This is an outdated version published on 30-06-2025. Read the
most recent version.
Research Articles
Early Access
Phytochemical analysis, antibacterial and cytotoxic efficacy of n -hexane extract from Iraqi cultivated Jatropha integerrima: Isolation of stigmasterol and β-carotene using CombiFlash
Department of Pharmacognosy and Medicinal Plants, University of Baghdad, Baghdad 1001, Iraq
Department of Pharmacognosy and Medicinal Plants, University of Baghdad, Baghdad 1001, Iraq
Abstract
Jatropha integerrima a member of the Euphorbiaceae family, is well-known for its numerous secondary metabolites with medicinal applications. This study aims to investigate the phytochemical composition of the n-hexane extract of the aerial parts of J. integerrima grown in Iraq. The work focuses on the identification, separation and characterization of bioactive phytosterols and terpenoids, as well as evaluating the antibacterial activity of the extract against Staphylococcus aureus and Acinetobacter baumannii. Furthermore, the cytotoxic effect of the extract on the B16 melanoma skin cancer cell line was assessed utilizing the 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay. Two chromatographic techniques, thin layer chromatography (TLC) and gas chromatography mass spectrometry (GC-MS), are used to detect chemicals and for fractionation and isolation, CombiFlash chromatography and high performance liquid chromatography (HPLC) were used. Two beneficial compounds, β-carotene and stigmasterol, were successfully isolated. The antibacterial assay revealed that the n-hexane extract exhibited significant efficacy, especially against Gram-positive bacteria (S. aureus) and demonstrated a notable cytotoxic effect with the highest inhibition rate of 84.00 % on the skin cancer (B16) cell line at a 200 μg/mL concentration. The values of the half maximal inhibitory concentration (IC50) of the extract were 29.86 μg/mL. The
isolated components were characterized by HPLC, Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy to verify the existence of stigmasterol and β-carotene. Anti-inflammatory, neuroprotective and antioxidant are the most well -known properties of these compounds. As a result, separating and characterizing these compounds from J. integerrima can thus expose significant information on their possible medical use. This study is the first comprehensive analysis of the chemical composition of J. integerrima in Iraq, highlighting its promising medicinal value.
References
- 1. Che CT, George V, Ijinu TP, Pushpangadan P, Andrae-Marobela K. Traditional medicine. In: Badal S, Delgoda R, editors. Pharmacognosy. 2nd ed. Academic Press; 2024. p.11–28. https://doi.org/10.1016/b978-0-443-18657-8.00037-2
- 2. Raj SP, Solomon PR, Thangaraj B. Euphorbiaceae. In: Raj SP, Solomon PR, Thangaraj B, editors. Biodiesel from flowering plants. Singapore: Springer; 2022. p 207–90. https://doi.org/10.1007/978-981-16-4775-8_18
- 3. Subedi CK, Chaudhary RP, Kunwar RM, Bussmann RW, Paniagua-Zambrana NY. Jatropha curcas L. Euphorbiaceae. Ethnobotany of the Himalayas. 2021;1111–21. https://doi.org/10.1007/978-3-030-57408-6_131
- 4. Mahrous EA, Elosaily AH, Salama AAA, Salama AM, El-Zalabani SM. Oral and topical anti-inflammatory activity of Jatropha integerrima leaves extract in relation to its metabolite profile. Plants. 2022;11(2):218. https://doi.org/10.3390/plants11020218
- 5. Sutthivaiyakit S, Mongkolvisut W, Prabpai S, Kongsaeree P. Diterpenes, sesquiterpenes, and a sesquiterpene−coumarin conjugate from Jatropha integerrima. J Nat Prod. 2009;72(11):2024–27. https://doi.org/10.1021/np900342b
- 6. Idrissa N, Adama D, Mamadou B, Rokhaya SG, Yoro T, Alassane W, et al. Novel cytotoxic cyclo heptapeptide from the latex of Jatropha integerrima. J Chem Pharm Res. 2016;8(11):135-39.
- 7. Bhattacharjee A, Ramakrishna A, Obulesu M. Phytomedicine and Alzheimer’s disease. Boca Raton (FL): CRC Press; 2020. https://doi.org/10.1201/9780429318429
- 8. Maoka T. Carotenoids as natural functional pigments. J Nat Med. 2020;74(1):1–6. https://doi.org/10.1007/s11418-019-01364-x
- 9. Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy. Nature. 2007;445(7130):851–57. https://doi.org/10.1038/nature05661
- 10. WHO. World Health Organization. The global cancer observatory. 2020. Internet: Available on: https://globocan.iarc.fr/Pages/fact_sheets_population.aspx
- 11. Aboagye D, Quaye KO, Akambase E, Bandoh CO, Issaka SS, Azaanang HC, et al. Cholesterol estimation in edible oils on the Ghanaian market. Am J Food Sci Technol. 2024;12(3):77–81. https://doi.org/10.12691/ajfst-12-3-1
- 12. Hassoon SS, Abbas IS, Mshimesh BA. Isolation of beta-sitosterol and evaluation of antioxidant activity of Iraqi Campsis grandiflora flowers. Iraqi J Pharm Sci. 2022;31(1):176–83. https://doi.org/10.31351/vol31iss1pp176-183
- 13. Mangold HK. Thin-layer chromatography of lipids. J Am Oil Chem Soc. 1961;38(12):708–27. https://doi.org/10.1007/BF02633061
- 14. Pyka A. Detection progress of selected drugs in TLC. Biomed Res Int. 2014;2014:732078. https://doi.org/10.1155/2014/732078
- 15. Sherma J, Fried B. Handbook of thin layer chromatography. 3rd ed. Boca Raton (FL): CRC Press; 2003. p.47–51. https://doi.org/10.1201/9780203912430
- 16. Zhang Q, Zhu S, Lin X, Peng J, Luo D, Wan X, et al. Analysis of volatile compounds in different varieties of plum fruits based on HS-SPME-GC-MS technique. Horticulturae. 2023;9(10):1069. https://doi.org/10.3390/horticulturae9101069
- 17. Al-Tameme HJ, Hadi MY, Hameed IH. Phytochemical analysis of Urtica dioica leaves by FTIR and GC-MS. J Pharmacogn Phytother. 2015;7(10):238–52. https://doi.org/10.5897/jpp2015.0361
- 18. Mus’hib HK, Abdul-jalil TZ. Lupeol: Triterpene from Iraqi Portulaca grandiflora L: extraction, GC/MS identification, CombiFlash isolation and structure elucidation. Iraqi J Pharm Sci. 2024;33(4SI):147–58. https://doi.org/10.31351/vol33iss(4si)pp147-158
- 19. Boukes GJ, van de Venter M, Oosthuizen V. Quantitative and qualitative analysis of sterols/sterolins and hypoxoside contents of three Hypoxis spp. Afr J Biotechnol. 2008;7(11):1624-29. https://doi.org/10.5897/ajb08.218
- 20. Ahmed MN, Khamees AH. Isolation and characterization of luteolin and ferulic acid from Plumbago auriculata cultivated in Iraq. Iraqi J Pharm Sci. 2024;33(4SI):271–81. https://doi.org/10.31351/vol33iss(4SI)pp271-281
- 21. Farhan MS, Khamees AH, Ahmed OH, AmerTawfeeq A, Yaseen YS. GC/MS analysis of n-hexane and chloroform extracts of Chenopodium murale leaves in Iraq. J Pharm Res Int. 2019;31(6):1–6. https://doi.org/10.9734/jpri/2019/v31i630325
- 22. Pratiwi RA, Nandiyanto AB. How to read and interpret UV-VIS spectrophotometric results. Indonesia J Educ Res Technol. 2022;2(1):1–20. https://doi.org/10.17509/ijert.v2i1.35171
- 23. Khashan KS, Badr BA, Sulaiman GM, Jabir MS, Hussain SA. Antibacterial activity of ZnO nanomaterials synthesized by laser ablation. J Phys Conf Ser. 2021;1795(1):012040. https://doi.org/10.1088/1742-6596/1795/1/012040
- 24. Jihad MA, Noori FT, Jabir MS, Albukhaty S, AlMalki FA, Alyamani AA. PEG-functionalized graphene oxide nanoparticles loaded with Nigella sativa extract. Molecules. 2021;26(11):3067. https://doi.org/10.3390/molecules26113067
- 25. Aktafa AA, Nayef UM, Jabir MS. Laser ablated Au@Ag@Au nanoparticles for MDR bacteria. Plasmonics. 2024;30:1-7. https://doi.org/10.1007/s11468-024-02514-y
- 26. Dolati M, Tafvizi F, Salehipour M, Komeili Movahed T, Jafari P. Biogenic CuO nanoparticles induced ROS and apoptosis in breast cancer. Sci Rep. 2023;13(1):3256. https://doi.org/10.1038/s41598-023-30436-y
- 27. Jasim AJ, Sulaiman GM, Ay H, Mohammed SA, Mohammed HA, Jabir MS, et al. Gold nanoparticles conjugated chrysin: Cytotoxic, antioxidant and antimicrobial activities. Nanotechnol Rev. 2022;11(1):2726–41. https://doi.org/10.1515/ntrev-2022-0153
- 28. Ibrahim AA, Kareem MM, Al-Noor TH, Al-Muhimeed T, AlObaid AA, Albukhaty S, et al. Pt(II)-thiocarbohydrazone complex induces apoptosis in cancer cells via P53 and caspase-8. Pharmaceuticals. 2021;14(6):509. https://doi.org/10.3390/ph14060509
- 29. Abdul-lalil TZ. Ultrasound-assisted extraction of fennel leaves: TLC and cytotoxic activity. Iraqi J Pharm Sci. 2024;33(1):94–103. https://doi.org/10.31351/vol33iss1pp94-103
- 30. Stahl W, Sies H. β-carotene and other carotenoids in protection from sunlight. Am J Clin Nutr. 2012;96(5):1179S–84S. https://doi.org/10.3945/ajcn.112.034819
- 31. Tan BL, Norhaizan ME, Liew WP, Rahman HS. Antioxidant and oxidative stress in age-related diseases. Front Pharmacol. 2018;9:1162. https://doi.org/10.3389/fphar.2018.01162
- 32. Gupta S, Singh AK, Kumar R, Kumar A, Singh R, Pandey AK. Stigmasterol’s antioxidant and anti-inflammatory effects in colitis model. Biomed Pharmacother. 2018;97:1039–46. https://doi.org/10.1097/fbp.0000000000000658
- 33. Awad AB, Fink CS. Phytosterols as anticancer dietary components. J Nutr. 2000;130(9):2127–30. https://doi.org/10.1093/jn/130.9.2127
- 34. Wang T, Hicks KB, Moreau R. Antioxidant activity of phytosterols and oryzanol. J Am Oil Chem Soc. 2002;79(12):1201–06. https://doi.org/10.1007/s11746-002-0628-x
- 35. Kowalski S, Karska J, Tota M, Skinderowicz K, Kulbacka J, Drąg-Zalesińska M. Natural compounds in non-melanoma skin cancer. Molecules. 2024;29(3):728. https://doi.org/10.3390/molecules29030728
- 36. Bakrim S, Benkhaira N, Bourais I, Benali T, Lee LH, El Omari N, et al. Pharmacological properties of stigmasterol. Antioxidants. 2022;11(10):1912. https://doi.org/10.3390/antiox11101912
- 37. Lacatusu I, Badea N, Ovidiu O, Bojin D, Meghea A. Carotene-lipid nanocarriers with antioxidant and antibacterial activity. J Nanopart Res. 2012;14:1–6. https://doi.org/10.1007/s11051-012-0902-9
Downloads
Download data is not yet available.