17762/ijritcc.v11i9.8328
- 16. Patil R, Sinkar Y, Ruke A, Kulkarni H, Kadam O. Smart agri-advisor: Integrating chatbot technology with CNN-based crop disease classification for enhanced agricultural decision-making. Int J Eng Trends Technol. 2024;72(7):375-80. https://doi.org/10.14445/22315381/IJETT-V72I7P141
- 17. Shoaib M, Shah B, EI-Sappagh S, Ali A, Ullah A, Alenezi F, et al. An advanced deep learning models-based plant disease detection: A review of recent research. Front Plant Sci. 2023;14:1158933. https://doi.org/10.3389/fpls.2023.1282443
- 18. Storey G, Meng Q, Li B. Leaf disease segmentation and detection in apple orchards for precise smart spraying in sustainable agriculture. Sustain. 2022;14(3):1458. https://doi.org/10.3390/su14031458
- 19. Karar ME, Alsunaydi F, Albusaymi S, Alotaibi S. A new mobile application of agricultural pests recognition using deep learning in cloud computing system. Alex Eng J. 2021;60(5):4423-32. https://doi.org/10.1016/j.aej.2021.03.009
- 20. Tannous M, Stefanini C, Romano D. A deep-learning-based detection approach for the identification of insect species of economic importance. Insects. 2023;14(2):148. https://doi.org/10.3390/insects14020148
- 21. Adikari KE, Shrestha S, Ratnayake DT, Budhathoki A, Mohanasundaram S, Dailey MN. Evaluation of artificial intelligence models for flood and drought forecasting in arid and tropical regions. Environ Model Softw. 2021;144:105136. https://doi.org/10.1016/j.envsoft.2021.105136
- 22. Awais M, Naqvi SMZA, Zhang H, Li L, Zhang W, Awwad FA, et al. AI and machine learning for soil analysis: an assessment of sustainable agricultural practices. Bioresour Bioprocess. 2023;10(1):90. https://doi.org/10.1186/s40643-023-00710-y
- 23. Bilal M, Rubab F, Hussain M, Shah SAR. Agriculture revolutionized by artificial intelligence: Harvesting the future. In: The 2nd International Online Conference on Agriculture. MDPI; 2023. p. 11. https://doi.org/10.1186/s40643-023-00710-y
- 24. Ghatrehsamani S, Jha G, Dutta W, Molaei F, Nazrul F, Fortin M, et al. Artificial intelligence tools and techniques to combat herbicide resistant weeds—A review. Sustain. 2023;15(3):1843. https://doi.org/10.3390/su15031843
- 25. Etienne A, Ahmad A, Aggarwal V, Saraswat D. Deep learning-based object detection system for identifying weeds Using UAS imagery. Remote Sens. 2021;13(24):5182. https://doi.org/10.3390/rs13245182
- 26. Maraveas C. Incorporating artificial intelligence technology in smart greenhouses: Current state of the art. Appl Sci. 2022;13(1):14. https://doi.org/10.3390/app13010014
- 27. Codeluppi G, Cilfone A, Davoli L, Ferrari G. AI at the edge: a smart gateway for greenhouse air temperature forecasting. In: 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor). Trento, Italy: IEEE; 2020. p. 348-53. https://doi.org/10.1109/MetroAgriFor50201.2020.9277553
- 28. Fernando S, Nethmi R, Silva A, Perera A, Silva RD, Abeygunawardhana PWK. AI based greenhouse farming support system with robotic monitoring. In: 2020 IEEE Region 10 Conference (TENCON). Osaka, Japan: IEEE; 2020. p. 1368-73. https://doi.org/10.1109/TENCON50793.2020.9293745
- 29. Tace Y, Tabaa M, Elfilali S, Leghris C, Bensag H, Renault E. Smart irrigation system based on IoT and machine learning. Energy Rep. 2022;8:1025-36. https://doi.org/10.1016/j.egyr.2022.07.088
- 30. Wei H, Xu W, Kang B, Eisner R, Muleke A, Rodriguez D, et al. Irrigation with artificial intelligence: Problems, premises, promises. Hum-Centric Intell Syst. 2024;4(2):187-205. https://doi.org/10.1007/s44230-024-00072-4
- 31. Raouhi EM, Zouizza M, Lachgar M, Zouani Y, Hrimech H, Kartit A. AIDSII: An AI-based digital system for intelligent irrigation. Softw Impacts. 2023;17:100574. https://doi.org/10.1016/j.simpa.2023.100574
- 32. Padhiary M, Saha D, Kumar R, Sethi LN, Kumar A. Enhancing precision agriculture: A comprehensive review of machine learning and AI vision applications in all-terrain vehicle for farm automation. Smart Agric Technol. 2024;8:100483. https://doi.org/10.1016/j.atech.2024.100483
- 33. Alazzai WK, Abood BShZ, Al-Jawahry HM, Obaid MK. Precision farming: The power of AI and IoT technologies. In: Li G, Subramaniam U, Sekar M, editors. International Conference on Environmental Development Using Computer Science (ICECS’24). Vol. 491. E3S Web Conference; 2024. p. 04006. https://doi.org/10.1051/e3sconf/202449104006
- 34. Bao J, Xie Q. Artificial intelligence in animal farming: A systematic literature review. J Clean Prod. 2022;331:129956. https://doi.org/10.1016/j.jclepro.2021.129956
- 35. Kandarpa Boruah, Prabodh Kumar Hembram, Debapritam Deb, Shehnaaz Rahman, Nilotpal Ghosh. Internet of Things (IoT) and Artificial Intelligence (AI) in livestock farming. BioNE. 2025;28(32).
- 36. Neethirajan S. Artificial intelligence and sensor innovations: Enhancing livestock welfare with a human-centric approach. Hum-Centric Intell Syst. 2023;4(1):77-92. https://doi.org/10.1007/s44230-023-00050-2
- 37. Melak A, Aseged T, Shitaw T. The influence of artificial intelligence technology on the management of livestock farms. Int J Distrib Sens Netw. 2024;2024:1-12. https://doi.org/10.1155/2024/8929748
- 38. Patel H, Samad A, Hamza M, Muazzam A, Harahap MK. Role of artificial intelligence in livestock and poultry farming. Sinkron. 2022;7(4):2425-9. https://doi.org/10.33395/sinkron.v7i4.11837
- 39. Cho Y, Kim J. AI-based intelligent monitoring system for estrus prediction in the livestock industry. Appl Sci. 2023;13(4):2442. https://doi.org/10.3390/app13042442
- 40. Nagahara M, Tatemoto S, Ito T, Fujimoto O, Ono T, Taniguchi M, et al. Designing a diagnostic method to predict the optimal artificial insemination timing in cows using artificial intelligence. Front Anim Sci. 2024;5:1399434. https://doi.org/10.3389/fanim.2024.1399434
- 41. Haleem A, Javaid M, Asim Qadri M, Pratap Singh R, Suman R. Artificial intelligence (AI) applications for marketing: A literature-based study. Int J Intell Netw. 2022;3:119-32. https://doi.org/10.1016/j.ijin.2022.08.005
- 42. Ljepava N. AI-enabled marketing solutions in marketing decision making: AI application in different stages of marketing process. TEM J. 2022;1308-15. https://doi.org/10.18421/TEM113-40
- 43. Elufioye OA, Ike CU, Odeyemi O, Usman FO, Mhlongo NZ. Ai-Driven predictive analytics in agricultural supply chains: a review: assessing the benefits and challenges of ai in forecasting demand and optimizing supply in agriculture. Comput Sci IT Res J. 2024;5(2):473-97. https://doi.org/10.51594/csitrj.v5i2.817
- 44. Hongbing W, Jing G, Bohan K, Peng L, Yuxian S. Analysis and research on the marketing strategy of agricultural products based on artificial intelligence. Math Probl Eng. 2022;2022:1-7. https://doi.org/10.1155/2022/7798640
- 45. Sakr GE, Elhajj IH, Mitri G, Wejinya UC. Artificial intelligence for forest fire prediction. In: 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Montreal, QC, Canada: IEEE; 2010. p. 1311-6. https://doi.org/10.1109/AIM.2010.5695809
- 46. Shivaprakash KN, Swami N, Mysorekar S, Arora R, Gangadharan A, Vohra K, et al. Potential for Artificial Intelligence (AI) and Machine Learning (ML) applications in biodiversity conservation, managing forests and related services in India. Sustain. 2022;14(12):7154. https://doi.org/10.3390/su14127154
- 47. Da Silva DQ, Dos Santos FN, Filipe V, Sousa AJ, Oliveira PM. Edge AI-based tree trunk detection for forestry monitoring robotics. Robotics. 2022;11(6):136. https://doi.org/10.3390/robotics11060136
- 48. Honarmand Ebrahimi S, Ossewaarde M, Need A. Smart fishery: A systematic review and research agenda for sustainable fisheries in the age of AI. Sustain. 2021;13(11):6037. https://doi.org/10.3390/su13116037
- 49. Hari Prasad Mohale1 PJ, Jawahar P, Jayakumar N, Arul Oli G, Ravikumar T. Application of deep learning (AI) in marine fisheries resource management. Trends Agri Sci. 2023;2(9):753-63.
- 50. Ahmed MS, Aurpa TT, Azad MdAK. Fish disease detection using image based machine learning technique in aquaculture. J King Saud Univ - Comput Inf Sci. 2022;34(8):5170-82. https://doi.org/10.1016/j.jksuci.2021.05.003
- 51. Rejeb A, Rejeb K, Zailani S, Keogh JG, Appolloni A. Examining the interplay between artificial intelligence and the agri-food industry. Artif Intell Agric. 2022;6:111-28. https://doi.org/10.1016/j.aiia.2022.08.002
- 52. Kakani V, Nguyen VH, Kumar BP, Kim H, Pasupuleti VR. A critical review on computer vision and artificial intelligence in food industry. J Agric Food Res. 2020;2:100033. https://doi.org/10.1016/j.jafr.2020.100033
- 53. Misra NN, Dixit Y, Al-Mallahi A, Bhullar MS, Upadhyay R, Martynenko A. IoT, big data and artificial intelligence in agriculture and food industry. IEEE Internet Things J. 2022;9(9):6305-24. https://doi.org/10.1109/JIOT.2020.2998584
- 54. Kutyauripo I, Rushambwa M, Chiwazi L. Artificial intelligence applications in the agrifood sectors. J Agric Food Res. 2023;11:100502. https://doi.org/10.1016/j.jafr.2023.100502
- 55. Golshani T. The role of AI in managing risk in agricultural engineering. SSRN Electron J. 2024. https://doi.org/10.2139/ssrn.4842193
- 56. Wakchaure M, Patle BK, Mahindrakar AK. Application of AI techniques and robotics in agriculture: A review. Artif Intell Life Sci. 2023;3:100057. https://doi.org/10.1016/j.ailsci.2023.100057
- 57. Subeesh A, Mehta CR. Automation and digitization of agriculture using artificial intelligence and internet of things. Artif Intell Agric. 2021;5:278-91. https://doi.org/10.1016/j.aiia.2021.11.004
- 58. Nagar H, Machavaram R, Kulkarni P, Soni P. AI-based engine performance prediction cum advisory system to maximise fuel efficiency and field performance of the tractor for optimum tillage. Syst Sci Control Eng. 2024;12(1):2347936. https://doi.org/10.1080/21642583.2024.2347936.
- 59. Singh R, Singh R, Gehlot A, Akram SV, Priyadarshi N, Twala B. Horticulture 4.0: Adoption of industry 4.0 technologies in horticulture for meeting sustainable farming. Appl Sci. 2022;12(24):12557. https://doi.org/10.3390/app122412557
- 60. Kumar V, Jakhwal R, Chaudhary N, Singh S. Artificial intelligence in horticulture crops. Ann Hortic. 2023;16(1):72-9. https://doi.org/10.5958/0976-4623.2023.00014.2
- 61. Gammanpila HW, Sashika MAN, Priyadarshani SVGN. Advancing horticultural crop loss reduction through robotic and AI technologies: Innovations, applications and practical implications. Xiao X, editor. Adv Agric. 2024;2024(1):2472111. https://doi.org/10.1155/2024/2472111
- 62. Opara IK, Opara UL, Okolie JA, Fawole OA. Machine learning application in horticulture and prospects for predicting fresh produce losses and waste: A Review. Plants. 2024;13(9):1200. https://doi.org/10.3390/plants13091200
- 63. Meghwanshi S. Artificial intelligence in agriculture: A Review. Int Res J Mod Eng Technol Sci. 2024;6:4358-63.
- 64. Hussein AHA, Jabbar KA, Mohammed A, Jasim L. Harvesting the future: AI and IoT in agriculture. In: Slimani K, Gerasymov O, Kerkeb ML, editors. International Conference on Smart Technologies and Applied Research (STAR'2023). Vol. 477. E3S Web Conference; 2024. p. 00090. https://doi.org/10.1051/e3sconf/202447700090
- 65. Verma A, Verma S. Role of artificial intelligence in agriculture. Agric Magazine. 2023;2:281-6. https://doi.org/10.58532/V2BS16CH8
- 66. Mathur R. Artificial intelligence in sustainable agriculture. Int J Res Appl Sci Eng Technol. 2023;11(6):4047-52. https://doi.org/10.22214/ijraset.2023.54360
- 67. Olabimpe Banke Akintuyi. Adaptive AI in precision agriculture: A review: Investigating the use of self-learning algorithms in optimizing farm operations based on real-time data. Open Access Res J Multidiscip Stud. 2024;7(2):016-30. https://doi.org/10.53022/oarjms.2024.7.2.0023
Downloads
Download data is not yet available.