

RESEARCH ARTICLE

Genetic potential of papaya genotypes: insights from agronomic descriptors and parameter estimation

Mohit Kumar^{1*}, Satya Prakash¹, Arvind Kumar¹, Bijendra Singh², LK Gangwar³, Vaishali⁴, Veersain¹, Upendra Maurya¹, Rajat Singh⁵ & Uday Raj - Gaurav¹

¹Department of Fruit Science, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250 110, Uttar Pradesh, India

²Department of Vegetable Science, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250 110, Uttar Pradesh, India

³Department of Genetics and Plant Breeding, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250 110, Uttar Pradesh, India

⁴Department of Agricultural Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250 110, Uttar Pradesh, India

⁵School of Agriculture, Uttarakhand University, Dehradun 248 007, Uttarakhand, India

*Email: mksharma202121@gmail.com

OPEN ACCESS

ARTICLE HISTORY

Received: 30 August 2024

Accepted: 10 December 2024

Available online

Version 1.0 : 22 January 2025

Additional information

Peer review: Publisher thanks Sectional Editor and the other anonymous reviewers for their contribution to the peer review of this work.

Reprints & permissions information is available at https://horizonpublishing.com/journals/index.php/PST/open_access_policy

Publisher's Note: Horizon e-Publishing Group remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Indexing: Plant Science Today, published by Horizon e-Publishing Group, is covered by Scopus, Web of Science, BIOSIS Previews, Clarivate Analytics, NAAS, UGC Care, etc. See https://horizonpublishing.com/journals/index.php/PST/indexing_abstracting

Copyright: © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited (<https://creativecommons.org/licenses/by/4.0/>)

CITE THIS ARTICLE

Kumar M, Prakash S, Kumar A, Singh B, Gangwar LK, Vaishali, Veersain, Maurya U, Singh R, Gaurav UR. Genetic potential of papaya genotypes: insights from agronomic descriptors and parameter estimation. Plant Science Today (Early Access). <https://doi.org/10.14719/pst.4734>

Abstract

Carica papaya L., a fruit crop of high nutritional and economic importance, faces significant challenges regarding yield stability, fruit quality and environmental stress tolerance. This study explored genetic variation, heritability and trait correlations to support targeted papaya breeding programs. Through a Line × Tester mating design, 40 F1 hybrids were developed from 14 parental genotypes, revealing considerable genetic diversity. High heritability values (87.25% – 99.65%) for key traits confirmed the strong genetic influence on fruit yield, size and number of fruits per plant. Notable anticipated genetic advances, particularly for fruit yield (93.16%), emphasize the prospects for substantial improvement through selective breeding. Traits such as fruit yield per plant (45.30%), fruit weight (39.06%) and number of fruits per plant (31.46%) showed the highest genotypic and phenotypic variability. The study also highlighted the impact of environmental factors, as phenotypic coefficients of variation exceeded genotypic coefficients across traits, underlining the need for integrating ecological adaptability in breeding strategies. These results emphasize the importance of utilizing genetic diversity to enhance papaya yield and quality, meeting both domestic and global market demands. By leveraging the observed genetic potential, breeders can develop improved genotypes that align with sustainability goals, ensuring higher productivity, better market returns and enhanced food security in papaya-producing regions.

Keywords

breeding; GCV; genetic; genotypes; heritability; PCV; yield

Introduction

Papaya (*Carica papaya* L.) is a vital tropical fruit crop with significant global and economic importance. Originating from Central America, papaya has become a major contributor to both fresh and processed fruit markets worldwide. Globally, it holds a prominent position among fruit crops due to its high nutritional value and economic returns. Globally, the papaya market is projected to grow at a Compound Annual Growth Rate (CAGR) of 3.6%, adding nearly 2.85 million tons by 2027. The variation in papaya plants is influenced by both their genetic makeup and the environment they grow in. However, only the genetic traits can be passed on to the next

generation. India's diverse papaya cultivars present opportunities to develop high-yielding varieties through hybridization. The crop's morphological diversity can be leveraged for improvement. Genetic variability and heritability are crucial for effective breeding programs, enabling the simultaneous enhancement of multiple traits.

This study aims to improve papaya yield and quality by analysing genetic variability among different traits. As papaya is a cross-fertilizing crop, it displays a wide diversity of quantitative traits that help in selecting appropriate parents for improvement programs (1).

Both their genes and the environments in which they grow contribute to the variations in papaya plants that we observe. But the only things that can be passed down to their progeny are the genetic ones (2). The crop's genetic base is quite limited (3-6). Posing a significant risk to its long-term sustainability. One viable strategy to increase the number of commercial varieties and hybrids is to expand the genetic diversity of papaya by utilizing the existing variability in germplasm banks (7-9) and developing new hybrids through breeding programs.

It is essential to focus on broadening the genetic base to produce cultivars that align with the demands of both domestic and international markets, while also being more resistant to pests, diseases, and various biotic and abiotic stresses (10, 11). India's diverse papaya cultivars offer an opportunity to develop high-yielding varieties through hybridization. Papaya shows significant morphological diversity, which can be leveraged for crop improvement. Genetic variability and heritability are crucial for effective breeding programs, enabling the simultaneous improvement of multiple traits. This study aims to enhance papaya yield and quality by analysing genetic variability among different traits. Fruit yield is a complex trait that is significantly influenced by a variety of genetic factors and environmental conditions.

On the other hand, traits related to yield components tend to have simpler inheritance patterns and are generally less affected by environmental variations (12). In plant breeding programs, directly selecting fruit yield alone may lead to misleading results (13). Line x Tester Analysis (LTA) is a statistical technique for evaluating genotype performance in various environments. LTA identifies stable and adaptable genotypes, understands genotype x environment interactions and selects superior genotypes for further breeding or commercialization. Applications of LTA include crop improvement, breeding program evaluation, genotype selection, seed production, cultivar recommendation, genetic research and precision agriculture. By applying LTA, breeders and researchers can make informed decisions, leading to improved crop performance and increased food security.

Materials and Methods

The research study was carried out at the Sardar Vallabhbhai Patel University of Agriculture and Technology's Horticultural Research Centre in Modipuram,

Meerut and this research is consistent with current climatic and weather data for the Meerut region. Subtropical climate is experienced in Meerut which is located in Uttar Pradesh, India, characterized by considerable temperature fluctuations between summer and winter seasons.

Ten papaya parent lines (Arka Prabhat, AC-119, Dwarf Lily, Red Indian, Washington, Pant papaya-2, Shantha, Line-21, CO-8, CO-2) were planted with 3 replicates in a Randomized Block Design and crossed to 4 testers (CO-7, Lucknow, Coorg Honeydew, Co-4) in Line x Tester mating system to develop 40 F1 hybrids in the year 2022-23. In the next year after developing the hybrids, along with their parents, were cultivated in a Randomized Block Design with three replications at HRC (Horticulture Research Centre), Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut.

The seeds of germplasm mention in Table 1 were obtained from ICAR-IIHR, Bangalore, sown in a nursery and later transferred to raise beds after 45-50 days of growth. NPK was applied at recommended doses for the fruit crop and additional nitrogen was sprayed at various plant stages for better Growth and improvement of the crop. Frost protection was provided by irrigation and fumigation during the winter season. The experiment yielded several key observations and measurements. During flowering, parameters such as the number of leaves at flowering, days to flowering and plant height at flowering were recorded. At harvest, observations were made on plant height, stem girth, number of fruits per plant and fruit yield per plant. Quality characteristics were also assessed and categorized into physical characteristics, including fruit weight, fruit length, pulp thickness, fruit girth and breadth of the central cavity, while chemical quality was estimated by measuring total soluble solids. The data mean values were given to a one-way ANOVA. Burton's performance was used to calculate the genotypic and phenotypic coefficients of variation (14). Heritability in the broad sense was estimated by the method of applying Lush's method and the expected genetic development for different characteristics under selection was calculated (15).

Meteorological observations during the crop period

Meteorological data was recorded at the ICAR-Indian Institute of Farming System Research (IIFSR), located in Modipuram, Meerut, India, during the research duration. The weekly minimum and maximum temperatures for the crop season, according to meteorological data 2022, ranged from 32.3 °C to 43.0 °C and from 20.1 °C to 43.1 °C respectively. Total rainfall received was 109.3 mm, during the entire crop season, and average relative humidity of morning and evening was found to vary from 92.3% to 65.9% and the evaporation rate was maximum at 68.7 and minimum was 0.6 mm. The data was calculated as the standard meteorological week (SMW) during the experiment conducted from May 2022 to February 2023 and April 2023 to January 2022

Heritability

Table 1. Characterization of fourteen parent genotypes utilized in breeding programme

Variety	Origin	Characteristics	Yield	Special features
CO-7 (T)	Tamil Nadu Agricultural University, India	Medium-sized fruits, deep orange flesh, high sweetness	High yielding	Good for fresh consumption and processing
Arka Prabh- hat (L)	Indian Institute of Horticultural Research (IIHR), Bangalore	Medium-sized fruits, red pulp, 1-2 kg	High yielding	Suitable for fresh consumption and processing
AC-119 (L)	Developed in India	Medium to large-sized fruits, sweet orange flesh	Good yield potential	Tolerant to some diseases
Dwarf Lilly (L)	Various sources	Small, dwarf plants, small to medium-sized fruits	Moderate yield	Suitable for small gardens and pot cultivation
Red Indian (L)	USA	Medium-sized fruits, reddish-orange flesh, sweet	Good yield	Attractive fruit color, suitable for fresh markets
Washington (L)	USA or Latin America	Large, elongated fruits, sweet yellow to orange flesh	High yielding	Popular in tropical and subtropical regions
Lucknow (T)	India	Medium-sized fruits, sweet orange flesh	Good yield potential	Known for its sweetness and flavor
Coorg Hon- eydew (T)	Coorg region, India	Medium to large-sized fruits, sweet deep orange flesh	High yielding	Excellent flavor and sweetness
Pant-2 (L)	Pantnagar University, India	Medium-sized fruits, deep orange flesh	Good yield potential	Good for fresh consumption and processing
Shantha (L)	Various sources	Medium-sized fruits, sweet flesh	Moderate to good yield	Suitable for fresh markets
Line-21 (L)	Developed through selection	Medium to large-sized fruits, sweet flesh	Good yield potential	Tolerant to some common diseases
CO-8 (L)	Tamil Nadu Agricultural University, India	Medium-sized fruits, deep orange flesh	High yielding	Suitable for fresh consumption and processing
CO-2 (L)	Tamil Nadu Agricultural University, India	Medium to large-sized fruits, sweet orange flesh	High yielding	Early maturing variety, suitable for fresh consumption
CO-4 (T)	Tamil Nadu Agricultural University, India	Medium-sized fruits, sweet orange flesh	Good yield potential	Suitable for fresh consumption and processing

High heritability values indicate traits largely governed by genetic factors and are less influenced by environmental conditions. This metric aids breeders in identifying traits with potential for effective selection in breeding programs. Heritability (h^2) is a key parameter that quantifies the proportion of total phenotypic variance ($\sigma^2 P$) attributable to genetic variance ($\sigma^2 G$). It is calculated using the formula:

$$h^2 = \frac{\sigma^2 G}{\sigma^2 P} \times 100 \quad (Eqn.1)$$

$\sigma^2 G$ = Genotypic Variance

$\sigma^2 P$ = Phenotypic Variance

Genotypic Coefficient of Variation (GCV)

Burton's performance was used to calculate the genotypic coefficients of variation. GCV measures the extent of genetic variability relative to the mean of a trait. It provides insight into the potential of a trait for improvement through selection. The formula for GCV is:

$$GCV = \sqrt{\frac{\sigma^2 G}{Mean}} \times 100 \quad (Eqn.2)$$

Phenotypic Coefficient of Variation (PCV)

Burton's performance was used to calculate the phenotypic coefficients of variation. PCV evaluates the overall variability in a trait, including both genetic and environmental influences. The formula is:

$$PCV = \sqrt{\frac{\sigma^2 P}{Mean}} \times 100 \quad (Eqn.3)$$

Genetic Advance (% of Mean)

Genetic advance (GA) quantifies the expected improvement in a trait under selection. Expressed as a percentage of the mean, it is derived using the formula:

$$GA = K \times h^2 \times \sqrt{\sigma^2 p} \quad (Eqn.4)$$

Here, K is the selection differential, which is usually 2.06 at 5% selection intensity. High GA values indicate traits predominantly governed by additive genetic effects and are highly responsive to selection. This metric helps

breeders prioritize traits with maximum potential for genetic gain.

Statistical Analysis

The data mean values were subjected to a one-way ANOVA (Table 2). Burton's performance was used to calculate the genotypic and phenotypic coefficients of variation. The expected genetic development for different characteristics under selection was calculated using the formula.

Results and Discussion

Overall Mean Performance of Parents and Hybrids

The hybrids demonstrate a significant improvement over the parents in several traits. Notably, the average fruit weight of hybrids is 1.65 kg, compared to 1.40 kg in the parents. Additionally, the hybrids exhibit a larger fruit diameter (40.43 cm) compared to the parents (39.05 cm) and greater fruit length, with hybrids averaging 20.11 cm and parents at 18.29 cm. Fruit yield per plant also sees a substantial increase in hybrids, averaging 33.88 kg, whereas the parents yield 24.66 kg. The total soluble solids (T.S.S.) content is marginally higher in hybrids (12.44) than in parents (12.37). Conversely, the parents show superior performance in certain traits. The days to flowering are fewer in parents, averaging 98.76 days, compared to 102.83 days in hybrids. Similarly, plant height at flowering is slightly greater in parents (87.70 cm) versus hybrids (88.47 cm). Plant height at harvesting also favours the parents, with an average height of 161.42 cm compared to 160.31 cm in hybrids. In some traits, the hybrids and parents exhibit comparable performance (Table 3, 4). This includes the number of leaves at flowering, stem girth, pulp thickness and breadth of the central cavity. Overall, while the hybrids show enhanced fruit traits, the parents maintain better performance in flowering time and plant height characteristics.

Heritability

Understanding the relationship between genetic and phenotypic variance is crucial in quantitative genetics (Fig. 2), as it helps researchers to estimate the heritability of the trait. The heritability estimates for the 13 traits ranged from 87.25% to 99.65%, indicating a significant genetic contribution to the variation in these characteristics. The highest heritability values were observed for fruit weight (99.56%), fruit yield per plant (99.65%), and number of

fruits per plant (98.50%), suggesting that genetic factors play a crucial role in determining these traits. Similarly, high heritability values were found for plant height at flowering (97.47%) and harvesting (97.91%), as well as fruit length (98.64%) and diameter (96.78%) (Table 5) (Fig. 1). These results indicate that selection for these traits is likely to be effective and genetic improvement programs can be successfully implemented to enhance the desired characteristics.

Genotypic Coefficient of Variation (GCV)

The observed GCV values provide insights into the extent of genetic diversity present in the (Table 5) (Fig. 4) traits under study. The high GCV observed for fruit yield per plant (45.30%), number of fruits per plant (31.46%) and fruit weight (39.06%) indicates substantial genetic variability for these traits, which can be effectively exploited in breeding programs to improve overall productivity. High GCV values suggest that these traits are under significant genetic influence, providing opportunities for selecting high-performing genotypes through selection and hybridization strategies.

Moderate GCV values were recorded for traits such as the number of leaves at flowering (19.72%), plant height at harvesting (17.12%) and fruit length (23.14%), which also indicate the presence of considerable genetic variability. Traits with moderate GCV suggest a mix of genetic and environmental influences on trait expression. These traits can still be improved through selection, though with slightly less efficiency compared to traits with high GCV.

On the other hand, traits like days to flowering (6.53%) and stem girth (7.98%), which exhibited low GCV values, suggest limited genetic variability. Low GCV indicates a stronger environmental influence, making these traits less responsive to genetic improvement through conventional selection methods. For such traits, the incorporation of advanced breeding techniques, such as marker-assisted selection or genomic selection, may help identify and utilize underlying genetic factors effectively.

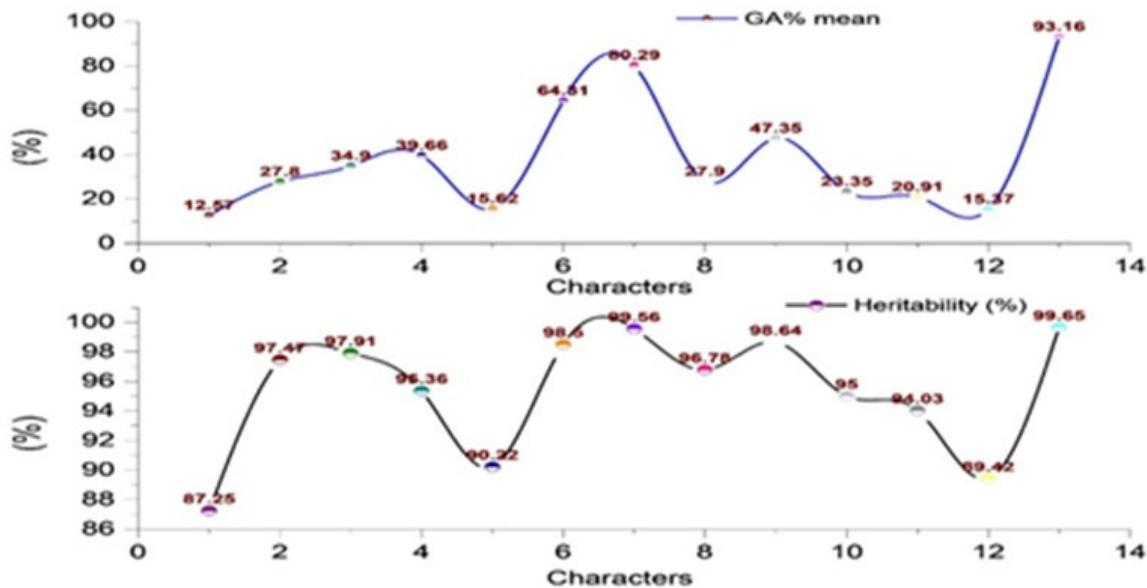
Phenotypic Coefficient of Variation (PCV)

The phenotypic coefficient of variation (PCV) values reveals the combined influence of genetic and environmental factors on trait expression. Very high PCV values were observed for fruit yield per plant (45.38%), fruit weight (39.15%), and number of fruits per plant (31.69%), indicating a significant contribution of environmental factors in addition to genetic variability

Table 2. ANOVA for parent and hybrids

Characters	d.f.	Days at flowering	Plant height at flowering (cm)	Plant height at harvesting (cm)	No. of leaves at flowering	Stem girth (mm)	No. of fruit per plant	Fruit weight (kg)	Fruit diameter (cm)	Fruit length (cm)	Pulp thickness (cm)	Breadth of central cavity	T.S.S. (° Brix)	Fruit yield per plant (kg)
Replication	2	1.35	4.56	16.89	1.04	0.26	1.41	0	1.19	0.14	0	0	0.23	0.84
Treatment	53	139.03*	440.44*	2283.9**	93.70**	15.59*	347.53*	1.15*	92.31**	62.26*	0.43**	2.25**	2.99*	611.18*
Error	106	6.46	3.78	16.11	1.5	0.54	1.76	0	1.01	0.29	0.01	0.05	0.11	0.72
Total	161	50.04	147.54	762.66	31.84	5.49	115.58	0.38	31.07	20.68	0.15	0.77	1.06	201.68

** significant at 5% and 1% level respectively.


Table 3. Mean performance of the parents (2022-2024)

Parents	Days at flowering	Plant height at flowering (cm)	Plant height at harvesting (cm)	No. of leaves at flowering	Stem girth (mm)	No. of fruit per plant	Fruit weight (kg)	Fruit diameter (cm)	Fruit length (cm)	Pulp thickness (cm)	Breadth of central cavity (cm)	T.S.S. (° Brix)	Fruit yield per plant (kg)
(LINE)													
Arka Prabhat	97	80.65	144.77	23	29.5	16.33	0.98	35.49	13.6	3.12	8.2	12.1	9.68
AC-119	85.33	69.45	119.97	26	25.89	59.67	0.74	36.8	15.2	2.81	8.1	11.4	25.76
Dwarf Lily	83	71.02	110.17	19	22.87	31.33	0.72	39.11	14.7	2.91	7.9	13.2	15.39
Red Indian	95	80.45	134.93	29	29.6	32.67	2.2	40.3	28	3.7	7.3	13.1	37.94
Washington	110.33	90.76	210.1	31.67	29.67	26.33	0.89	32.13	13.1	3.29	6.9	11.4	15.38
Pant Papaya-2	98.33	84.09	186.73	23	26.98	21.33	1.29	41.17	17.9	2.56	7.8	11.4	18.43
Shantha	104.67	98.05	174	38	31.2	31	1.5	38.2	24	3.34	8.7	13.2	25.39
Line-21	88.33	69.78	112.97	32.33	25.67	17	2.6	43.2	17.9	3.4	8.5	12.4	25.77
CO-8	103	86.79	154.07	33	33.1	33.33	1.8	33.83	26.44	2.96	8.3	11.4	33.12
CO-2	107.67	103.04	188.93	28.67	30.3	44.33	2.56	55.2	21.2	3.98	10.1	13.6	57.47
(TESTER)													
CO-7	102	98.56	181.07	19	30.1	22	1.1	38.4	17.3	3.13	7.6	11.2	18.57
Lucknow	99.33	84.45	155.1	26	25.78	17	0.8	36.79	12.77	3.01	6.4	12.6	8.62
Coorg Honeydew	97	129.12	218.9	37.67	27.9	39.67	1.4	39.63	17.67	2.68	7.85	12.8	28.67
CO-4	111.67	81.56	168.2	24	26.41	41.67	1.03	36.42	16.3	3.04	7.7	13.4	24.99
Mean	98.76	87.7	161.42	27.88	28.21	30.98	1.4	39.05	18.29	3.14	7.95	12.37	24.66
Min	83	69.45	110.17	19	22.87	16.33	0.72	32.13	12.77	2.56	6.4	11.2	8.62
Max	111.67	129.12	218.9	38	33.1	59.67	2.6	55.2	28	3.98	10.1	13.6	57.47

(Table 5) (Fig. 3). These findings highlight the need for careful environmental management and multi-location trials to accurately assess the genetic potential of these traits.

Moderate PCV values were recorded for traits like the number of leaves at flowering (20.19%), plant height at harvesting (17.30%), and fruit diameter (14.00%), suggesting that these traits are influenced by both genetic and environmental factors to a moderate extent. Selection efforts for such traits should consider both environmental

and genetic variances to achieve reliable improvements. In contrast, low PCV values for traits such as stem girth (8.40%) and days to flowering (6.99%) suggest that these traits are less influenced by the environment and are relatively stable across different conditions. However, their low genotypic variability, as indicated by corresponding GCV values, implies limited potential for significant improvement through conventional selection. These results are also following previous findings (16).

Table 4. Mean performance of the hybrids developed by crossing (2023-2024).**Fig 1.** Estimates of genetic advance as percent of mean and heritability percent.

1. Days at flowering 2. Plant height at flowering (cm) 3. Plant height at harvesting (cm) 4. No. of leaves at flowering 5. Stem girth (mm) 6. No. of fruit per plant 7. Fruit weight (kg) 8. Fruit diameter (cm) 9. Fruit length (cm) 10. Pulp thickness (cm) 11. Breadth of central cavity (cm) 12. T.S.S. 13. Fruit yield per plant (kg)

F ₁ -Hybrids	Days at flowering	Plant height at flowering (cm)	Plant height at harvesting (cm)	No. Of leaves at flowering	Stem girth (mm)	No. Of fruit per plant	Fruit weight (kg)	Fruit diameter (cm)	Fruit length (cm)	Pulp thickness (cm)	Breadth of central cavity (cm)	T.S.S.	Fruit yield per plant (kg)
Arka Prabhat × CO-7	103.33	83.87	144.7	24	29.92	19	1.19	37.82	17.96	3.29	8.32	11.2	15.65
Arka Prabhat × Lucknow	93	80.12	139.67	25	25.75	18.33	0.96	36.39	13.15	3.12	8.23	12.43	15.89
Arka Prabhat × Coorg Honeydew	101	110.32	157.63	31.33	27.5	41.67	1.53	37.23	16.61	3.11	8.21	12.98	33.43
Arka Prabhat × CO-4	107	79.44	141.8	27	26.41	41	1.1	35.38	15.37	3.16	7.98	11.34	27.09
AC-119 × CO-7	102.33	79.45	126.97	22	27.5	51.67	0.89	37.59	17.87	3.19	8.56	11.1	28.88
AC-119 × Lucknow	94.67	76.89	143.93	30	26.5	52.67	0.78	36.55	15.44	2.93	8.49	13.24	25.78
AC-119 × Coorg Honeydew	98	89.45	139	21	27.79	59.67	1.44	39.61	18.24	2.91	8.42	13.89	48.54
AC-119 × CO-4	96	73.65	128.81	27	26.5	50	1.11	36.66	16.21	3.08	8.12	11.32	31.77
Dwarf Lily × CO-7	98	91.43	135.9	16.67	27.25	28	1.12	38.87	18.11	3.1	7.63	12.6	20.33
Dwarf Lily × Lucknow	97	74.35	123.8	22.67	23.69	32.33	0.76	37.92	14.52	2.96	7.98	12.43	18.56
Dwarf Lily × Coorg Honeydew	95.33	94.34	154.97	36.67	25.4	33	1.21	39.55	18.21	2.98	7.53	11.45	27.54
Dwarf Lily × CO-4	95.67	76.9	115.93	28	22.23	41	0.82	39.1	15.97	3.09	7.97	12.6	20.98
Red Indian × CO-7	103.33	90.43	158.77	35	29.5	28.67	2.32	38.87	27.93	3.89	7.49	12.49	36.47
Red Indian × Lucknow	98	78.57	141.97	25	27.92	34	2.23	38.9	27.75	3.79	7.12	12.98	42.34
Red Indian × Coorg Honeydew	101.67	112.65	161.63	31	28.88	42.33	2.19	40.24	29.12	3.76	7.61	11.67	50.34
Red Indian × Co-4	112	78.45	158.63	22	26.28	36.33	2.33	40.21	27.67	3.85	7.86	11.43	48.65
Washington × CO-7	111.67	98.47	190.8	32	30.62	26	1.17	34.88	16.35	3.43	6.89	12.54	18.66
Washington × Lucknow	110.67	85.37	163.5	26.67	31.58	20	0.8	37.23	13.1	3.21	6.5	13.43	12.54
Washington × Coorg Honeydew	108	97.53	209.63	40.33	30.5	39	1.4	36.89	18.27	3.22	6.8	12.99	28.54
Washington × CO-4	114.67	88.67	181.77	27	29.81	33.67	1.13	35.42	15.44	3.36	7.89	11.67	24.93
Pant Papaya-2 × CO-7	103.67	89.44	181.57	30	28.77	22.33	1.24	43.12	17.87	2.67	7.87	12	15.44
Pant Papaya-2 × Lucknow	99.67	83.45	151.53	28	28.2	22.33	1.23	41.59	17.84	2.1	7.5	14.56	16.76
Pant Papaya-2 × Coorg Honeydew	105	89.59	191.6	19	28.32	42	1.58	39.94	18.38	3.23	7.9	12.13	39.43
Pant Papaya-2 × CO-4	108.67	86.45	180.6	27.33	28.13	32	1.24	43.52	19.23	2.85	7.88	12.98	23.12
Shantha × CO-7	100.67	96.55	174.33	26	28.23	27	1.7	38.23	24.21	3.54	8.51	13	26.32
Shantha × Lucknow	99	90.68	156.7	32	29.72	31	1.6	37.93	24.92	3.32	8.49	15.92	28.43
Shantha × Coorg Honeydew	103.67	107.89	188.83	31	31.02	36.67	1.7	38.97	24.79	3.52	8.93	12.24	36.12
Shantha × Co-4	106.67	87.24	143.5	32	24.92	41.67	1.7	37.88	23.67	3.56	8.79	11.56	37.88
Line-21 × CO-7	96	85.34	141.6	22	29.22	20	2.59	42.5	18.73	3.58	8.55	13.1	28.12
Line-21 × Lucknow	96.33	76.22	138.7	27.67	26.85	19.33	2.61	44.22	18.87	3.47	8.53	12.54	30.54
Line-21 × Coorg Honeydew	96.33	82.88	146.77	35.33	24.68	43.67	2.31	44.29	18.68	3.49	8.48	11.41	62.12
Line-21 × CO-4	97.67	72.54	148.53	29	26.23	27.33	2.59	44.52	18.56	3.62	8.56	12.31	41.32
CO-8 × CO-7	108	88	181	25.33	27.92	35	1.94	39.61	22.66	3.1	8.67	12.3	37.09
CO-8 × Lucknow	103.67	78.41	134.67	35	30.52	33.33	1.92	34.89	26.79	2.94	8.37	13.22	36.66
CO-8 × Coorg Honeydew	105	91.11	164.8	34.33	31.24	37	1.59	36.23	26.82	2.96	8.32	11.22	34.43
CO-8 × CO-4	109.67	84.79	161.83	31	30.23	37	1.97	34.23	24.61	3.27	8.62	11.11	39.44
CO-2 × CO-7	106.67	92.56	188.97	20	27.65	43.67	2.53	55.22	19.75	3.87	10.41	12.5	60.65
CO-2 × Lucknow	106	96.9	195.77	34.67	27.59	43.67	2.53	53.78	22.22	3.82	10.14	11.45	61.32
CO-2 × Coorg Honeydew	108.33	114.33	223.6	36	29.85	43.33	2.62	55.87	21.94	3.82	10.16	14.43	63.12

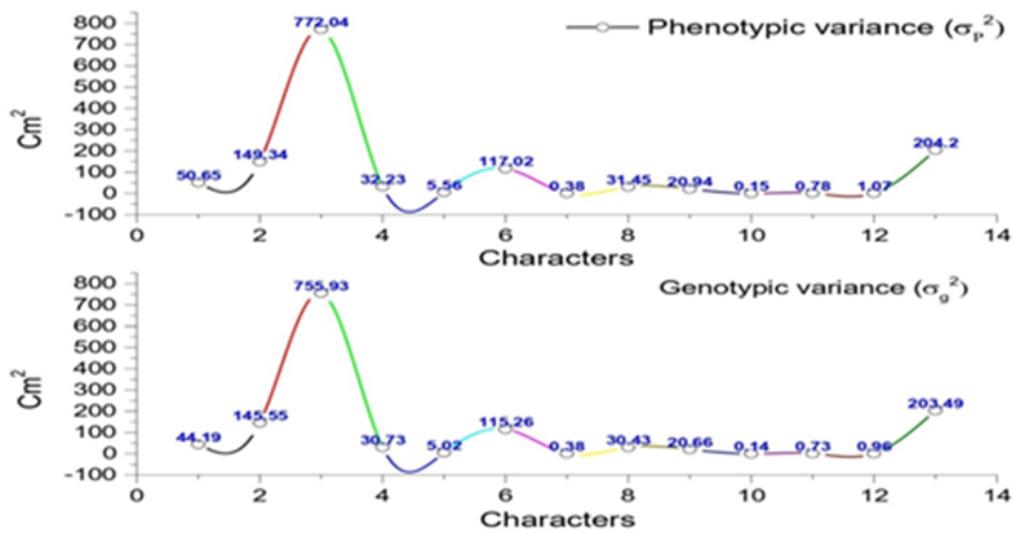
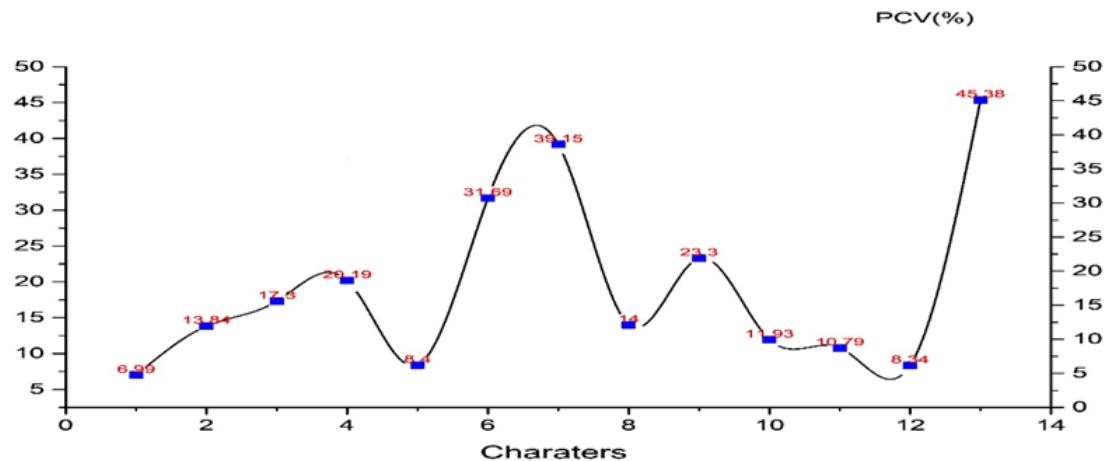
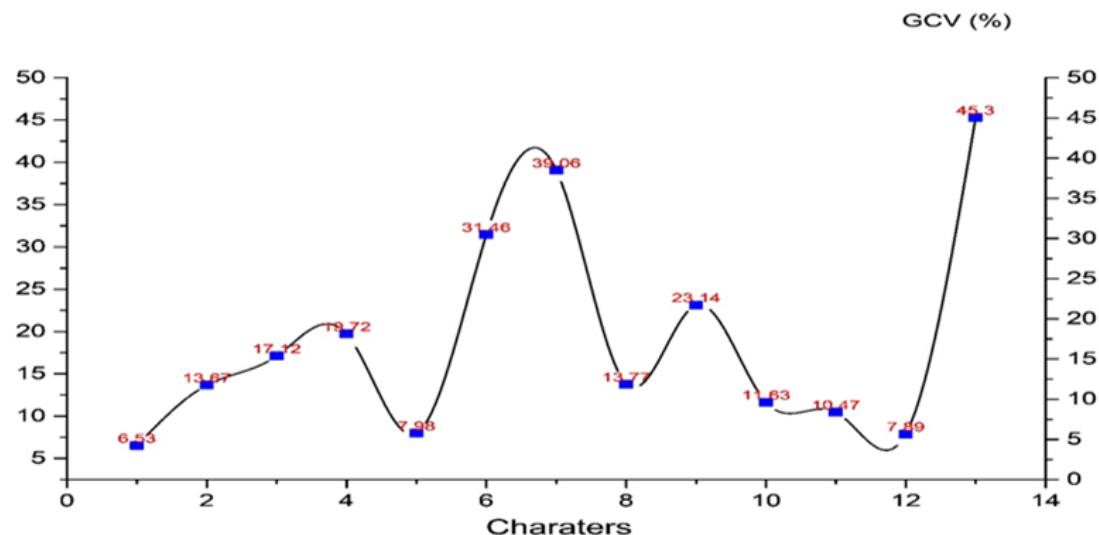

CO-2 × CO-4	111.33	104.22	197.77	22	29.32	42.67	2.18	55.19	20.58	3.03	10.15	11.65	60.02
Mean	102.83	88.47	160.31	28.2	28	35.23	1.65	40.43	20.11	3.28	8.26	12.44	33.88
Min	93	72.54	115.93	16.67	22.23	18.33	0.76	34.23	13.1	2.1	6.5	11.1	12.54
Max	114.67	114.33	223.6	40.33	31.58	59.67	2.62	55.87	29.12	3.89	10.41	15.92	63.12
Mean	101.78	88.27	160.6	28.12	28.06	34.13	1.58	40.07	19.64	3.24	8.18	12.42	31.49
Min	83	69.45	110.17	16.67	22.23	16.33	0.72	32.13	12.77	2.1	6.4	11.1	8.62
Max	114.67	129.12	223.6	40.33	33.1	59.67	2.62	55.87	29.12	3.98	10.41	15.92	63.12
SE(d)	2.08	1.59	3.28	1	0.6	1.08	0.03	0.82	0.44	0.07	0.18	0.28	0.69
C.D.	4.12	3.15	6.51	1.98	1.2	2.15	0.07	1.63	0.87	0.14	0.35	0.55	1.38
CV	2.5	2.2	2.5	4.35	2.63	3.89	2.61	2.51	2.72	2.67	2.64	2.71	2.69

Table 5. Genetic variability among different traits

Character	Mean	Min.	Max	Variance (g)	Variance (p)	Heritability (%)	GA	GA% mean	GCV (%)	PCV (%)
Days at flowering	101.78	83	114.67	44.19	50.65	87.25	12.79	12.57	6.53	6.99
Plant height at flowering (cm)	88.27	69.45	129.12	145.55	149.34	97.47	24.54	27.8	13.67	13.84
Plant height at harvesting (cm)	160.6	110.17	223.6	755.93	772.04	97.91	56.04	34.9	17.12	17.3
No. of leaves at flowering	28.12	16.67	40.33	30.73	32.23	95.36	11.15	39.66	19.72	20.19
Stem girth (mm)	28.06	22.23	33.1	5.02	5.56	90.22	4.38	15.62	7.98	8.4
No. of fruit per plant	34.13	16.33	59.67	115.26	117.02	98.5	21.95	64.31	31.46	31.69
Fruit weight (kg)	1.58	0.72	2.62	0.38	0.38	99.56	1.27	80.29	39.06	39.15
Fruit diameter (cm)	40.07	32.13	55.87	30.43	31.45	96.78	11.18	27.9	13.77	14
Fruit length (cm)	19.64	12.77	29.12	20.66	20.94	98.64	9.3	47.35	23.14	23.3
Pulp thickness (cm)	3.24	2.1	3.98	0.14	0.15	95	0.76	23.35	11.63	11.93
Breadth of central cavity (cm)	8.18	6.4	10.41	0.73	0.78	94.03	1.71	20.91	10.47	10.79
T.S.S.	12.42	11.1	15.92	0.96	1.07	89.42	1.91	15.37	7.89	8.34
Fruit yield per plant (kg)	31.49	8.62	63.12	203.49	204.2	99.65	29.33	93.16	45.3	45.38


Table 6. Promising line and tester genotypes based on their performance

Trait	Promising lines	Promising testers	Key observations
Days to flowering	AC-119, Dwarf Lily, Line-21	Lucknow	Early flowering was promoted by AC-119; delayed flowering was observed in Washington and Co-2.
Plant height	Shantha, Co-2	Coorg Honeydew	Increased height linked to Shantha and Co-2; shorter plants promoted by AC-119.
Number of leaves	Washington, Shantha, Co-8	Coorg Honeydew	Positive GCA effects for higher leaf count; reduced leaves in Arka Prabhat.
Stem girth	Washington, Co-8	Coorg Honeydew, Co-7	Thicker stems were observed in Washington and Co-8; thinner stems in Arka Prabhat.
Number of fruits per plant	AC-119, Co-2	Coorg Honeydew	More fruits were promoted by AC-119 and Co-2; reduced fruits in Washington and Line-21.
Fruit weight	Red Indian, Co-8, Line-21	Coorg Honeydew	Heavier fruits in Red Indian and Line-21; lighter fruits in AC-119 and Dwarf Lily.
Fruit diameter	Line-21, Co-2	Coorg Honeydew	Larger fruit diameter linked to Line-21; smaller fruits in Arka Prabhat.
Pulp thickness	Red Indian, Shantha, Line-21	Co-7	Thicker pulp was observed in Shantha; thinner pulp in Arka Prabhat and AC-119.
TSS (sweetness)	Washington, Shantha, Co-8	Lucknow	Higher TSS content promoted by Washington; reduced TSS in Arka Prabhat.
Fruit yield per plant	Red Indian, Co-2, Line-21	Coorg Honeydew	Increased yield in Red Indian and Co-2; reduced yield in Dwarf Lily and Co-7.


Fig. 2. Estimates of phenotypic variance and genotypic variance.

1. Days at flowering 2. Plant height at flowering (cm) 3. Plant height at harvesting (cm) 4. No. of leaves at flowering 5. Stem girth (mm) 6. No. of fruit per plant 7. Fruit weight (kg) 8. Fruit diameter (cm) 9. Fruit length (cm) 10. Pulp thickness (cm) 11. Breadth of central cavity (cm) 12. T.S.S.13. Fruit yield per plant (kg)

Fig. 3. Estimates of the phenotypic coefficient of variation.

1. Days at flowering 2. Plant height at flowering (cm) 3. Plant height at harvesting (cm) 4. No. of leaves at flowering 5. Stem girth (mm) 6. No. of fruit per plant 7. Fruit weight (kg) 8. Fruit diameter (cm) 9. Fruit length (cm) 10. Pulp thickness (cm) 11. Breadth of central cavity (cm) 12. T.S.S.13. Fruit yield per plant (kg)

Fig. 4. Estimates of genotypic coefficient of variation.

1. Days at flowering 2. Plant height at flowering (cm) 3. Plant height at harvesting (cm) 4. No. of leaves at flowering 5. Stem girth (mm) 6. No. of fruit per plant 7. Fruit weight (kg) 8. Fruit diameter (cm) 9. Fruit length (cm) 10. Pulp thickness (cm) 11. Breadth of central cavity (cm) 12. T.S.S.13. Fruit yield per plant (kg)

Genetic Advance (as% of mean)

The genetic advance (GA) as a percentage of the mean provides a measure of the expected improvement in a trait under selection, highlighting its potential for genetic gain. High genetic advance values were observed for fruit yield per plant (93.16%), fruit weight (80.29%) and number of fruits per plant (64.31%), indicating that these traits are governed by additive genetic effects and are highly responsive to selection (Table 5) (Fig. 1). The substantial genetic gain expected for these economically important traits suggests that they can be effectively improved through breeding programs.

Moderate genetic advance values, ranging between 20% and 30%, were recorded for traits such as breadth of the central cavity (20.91%) and pulp thickness (23.35%), suggesting a moderate scope for genetic improvement. While these traits exhibit sufficient genetic variability, their response to selection might be influenced by both genetic and environmental factors. These traits can still contribute to overall crop improvement, particularly when combined with high-yielding genotypes.

Traits with low genetic advance, such as Total Soluble Solids (15.37%) and days to flowering (12.57%), exhibited limited potential for improvement through direct selection. These low values may result from a higher influence of non-additive gene action or environmental factors, requiring alternative approaches such as hybridization or marker-assisted selection to enhance these traits.

Conclusion

The study establishes significant potential for genetic improvement in papaya through selective breeding, emphasizing the variations observed in traits like fruit yield per plant, fruit weight and the number of fruits per plant. High Genotypic Coefficients of Variation (GCV) highlight substantial genetic diversity, while consistently higher Phenotypic Coefficients of Variation (PCV) underline the impact of environmental factors, reinforcing the need to combine genetic and phenotypic data in breeding programs.

Key findings reveal high heritability (87.25–99.65%) and moderate to high genetic advance (15.37–93.16%), underscoring the efficacy of selection for most traits. The traits identified for targeted improvement include fruit yield per plant, fruit weight and the number of fruits per plant due to their optimal combination of high heritability and genetic advance.

Based on the performance of parent genotype suggested that AC-119 is best for early flowering and Co-2 and Shantha for taller plants. Washington, Shantha and Co-8 enhanced leaf count, while Washington and Co-8 improved stem girth. AC-119 and Co-2 increased fruit count and Red Indian and Line-21 produced heavier fruits with larger diameters. Shantha improved pulp thickness and Washington enhanced TSS. Red Indian and Co-2 were superior for fruit yield, making these lines and testers ideal

for breeding high-yielding, quality papaya varieties (Table 6). These insights can guide breeding programs to focus on developing sustainable, high yielding and quality papaya varieties for both fresh consumption and processing, particularly in subtropical regions. By incorporating genetic variability and environmental factors, breeders can enhance crop performance to meet the demands of industrial markets, contributing to global food security and agricultural sustainability.

Acknowledgements

The authors express their sincere gratitude to the Department of Fruit Science, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut-250 110, Uttar Pradesh, India, for providing the necessary facilities for conducting this research. The authors also acknowledge the Department of Genetics and Plant Breeding, Agricultural Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India and the School of Agriculture, Uttarakhand University, Dehradun-248 007, Uttarakhand, India, for their valuable support.

Authors' contributions

MK and SP drafted the manuscript. BS and AK participated in the sequence alignment. LK and V participated in the design of the study and performed the statistical analysis. V, UM and RS conceived of the study and participated in its design and coordination. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest: Authors do not have any conflict of interest to declare.

Ethical issues: None

Declaration of generative AI and AI-assisted technologies in the writing process

During the preparation of this work, the author(s) used Quill Bot and chat GPT in order to grammar check and language modulation. After using this tool/service, the author(s) reviewed and edited the content as needed and take(s) full responsibility for the content of the publication.

References

1. Das SS, Kishore K, Lenka D, Dash DK, Samant D, Panda CM, et al. Studies on genetic variability, heritability and character association of yield and quality traits in mango germplasm in eastern tropical region of India. Agric Res J. 2021;58(6):998-1005. <https://doi.org/10.5958/2395-146x.2021.00141.1>
2. Lush JL. Heritability of quantitative characters in farm animal S. Hereditas. Proceedings 8th Int Congr Genet.; 2010. 35(S1):356-75. <https://doi.org/10.1111/j.1601-5223.1949.tb03347.x>
3. Jambhale VM, Kute NS, Pawar SV. Studies on genetic variability parameters, character association and path analysis among

yield and yield contributing traits in papaya (*Carica papaya* L.). The Bioscan. 2014;9(4):1711-15.

4. Johnson HW, Robinson HF, Comstock RE. Estimates of genetic and environmental variability in soybeans. *Agron J.* 1955;47(7):314-18. <https://doi.org/10.2134/agronj1955.0002196200470070009x>
5. Quintal SSR, Viana AP, Goncalves LSA, Pereira MG, Amaral ATD Junior. Divergência genética entre acessos de mamoeiro por meio de variáveis morfoagronômicas. *Semin Cienc Agrar.* 2012;33(1):131-42.<https://doi.org/10.5433/1679-0359.2012v33n1p131>
6. Huqe MA, Haque MS, Sagar A, Uddin MN, Hossain MA, Hossain AZ, et al. Characterization of maize hybrids (*Zea mays* L.) for detecting salt tolerance based on morpho-physiological characteristics, ion accumulation and genetic variability at early vegetative stage. *Plants.* 2021 Nov 22;10(11):2549. <https://doi.org/10.3390/plants10112549>
7. Jana BR, Rai M, Das B, Nath V. Genetic variability and association of component characters for fruit yield in papaya (*Carica papaya* L.). *The Orissa J Hort.* 2006;34(1):22-27. Available at: icarrcer.icar.gov.in
8. Da Silva Filho F, Pereira MG, Ramos HCC, Damasceno PC Junior, Pereira TNS, Viana AP, et al. Estimation of genetic parameters related to morpho-agronomic and fruit quality traits of papaya. *Crop Breed Appl Technol.* 2008;8(1):65-73. <https://doi.org/10.12702/1984-7033.v08n01a09>
9. Johnson HW, Robinson HF, Comstock RE. Genotypic and phenotypic correlations in soybeans and their implications in selection. *Agron J.* 1955;47(10):477-83.<https://doi.org/10.2134/agronj1955.00021962004700100008x>
10. Ma H, Moore PH, Liu Z, Kim MS, Yu Q, Fitch MMM, et al. High-density linkage mapping revealed suppression of recombination at the sex determination locus in papaya. *Genetics.* 2004;166(1):419-36.<https://doi.org/10.1534/genetics.166.1.419>
11. Adeyeye OA, Sadiku ER, Osholana TS, Reddy AB, Olayinka AO, Ndamase AS, et al. Construction and evaluation of soybeans thresher. *Afr J Agric Res.* 2019;14(21):921-27. <https://www.africaneditors.org/journal/AJAR/full-text-pdf/29503-108934>
12. Karunakaran G, Ravishankar H, Dinesh. genetical studies in papaya (*Carica papaya* L.). *Acta Hortic.* 2010;(851):103-08. <https://doi.org/10.17660/actahortic.2010.851.13>
13. Dicenta F, Garcia JE. Phenotypical correlations among some traits in almond. *J Genet Breed.* 1992;46:241-46. Available at: <https://www.cabidigitallibrary.org/doifull/10.5555/19931636394>
14. Burton GW, DeVane EH. Estimating heritability in tall fescue (*Festuca arundinacea*) from replicated clonal material. *Agron J.* 1953;45(10):478-81.<https://doi.org/10.2134/agronj1953.00021962004500100005x>
15. Kim MS, Moore PH, Zee F, Fitch MMM, Steiger D, Manshardt R, Paull, R, Drew, R, Sekioka, T, & Ming, R. Genetic diversity of *Carica papaya* as revealed by AFLP markers. *Genome.* 2002;45(3):503-12. <https://doi.org/10.1139/g02-026>
16. Singh AK, Bajpai A, Singh A. Classification of morpho-agronomic variability in papaya for developing elite cultivar. *Acta Hortic.* 2010;(851):137-44.<https://doi.org/10.17660/actahortic.2010.851.19>