Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Biological activities and phytochemical constituents of mace extract derived from Endocomia macrocoma

DOI
https://doi.org/10.14719/pst.9479
Submitted
17 May 2025
Published
01-08-2025 — Updated on 16-08-2025
Versions

Abstract

This study explores the phytochemical composition and biological activity of petroleum ether extract (PEEM) derived from the mace of Endocomia macrocoma. Methods employed include qualitative phytochemical screening, HPTLC, GC-MS, LC-MS, as well as free radical scavenging and antimicrobial assays. Preliminary screening revealed the presence of terpenoids, glycosides, alkaloids and tannins. Antioxidant activity was confirmed via HPTLC-DPPH and ABTS assays showing yielding IC₅₀ values of 143.68 ± 2.82 μg/mL and 105.28 ± 1.36 μg/mL, respectively. As the first comprehensive analysis of E. macrocoma mace, this study highlights its potential as a natural source of antioxidants and antimicrobial agents, supporting traditional medicinal use and offering prospects for pharmaceutical development.

 

References

  1. 1. Tag H, Kalita P, Dwivedi P, Das AK, Namsa ND. Herbal medicines used in the treatment of diabetes mellitus in Arunachal Himalaya, northeast, India. J Ethnopharmacol. 2012;141(3):786-95.
  2. 2. Seth SD, Sharma B. Medicinal plants in India. Indian J Med Res. 2004;120(1):9.
  3. 3. Modak M, Dixit P, Londhe J, Ghaskadbi S, Devasagayam TPA. Indian herbs and herbal drugs used for the treatment of diabetes. J Clin Biochem Nutr. 2007;40(3):163–73.
  4. 4. DeBenedictis JN, Murrell C, Hauser D, van Herwijnen M, Elen B, de Kok TM, et al. Effects of different combinations of phytochemical-rich fruits and vegetables on chronic disease risk markers and gene expression changes: insights from the miblend study, a randomized trial. Antioxidants. 2024;13(8):915. https://doi.org/10.3390/antiox13080915
  5. 5. Omage SO, Orhue NEJ, Omage K. Evaluation of the phytochemical content, in vitro antioxidant capacity, biochemical and histological effects of Dennettia tripetala fruits in healthy rats. Food Sci Nutr. 2019;7(1):65–75. https://doi.org/10.1002/fsn3.785
  6. 6. Anugweje KC. Micronutrient and phytochemical screening of a commercial Morinda citrifolia juice and a popular blackcurrant fruit juice commonly used by athletes in Nigeria. World Rural Observ. 2015;7(1):40–8.
  7. 7. Tannahill R. Food in history. Stein and Day; 1973. https://books.google.co.in/books?id=nfB5Zive9VMC
  8. 8. Sultana A, Najeeya AGF, Anjum A. Traditional Unani uses with multiple pharmacological activities of aril of Myristica fragrans (mace). CellMed. 2018;8(2):1–6.
  9. 9. Suthisamphat N, Dechayont B, Phuaklee P, Prajuabjinda O, Vilaichone RK, Itharat A. Anti-Helicobacter pylori, anti-inflammatory, cytotoxic and antioxidant activities of mace extracts from Myristica fragrans. Evid Based Complement Alternat Med. 2020;2020:1. https://doi.org/10.1155/2020/8811591
  10. 10. Kaur V, Kaushal S, Kalia A, Heena. Nutmeg vs mace: evaluation of functional, nutritional, antioxidant and antimicrobial traits to employ as a food preservative. Food Biosci. 2024;62:105193. https://doi.org/10.1016/j.fbio.2024.105193
  11. 11. Barman R, Bora PK, Saikia J, Kemprai P, Saikia SP, Haldar S, et al. Nutmegs and wild nutmegs: an update on ethnomedicines, phytochemicals, pharmacology and toxicity of the Myristicaceae species. Phytother Res. 2021;35(9):4632–59. https://doi.org/10.1002/ptr.7057
  12. 12. Govind MG, Dan M. Significance of carpology in the taxonomy of the family Myristicaceae from the Western Ghats, India. Rheedea. 2024;34(2):118–23.
  13. 13. Barman R, Saikia J, Gayen FR, Saha B, Manna P, Haldar S, et al. Valorization and physicochemical characterization of crude plant kernel wax obtained from Endocomia macrocoma (Miq.) WJ de Wilde subsp. prainii (King) WJ de Wilde. Waste Biomass Valorization. 2022;13(7):3359–70. https://doi.org/10.1007/s12649-021-01591-4
  14. 14. Harborne AJ. Phytochemical methods: a guide to modern techniques of plant analysis. Springer Science & Business Media; 1998.
  15. 15. de Morais JS, Sant’Ana AS, Dantas AM, Silva BS, Lima MS, Borges GC, et al. Antioxidant activity and bioaccessibility of phenolic compounds in white, red, blue, purple, yellow and orange edible flowers through a simulated intestinal barrier. Food Res Int. 2020;131:109046. https://doi.org/10.1016/j.foodres.2020.109046
  16. 16. Neri-Numa IA, Pessôa MG, Arruda HS, Pereira GA, Paulino BN, Angolini CFF, et al. Genipap (Genipa americana L.) fruit extract as a source of antioxidant and antiproliferative iridoids. Food Res Int. 2020;134:109252. https://doi.org/10.1016/j.foodres.2020.109252
  17. 17. Jaradat N, Hawash M, Sharifi-Rad M, Shakhshir A, Sobuh S, Hussein F, et al. Insights into free radicals scavenging, α-amylase inhibition, cytotoxic and antifibrotic activities unveiled by Peganum harmala extracts. BMC Complement Med Ther. 2024;24(1):299. https://doi.org/10.1186/s12906-024-04563-0
  18. 18. Speert DP, Wannamaker LW, Gray ED, Clawson CC. Bactericidal effect of oleic acid on group A streptococci: mechanism of action. Infect Immun. 1979;26(3):1202–10.
  19. 19. Stenz L, François P, Fischer A, Huyghe A, Tangomo M, Hernandez D, et al. Impact of oleic acid (cis-9-octadecenoic acid) on bacterial viability and biofilm production in Staphylococcus aureus. FEMS Microbiol Lett. 2008;287(2):149–55. https://doi.org/10.1111/j.1574-6968.2008.01316.x
  20. 20. Charlet R, Le Danvic C, Sendid B, Nagnan-Le Meillour P, Jawhara S. Oleic acid and palmitic acid from Bacteroides thetaiotaomicron and Lactobacillus johnsonii exhibit anti-inflammatory and antifungal properties. Microorganisms. 2022;10(9):1803. https://doi.org/10.3390/microorganisms10091803
  21. 21. Hidajati N, Tukiran T, Setiabudi DA, Wardana AP. Antioxidant activity of palmitic acid and pinostrobin from methanol extract of Syzygium litoralle (Myrtaceae). In: Proceedings of the International Conference on Science and Technology (ICST 2018). Paris: Atlantis Press; 2018.
  22. 22. Prasath KG, Tharani H, Kumar MS, Pandian SK. Palmitic acid inhibits the virulence factors of Candida tropicalis: biofilms, cell surface hydrophobicity, ergosterol biosynthesis and enzymatic activity. Front Microbiol. 2020;11:848. https://doi.org/10.3389/fmicb.2020.00848
  23. 23. Zhao Z, Wang J, Kong W, Newton MA, Burkett WC, Sun W, et al. Palmitic acid exerts anti-tumorigenic activities by modulating cellular stress and lipid droplet formation in endometrial cancer. Biomolecules. 2024;14(5):601. https://doi.org/10.3390/biom14050601
  24. 24. Pereira D, Correia-da-Silva G, Valentão P, Teixeira N, Andrade P. Palmitic acid and ergosta-7,22-dien-3-ol contribute to the apoptotic effect and cell cycle arrest of an extract from Marthasterias glacialis L. in neuroblastoma cells. Mar Drugs. 2013;12(1):54–68. https://doi.org/10.3390/md12010054
  25. 25. Kumar A, Das C. Corrosion inhibition of mild steel by Praecitrullus fistulosus (tinda fruit and peel) extracts. Sci Total Environ. 2024;929:172569. https://doi.org/10.1016/j.scitotenv.2024.172569
  26. 26. Quiroga PR, Nepote V, Baumgartner MT. Contribution of organic acids to α-terpinene antioxidant activity. Food Chem. 2019;277:267–72. https://doi.org/10.1016/j.foodchem.2018.10.090
  27. 27. Karthikeyan SC, Velmurugan S, Donio MBS, Michaelbabu M, Citarasu T. Studies on the antimicrobial potential and structural characterization of fatty acids extracted from Sydney rock oyster Saccostrea glomerata. Ann Clin Microbiol Antimicrob. 2014;13(1):332. https://doi.org/10.1186/s12941-014-0050-1
  28. 28. Dilika F, Bremner PD, Meyer JJM. Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: a plant used during circumcision rites. Fitoterapia. 2000;71(4):450–2.
  29. 29. Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol. 2010;85(6):1629–42. https://doi.org/10.1007/s00253-009-2355-3
  30. 30. Farag MA, Mohsen E, El-Gendy AENG. Sensory metabolites profiling in Myristica fragrans (nutmeg) organs and in response to roasting as analyzed via chemometric tools. LWT. 2018;97:684–92. https://doi.org/10.1016/j.lwt.2018.07.041

Downloads

Download data is not yet available.