Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Sesuvium portulacastrum: A versatile halophyte for bioremediation and sustainable applications: A review

DOI
https://doi.org/10.14719/pst.9194
Submitted
29 April 2025
Published
08-07-2025
Versions

Abstract

Plant Sesuvium portulacastrum, commonly known as sea purslane, is a pioneer plant species in coastal areas and belongs to the Aizoaceae family. It thrives in sandy and saline environments, making it highly resistant to abiotic stresses like salinity and drought. This plant can be used for the restoration of salt-contaminated soils due to its ability to tolerate high sodium (Na) concentrations. Even under extreme salinity, it continues to grow without visible damage. The plant also produces a variety of bioactive compounds, including 20 hydroxyecdysone, secondary metabolites and antibacterial compounds. It is also rich in essential nutrients, making it valuable for application in food, medicine, natural fertilizers and animal feed. Studies in its biochemistry, molecular biology and physiology has
provided insights into the mechanisms underlying its abiotic stress tolerance. Furthermore, biotechnological studies suggest its potential for pharmaceutical application. In dry and semiarid regions, the large-scale cultivation of S. portulacastrum contributes to the remediation of soils by reducing heavy metal concentration and salt concentrations in soils. For instance, in experiment where Na was added to soil, it led to a decrease in electrical conductivity and Na content, with 77.8 % of the Na extracted over a period of ninety days. Due to its resilience under saline, drought-prone and heavy metal-stressed conditions, this species serves as an effective bio indicator for pollution detection and a predictive tool for forecasting soil salinity.

References

  1. 1. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol. 2000;51:463–99. https://doi.org/10.1146/annurev.arplant.51.1.463
  2. 2. Kumawat C, Kumar A, Parshad J, Sharma SS, Patra A, Dogra P, et al. Microbial diversity and adaptation under salt-affected soils: A review. Sustainability 2022;14:9280. https://doi.org/10.3390/su14159280
  3. 3. Benzarti M, Ben Rejeb K, Debez A, Messedi D, Abdelly C. Photosynthetic activity and leaf antioxidative responses of Atriplex portulacoides subjected to extreme salinity. Acta Physiol Plant. 2012;34:1679–88. https://doi.org/10.1007/s11738-012-0963-5
  4. 4. Zhang P, Zhang H, Li Y, Zhang J, Ma C, Weng N, et al. Strong associations between dissolved organic matter and microbial communities in the sediments of Qinghai-Tibetan Plateau lakes depend on salinity. Sci Total Environ. 2024;926:171857. https://doi.org/10.1016/j.scitotenv.2024.171857
  5. 5. Mohamed AKS, Qayyum MF, Abdel Hadi AM, Rehman RA, Ali S, Rizwan M. Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat. Arch Agron Soil Sci. 2017;63:1736–47. https://doi.org/10.1080/03650340.2017.1300256
  6. 6. Roy PR, Tahjib Ul Arif M, Polash MAS, Hossen MZ, Hossain MA. Physiological mechanisms of exogenous calcium on alleviating salinity induced stress in rice (Oryza sativa L.) Physiol Mol Biol Plants. 2019;25:611–24. https://doi.org/10.1007/s12298-019-00654-8
  7. 7. Fageria N, Gheyi H, Moreira A. Nutrient bioavailability in salt affected soils. J Plant Nutr. 2011;34:945–62. https://doi.org/10.1080/01904167.2011.555578
  8. 8. Panda A, Parida AK. Development of salt tolerance in crops employing halotolerant plant growth promoting rhizobacteria associated with halophytic rhizosphere soils. Saline Soil-Based Agric. Halotolerant Microorg., Singapore: Springer Singapore; 2019, p. 75–101.
  9. 9. Choi H, Hong J, Ha J, Kang J, Kim SY. ABFs, a family of ABA-responsive element binding factors. J Biol Chem. 2000;275:1723–30. https://doi.org/10.1074/jbc.275.3.1723
  10. 10. Kim YJ, Tian C, Kim J, Shin B, Choo OS, Kim YS, et al. Autophagic flux, a possible mechanism for delayed gentamicin-induced ototoxicity. Sci Rep. 2017;7:41356.
  11. 11. Zhu K, Sun Z, Zhao F, Yang T, Tian Z, Lai J, et al. Relating hyperspectral vegetation indices with soil salinity at different depths for the diagnosis of winter wheat salt stress. Remote Sens. 2021;13:250. https://doi.org/10.3390/rs13020250
  12. 12. Shelden MC, Munns R. Crop root system plasticity for improved yields in saline soils. Front Plant Sci. 2023;14:1120583. https://doi.org/10.3389/fpls.2023.1120583
  13. 13. Wang A, Wang Z, Liu J, Xu N, Li H. The Sr/Ba ratio response to salinity in clastic sediments of the Yangtze River Delta. Chem Geol. 2021;559:119923. https://doi.org/10.1016/j.chemgeo.2020.119923
  14. 14. Li H, Lv CT, Li YT, Gao GY, Meng YF, You YL, et al. RNA-sequencing transcriptome analysis of Avicennia marina (Forsk.) Vierh. Leaf epidermis defines tissue-specific transcriptional response to salinity treatment. Sci Rep. 2023;13:7614.
  15. 15. Zhang Y, Zhang S, Xu S, Wang D. Effects of acute low-salinity stress on osmoregulation, antioxidant capacity, and growth of the black sea bream (Acanthopagrus schlegelii. Fish). Physiol Biochem. 2022;48:1599–617. https://doi.org/10.1007/s10695-022-01144-7
  16. 16. Wang CF, Han GL, Yang ZR, Li YX, Wang BS. Plant salinity sensors: Current understanding and future directions. Front Plant Sci. 2022;13:859224.
  17. 17. Zhu W, Gu S, Jiang R, Zhang X, Hatano R. Saline alkali soil reclamation contributes to soil health improvement in China. Agriculture 2024;14. https://doi.org/10.3390/agriculture14081210
  18. 18. Yang Z, Zhu L, Zhao X, Cheng Y. Effects of salinity stress on osmotic pressure, free amino acids, and immune-associated parameters of the juvenile Chinese mitten crab, Eriocheir sinensis. Aquaculture. 2022;549:737776. https://doi.org/10.1016/j.aquaculture.2021.737776
  19. 19. Rao D, Yadav S, Choudhary R, Singh D, Bhardwaj R, Barthakur S, et al. Silicic and humic acid priming improves micro-and macronutrient uptake, salinity stress tolerance, seed quality, and physio-biochemical parameters in lentil (Lens culinaris spp. culinaris). Plants. 2023;12:3539. https://doi.org/10.3390/plants12203539
  20. 20. Wu L, Farías ME, Torres RM, Xia L, Song S, Saber AA, et al. Salinity affects microbial composition and function in artificially induced biocrusts: Implications for cyanobacterial inoculation in saline soils. Soil Biol Biochem. 2022;170:108691. https://doi.org/10.1016/j.soilbio.2022.108691
  21. 21. Zhang D, Zhang Y, Sun L, Dai J, Dong H. Mitigating salinity stress and improving cotton productivity with agronomic practices. Agronomy. 2023;13:2486. https://doi.org/10.3390/agronomy13102486
  22. 22. Wang X, Liu G, Yang J, Huang G, Yao R. Evaluating the effects of irrigation water salinity on water movement, crop yield and water use efficiency by means of a coupled hydrologic/crop growth model. Agric Water Manag. 2017;185:13–26. https://doi.org/10.1016/j.agwat.2017.01.012
  23. 23. Mao P, Zhang Y, Cao B, Guo L, Shao H, Cao Z, et al. Effects of salt stress on eco-physiological characteristics in Robinia pseudoacacia based on salt-soil rhizosphere. Sci Total Environ. 2016;568:118–23. https://doi.org/10.1016/j.scitotenv.2016.06.012
  24. 24. Tang X, Xie G, Shao K, Tian W, Gao G, Qin B. Aquatic bacterial diversity, community composition and assembly in the semi-arid Inner Mongolia Plateau: Combined effects of salinity and nutrient levels. Microorganisms. 2021;9:208. https://doi.org/10.3390/microorganisms9020208
  25. 25. Gou T, Su Y, Han R, Jia J, Zhu Y, Huo H, et al. Silicon delays salt stress-induced senescence by increasing cytokinin synthesis in tomato. Sci Hortic. 2022;293:110750. https://doi.org/10.1016/j.scienta.2021.110750
  26. 26. Han Y, Ge H, Xu Y, Zhuang L, Wang F, Gu Q, et al. Estimating soil salinity using multiple spectral indexes and machine learning algorithm in Songnen plain, China. IEEE J Sel Top Appl Earth Obs Remote Sens. 2023;16:7041–50.
  27. 27. Yue Y, Guo WN, Lin QM, Li GT, Zhao XR. Improving salt leaching in a simulated saline soil column by three biochars derived from rice straw (Oryza sativa L.), sunflower straw (Helianthus annuus), and cow manure. J Soil Water Conserv. 2016;71:467–75. https://doi.org/10.2489/jswc.71.6.467
  28. 28. Sun ZL, Jiao JG, Huang SJ, Gao YY, Ho HC, Xu D. Effects of suspended sediment on salinity measurements. IEEE J Ocean Eng. 2017;43:56–65. https://doi.org/10.1109/JOE.2017.2653278
  29. 29. Yang RM, Guo WW. Using Sentinel 1 imagery for soil salinity prediction under the condition of coastal restoration. IEEE J Sel Top Appl Earth Obs Remote Sens. 2019;12:1482–8. https://doi.org/10.1109/JSTARS.2019.2906064
  30. 30. Zeng Y, Li L, Yang R, Yi X, Zhang B. Contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment in Halostachys caspica response to salt stress. Sci Rep. 2015;5:13639.
  31. 31. Jia J, Bai J, Wang W, Yin S, Zhang G, Zhao Q, et al. Salt stress alters the short-term responses of nitrous oxide emissions to the nitrogen addition in salt-affected coastal soils. Sci Total Environ. 2020;742:140124. https://doi.org/10.1016/j.scitotenv.2020.140124
  32. 32. Li Y, Xu J, Liu S, Qi Z, Wang H, Wei Q, et al. Salinity induced concomitant increases in soil ammonia volatilization and nitrous oxide emission. Geoderma. 2020;361:114053. https://doi.org/10.1016/j.geoderma.2019.114053
  33. 33. Li H, Zhu Y, Hu Y, Han W, Gong H. Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta Physiol Plant. 2015;37:1–9. https://doi.org/10.1007/s11738-015-1818-7
  34. 34. Chookietwattana K, Yuwa-Amornpitak T. Data on soil properties and halophilic bacterial densities in the Na Si Nuan secondary forest at Kantharawichai district, Maha Sarakham, Thailand. Data Brief. 2019;27:104582. https://doi.org/10.1016/j.dib.2019.104582
  35. 35. Yin CY, Zhao J, Chen XB, Li LJ, Liu H, Hu QL. Desalination characteristics and efficiency of high saline soil leached by brackish water and Yellow River water. Agric Water Manag. 2022;263:107461. https://doi.org/10.1016/j.agwat.2022.107461
  36. 36. Li Y, Wang C, Wright A, Liu H, Zhang H, Zong Y. Combination of GF-2 high spatial resolution imagery and land surface factors for predicting soil salinity of muddy coasts. Catena. 2021;202:105304. https://doi.org/10.1016/j.catena.2021.105304
  37. 37. Fu Y, Li P, Si Z, Ma S, Gao Y. Seeds priming with melatonin improves root hydraulic conductivity of wheat varieties under drought, salinity, and combined stress. Int J Mol Sci. 2024;25:5055. https://doi.org/10.3390/ijms25095055
  38. 38. Qin Y, Xiao S, Ma H, Mo R, Zhou Z, Wu X, et al. Effects of salinity and temperature on the timing of germinal vesicle breakdown and polar body release in diploid and triploid Hong Kong oysters, Crassostrea hongkongensis, in relation to tetraploid induction. Aquac Res. 2018;49:3647–57. https://doi.org/10.1111/are.13833
  39. 39. Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Ann Bot. 2003;91:503–27. https://doi.org/10.1093/aob/mcg058
  40. 40. Meychik NR, Nikolaeva YI, Yermakov IP. Physiological response of halophyte (Suaeda altissima (L.) Pall.) and glycophyte (Spinacia oleracea L.) to salinity 2013.
  41. 41. Ayyappan D, Sathiyaraj G, Ravindran KC. Phytoextraction of heavy metals by Sesuvium portulacastrum L. a salt marsh halophyte from tannery effluent. Int J Phytoremediation. 2016;18:453–59. https://doi.org/10.1080/15226514.2015.1109606
  42. 42. Yildiztugay E, Ozfidan-Konakci C, Kucukoduk M. The role of antioxidant responses on the tolerance range of extreme halophyte Salsola crassa grown under toxic salt concentrations. Ecotoxicol Environ Saf. 2014;110:21–30. https://doi.org/10.1016/j.ecoenv.2014.08.013
  43. 43. Kannan PR, Deepa S, Yasothai A, Kanth SV, Rao JR, Chandrasekaran B. Phytoremediation of tannery wastewater treated lands. Part II: Using harvested Salicornia brachiata plants for the preservation of sheep skins. J Soc Leather Technol Chem. 2009;93:240–44.
  44. 44. Flowers K. Ballistic and corrective movements on an aiming task: Intention tremor and parkinsonian movement disorders compared. Neurology. 1975;25:413–413. https://doi.org/10.1212/WNL.25.5.413
  45. 45. Stavi I, Thevs N, Priori S. Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Front Environ Sci. 2021;9:712831. https://doi.org/10.3389/fenvs.2021.712831
  46. 46. Vlot AC, Liu PP, Cameron RK, Park SW, Yang Y, Kumar D, et al. Identification of likely orthologs of tobacco salicylic acid‐binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. Plant J 2008;56:445–56. https://doi.org/10.1111/j.1365-313X.2008.03618.x
  47. 47. Ramani B, Zorn H, Papenbrock J. Quantification and fatty acid profiles of sulfolipids in two halophytes and a glycophyte grown under different salt concentrations. Z Für Naturforschung C. 2004;59:835–42. https://doi.org/10.1515/znc-2004-11-1212
  48. 48. Yang Y, Newton R, Miller F. Salinity tolerance in Sorghum. II. Cell culture response to sodium chloride in S. bicolor and S. halepense. Crop Sci. 1990;30:781–85.
  49. 49. Romano-Armada N, Yañez Yazlle MF, Irazusta VP, Rajal VB, Moraga NB. Potential of bioremediation and PGP traits in Streptomyces as strategies for bio-reclamation of salt-affected soils for agriculture. Pathogens. 2020;9:117. https://doi.org/10.3390/pathogens9020117
  50. 50. Rabhi N, Desevin K, Belkina AC, Tilston-Lunel A, Varelas X, Layne MD, et al. Obesity-induced senescent macrophages activate a fibrotic transcriptional program in adipocyte progenitors. Life Sci Alliance. 2022;5. https://doi.org/10.26508/lsa.202101286
  51. 51. Sato N, Aoki M, Maru Y, Sonoike K, Minoda A, Tsuzuki M. Involvement of sulfoquinovosyl diacylglycerol in the structural integrity and heat-tolerance of photosystem II. Planta. 2003;217:245–51. https://doi.org/10.1007/s00425-003-0992-9
  52. 52. Vassilev A, Yordanov I. Reductive analysis of factors limiting growth of cadmium-treated plants: A review. Bulg J Plant Physiol. 1997;23:114–33.
  53. 53. Venkatesalu V, Kumar RR, Chellappan K. Growth and mineral distribution of Sesuvium portulacastrum L., a salt marsh halophyte, under sodium chloride stress. Commun Soil Sci Plant Anal. 1994;25:2797–805. https://doi.org/10.1080/00103629409369226
  54. 54. Slama I, Ghnaya T, Savouré A, Abdelly C. Combined effects of long-term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum. C R Biol. 2008;331:442–51. https://doi.org/10.1016/j.crvi.2008.03.006
  55. 55. Janeeshma E, Sen A, Aswathi KR, Johnson R, Dhankher OP, Puthur JT. Reclamation and phytoremediation of heavy metal contaminated land. Bioenergy Crops, CRC Press; 2022, p. 187–203.
  56. 56. White PJ, Broadley MR. Calcium in plants. Ann Bot. 2003;92:487–511.
  57. 57. Alori ET, Gabasawa AI, Elenwo CE, Agbeyegbe OO. Bioremediation techniques as affected by limiting factors in soil environment. Front Soil Sci. 2022;2:937186. https://doi.org/10.3389/fsoil.2022.937186
  58. 58. Suganthy N, Pandian SK, Devi KP. Cholinesterase inhibitory effects of Rhizophora lamarckii, Avicennia officinalis, Sesuvium portulacastrum and Suaeda monica: Mangroves inhabiting an Indian coastal area (Vellar Estuary). J Enzyme Inhib Med Chem. 2009;24:702–707. https://doi.org/10.1080/14756360802334719
  59. 59. Lis Balchin M, Deans S, Hart S. A study of the changes in the bioactivity of essential oils used singly and as mixtures in aromatherapy. J Altern Complement Med. 1997;3:249–56. https://doi.org/10.1089/acm.1997.3.249
  60. 60. Rojas A, Hernandez L, Pereda-Miranda R, Mata R. Screening for antimicrobial activity of crude drug extracts and pure natural products from Mexican medicinal plants. J Ethnopharmacol. 1992;35:275–83. https://doi.org/10.1016/0378-8741(92)90025-M
  61. 61. Magawa LG. An appraisal of the legal frameworks of national human rights institutions in Africa: The cases of Tanzania and South Africa. 2006.
  62. 62. Chandrasekaran M, Senthilkumar A, Venkatesalu V. Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of Sesuvium portulacastrum L. Eur Rev Med Pharmacol Sci. 2011;15.
  63. 63. Kathiresan K. A review of studies on Pichavaram mangrove, Southeast India. Hydrobiologia. 2000;430:185–205. https://doi.org/10.1023/A:1004085417093
  64. 64. Samak G, Shenoy RP, Manjunatha S, Vinayak K. Superoxide and hydroxyl radical scavenging actions of botanical extracts of Wagatea spicata. Food Chem. 2009;115:631–34. https://doi.org/10.1016/j.foodchem.2008.12.078
  65. 65. Ravindran K, Venkatesan K, Balakrishnan V, Chellappan K, Balasubramanian T. Restoration of saline land by halophytes for Indian soils. Soil Biol Biochem. 2007;39:2661–4. https://doi.org/10.1016/j.soilbio.2007.02.005
  66. 66. Reddy GV, Kanth SR, Maitraie D, Narsaiah B, Rao PS, Kishore KH, et al. Design, synthesis, structure–activity relationship and antibacterial activity series of novel imidazo fused quinolone carboxamides. Eur J Med Chem. 2009;44:1570–8. https://doi.org/10.1016/j.ejmech.2008.07.024

Downloads

Download data is not yet available.