Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Genetic analysis and combining ability in okra (Abelmoschus esculentus L.)

DOI
https://doi.org/10.14719/pst.8859
Submitted
14 April 2025
Published
13-06-2025
Versions

Abstract

Okra a widely cultivated vegetable crop in tropical and subtropical regions of the world, that is valued for its significant nutritional and therapeutic properties. The current investigation was conducted with 21 F1 hybrids developed through a half-diallel mating design by using seven diverse parental lines namely, Punjab-8, Hissar Unnat, Hoshiarpur Local, Anima, Green Gold, Ajeet 121 and AKO 107 which were evaluated during the rainy season, 2022 and spring-summer, 2023 in randomized block design with three replications. Significantly highest general combining ability (GCA) effect for fruit production per plant was displayed by parent Hissar Unnat in both seasons of investigation followed by Punjab 8. These two parents have a good scope in the yield improvement program. In terms of disease resistance substantial GCA impacts in the intended direction for tolerance to bhindi yellow vein mosaic virus (BYVMV) and okra enation leaf curl virus (OELCV) were shown by the parents AKO-107 and Ajeet 121, respectively in both seasons of investigation. Both Ajeet 121 and AKO 107 were established to be ideal general combiners for disease resistance. Maximum substantial specific combining ability (SCA) impacts in the positive direction for fruit production per plant along with tolerance to OELCV and BYVMV were observed in crosses Punjab
8 × Ajeet 121 and Hissar Unnat × AKO 107 during the investigation. These promising crosses, involving at least one ideal general combiner parent, offer significant potential for developing superior segregating lines. The predictability ratio confirmed the overwhelming influence of non-additive gene action for regulating all the evaluated traits.

References

  1. 1. Zaman MS, Parihar A. Development of novel interspecific hybrid between cultivated and wild species of okra [Abelmoschus esculentus (L.) Moench] through embryo rescue. Indian J Genet and Plant Breed. 2023;83(03):422-32. https://doi.org/10.31742/ISGPB.83.3.15
  2. 2. Maruthi B, Das S, Chattopadhayay A, Thapa U, Maji A, Hazra P. Morphological characterization and shannon-weaver diversity index (H’) of okra [Abelmoschus esculentus (L.) Moench] germplasm. Agric Sci Dig. 2025;45(2):272-281. https://doi.org/10.18805/ag.D-6232
  3. 3. Sandeep N, Dushyanthakumar BM, Sridhara S, Dasaiah L, Mahadevappa Satish K, et al. Characterization of okra species, their hybrids and crossability relationships among Abelmoschus species of the Western Ghats Region. Horticulturae. 2022;8(7):587. https://doi.org/10.3390/horticulturae8070587
  4. 4. Noopur K, Samnotra RK, Kumar S. Influence of okra (Abelmoschus esculentus) genotypes on growth, yield, and biochemical traits. Indian J Agric Sci. 2023;93(1):57-61. https://doi.org/10.56093/ijas.v93i1.122668
  5. 5. Sanwal SK, Mann A, Kesh H, Kaur G, Kumar R, Rai AK. Genotype environment interaction analysis for fruit yield in okra (Abelmoschus esculentus L.) under alkaline environments. Indian J Genet and Plant Breed. 2021;81(01):101-10. https://doi.org/10.31742/IJGPB.81.1.11
  6. 6. Fatima M, Rakha A, Altemimi AB, Van Bocktaele F, Khan AI, Ayyub M, et al. Okra: Mucilage extraction, composition, applications, and potential health benefits. Eur Polym J. 2024;113193. https://doi.org/10.1016/j.eurpolymj.2024.113193
  7. 7. Hussain HM, Thajeel ZH. Effect of probiotics 'bio-health' and foliar fertilization with zinc sulfate on growth and yield of okra (Abelmoschus esculentus (L.) Moench). Plant Sci Today. 2024;11(4):1028-1033. https://doi.org/10.14719/pst.4021
  8. 8. Shah I, Singh D, Singh RK, Singh S, Yadav RR, Joshi U,et al. Combining ability analysis for fruit yield and related traits in brinjal (Solanum melongena L.) using line × tester mating design. Plant Sci Today. 2025;12(1):1-8. https://doi.org/10.14719/pst.5176
  9. 9. Bhutia TL, Munshi AD, Behera TK, Sureja AK, Lal SK. Combining ability for yield and yield related traits and its relationship with gene action in cucumber. Indian J Hortic. 2017;74(1):51-55. https://doi.org/10.5958/09740112.2017.000013.5
  10. 10. Thakur M, Kumar R. Combining ability and gene action studies for different yield contributing traits in cucumber. Indian J Hortic. 2020;77(3):491-95. https://doi.org/10.5958/0974-0112.2020.00070.5
  11. 11. Prem Sagar SP, Dushyanthakumar BM, Kalleshwaraswamy CM, Satish KM, Diwan JR, Raghavendra VC, et al. Diallel approach for estimating hybrid superiority and combining ability of indigenous advanced breeding lines in okra [Abelmoschus esculentus (L.)]. Genet Resour Crop Evol. 2024;71(6):2987-99. https://doi.org/10.1007/s10722-023-01813-3
  12. 12. Pathania R, Mehta DK, Bhardwaj RK, Dogra RK, Singh K, Kaplex A, et al. Exploitation of heterosis, combining ability and gene action potential for improvement in okra (Abelmoschus esculentus). Indian J Agric Sci. 2024;94(12):1340-48. https://doi.org/10.56093/ijas.v94i12.152294
  13. 13. Xavier F, Kumar R, Yadav RK, Behera TK, Khade YP. Studies on combining ability of okra genotypes for protein, total dietary fibre and mineral content. Indian J Hortic. 2019;76(4):672-77. https://doi.org/10.5958/0974-0112.2019.00107.5
  14. 14. Kumar R, Pandey MK, Kumari S, Chouhan S, Tutlani A. Combining ability and gene action analysis in okra (Abelmoschus esculentus L. Moench). Electron J Plant Breed. 2024;15(3):765-72. http://doi.org/10.37992/2024.1503.094
  15. 15. Das A, Yadav RK, Bhardwaj R, Choudhary H, Talukdar A, Khade YP, Chandel R. Combining ability and gene action studies to select okra (Abelmoschus esculentus) inbred for carbohydrate, vitamins and antioxidant traits. Indian J Agric Sci. 2020;90(10):2006-13. https://doi.org/10.56093/ijas.v90i10.107982
  16. 16. Das A, Yadav RK, Choudhary H, Singh S, Khade YP, Chandel R. Determining genetic combining ability, heterotic potential and gene action for yield contributing traits and Yellow Vein Mosaic Virus (YVMV) resistance in okra (Abelmoschus esculentus (L.) Monech.). Plant Genet Res. 2020;18(5):316-29. https://doi.org/10.1017/S1479262120000337
  17. 17. Panse VG, Sukhatme PV. Statistical Method for Agricultural Workers, 4th ed. New Delhi: Indian Council of Agricultural Research; 1985.
  18. 18. Griffing BR. Concept of general and specific combining ability in relation to diallel crossing systems. Aust J Biol Sci. 1956;9(4):463-93. https://doi.org/10.1071/BI9560463
  19. 19. Baker RJ. Issues in diallel analysis. Crop Sci. 1978;18(4):533-36. https://doi.org/10.2135/cropsci1978.0011183X001800040001x
  20. 20. Paul T, Desai RT, Choudhary R. Genetic architecture, combining ability and gene action study in okra [Abelmoschus esculentus (L.) Moench]. Int J Curr Microbiol Appl Sci. 2017;6(4):851-58. https://doi.org/10.20546/ijcmas.2017.604.106
  21. 21. Javiya UR, Mehta DR, Sapovadiya MH, Pansuriya DJ. Selection of parents and breeding methods based on combining ability and gene action for fruit yield and its contributing characters in okra (Abelmoschus esculentus L. Moench). J Pharmacogn Phytochem. 2020;9(5):1936-39.
  22. 22. Patel BM, Vachhani JH, Godhani PP, Sapovadiya MH. Combining ability for fruit yield and its components in okra [Abelmoschus esculentus (L.) Moench]. J Pharmacogn Phytochem. 2021;10(1):247-51.
  23. 23. Akotkar PK, De DK, Dubey UK. Genetic studies on fruit yield and yield attributes of okra (Abelmoschus esculentus L. Moench). Electron J Plant Breed. 2014;5(1):38-44.
  24. 24. Wakode MM, Bhave SG, Navhale VC, Dalvi VV, Devmore JP, Mahadik SG. Combining ability studies in okra (Abelmoschus esculentus L. Moench). Electron J Plant Breed. 2016;7(4):1007-13.
  25. 25. Palve M, Khandare VS, Waskar, DP. Combining ability studies in okra (Abelmoschus esculentus (l.) Moench) for yield and yield contributing characters. J Agric Res Tech. 2021;46(3):301.
  26. 26. Yadav K, Dhankhar SK, Singh D, Singh U, Yogita. Exploitation of combining ability and heterosis potential for improvement in okra (Abelmoschus esculentus) genotypes. Indian J Agric Sci. 2023;93(2):127-32. http://dx.doi.org/10.56093/ijas.v93i2.132161
  27. 27. Keerthana S, Ivin JJS, Karthikeyan M, Joshi J, Anbuselvam Y. Heterosis and combining ability studies in okra (Abelmoschus esculentus (L.) Moench) for fruit yield characters. Plant Cell Biotech Mole Bio. 2021;54-63.
  28. 28. Ivin J, Jessica GR, Williams G, Vennila S, Anbuselvam Y. Study of line x tester analysis for combining ability in bhendi (Abelmoschus esculentus). Crop Res. 2022;57(1 and 2):38-43. http://dx.doi.org/10.31830/2454-1761.2022.006
  29. 29. Pithiya DJ, Jethava AS, Zinzala SN, Vachhani JH. Study on combining ability in okra [Abelmoschus esculentus (L.) Moench. Int J Chem Stud. 2020;8(1):676-79. https://doi.org/10.22271/chemi.2020.v8.i1j.8344
  30. 30. El-Sherbeny GAR, Khaled AG, Obiadalla-Ali HA, Ahmed, AYM. Estimates of heterosis and combining ability in okra under different environments. J Sohag Agrisci. 2018;3(1):50-64. https://doi.org/10.21608/jsasj.2018.229199
  31. 31. Narkhede GW, Thakur NR, Ingle KP. Studies on combining ability for yield and contributing traits in okra (Abelmoschus esculentus L. Moench). Electron J Plant Breed. 2021;12(2):403-12.
  32. 32. Islam. Genetic diversity and gene action for yield components and tolerance to BYVMV and OELCV diseases. West Bengal: BCKV; 2022.
  33. 33. Suganthi S, Priya RS, Kamaraj A, Satheeshkumar P, Bhuvaneswari R. Combining ability studies in bhindi (Abelmoschus esculentus (L.) Moench) through diallel analysis for yield and yield attributing characters. Plant Arch. 2020;20(1):3609-13.

Downloads

Download data is not yet available.