Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Identical threats of rice: Insights into biotypes of brown planthopper (Nilaparvata lugens stal)

DOI
https://doi.org/10.14719/pst.10259
Submitted
25 June 2025
Published
26-09-2025
Versions

Abstract

By continuous feeding, insects tend to overcome the host resistance. As the plant resistance mechanism gets upgraded in due course of time, the monophagous insects co-evolve as a means of adaptation, which includes biotype formation. A biotype is morphologically identical to its original form, primarily based on the selection pressure exerted by the host. Brown Planthopper (BPH) is a major rice pest in Asia, which could able to cause 60 % of yield loss under severe pest outbreak. This Brown planthopper exhibits multiple biotypes distinguished by their ability to overcome specific host resistance genes. Four original biotypes have been identified, with biotypes 1 and 2 being prevalent in Southeast Asia and East Asia. Biotype 3 developed under laboratory conditions on resistant varieties while biotype 4 is native to the Indian Subcontinent. These biotypes differ in virulence, feeding behaviour and overcoming resistant genes in rice cultivars. Understanding the genetic basis of biotype differentiation and host resistance mechanisms is crucial for durable, broad-spectrum BPH resistance in rice. Though more than 46 resistance genes/QTLs have identifies so far, long-term management depends on combining genetic strategies such as gene pyramiding by utilizing multiple genes at a time along with regional monitoring of biotypes and area-wide IPM programs which can slow down the adaptation by the pest. These strategies balance resistance durability with lower pest selection pressure, for better pest management and increased rice yields.

References

  1. 1. FAOSTAT. Area of rice production. 2023. https://www.fao.org/faostat/en/#data/QCL.
  2. 2. Cheng X, Zhu L, He G. Towards understanding of molecular interactions between rice and the brown planthopper. Molecular Plant. 2013;6(3):621-34. https://doi.org/10.1093/mp/sst030
  3. 3. Horgan FG, Ramal AF, Bentur JS, Kumar R, Bhanu KV, Sarao PS, et al. Virulence of brown planthopper (Nilaparvata lugens) populations from South and South East Asia against resistant rice varieties. Crop Protection. 2015;78:222-31.
  4. https://doi.org/10.1016/j.cropro.2015.09.014
  5. 4. Fujita D, Kohli A, Horgan FG. Rice resistance to planthoppers and leafhoppers. Critical Reviews in Plant Sciences. 2013;32(3):162-91. https://doi.org/10.1080/07352689.2012.735986
  6. 5. Muduli L, Pradhan SK, Mishra A, Bastia DN, Samal KC, Agrawal PK, et al. Understanding brown planthopper resistance in rice: Genetics, biochemical and molecular breeding approaches. Rice Science. 2021;28(6):532-46.
  7. https://doi.org/10.1016/j.rsci.2021.05.013
  8. 6. Zhang X, Gu D, Liu D, Hassan MA, Yu C, Wu X, et al. Recent advances in gene mining and hormonal mechanism for brown planthopper resistance in rice. International Journal of Molecular Sciences. 2024;25(23):12965.
  9. https://doi.org/10.3390/ijms252312965
  10. 7. Gamalath NS, Tufail M, Sharma PN, Mori N, Takeda M, Nakamura C. Differential expression of vitellogenin mRNA and protein in response to rice resistance genes in two strains of Nilaparvata lugens (Hemiptera: Delphacidae) with different levels of virulence. Applied Entomology and Zoology. 2012;47:9-16. https://doi.org/10.1007/s13355-011-0082-6
  11. 8. Garrett K, Andersen KF, Asche F, Bowden R, Forbes G, Kulakow P, et al. Resistance genes in global crop breeding networks. Phytopathology. 2017;107(10):1268-78. https://doi.org/10.1094/PHYTO-03-17-0082-FI
  12. 9. Shi X, Hu R. Rice variety improvement and the contribution of foreign germplasms in China. Journal of Integrative Agriculture. 2017;16(10):2337-45. https://doi.org/10.1016/S2095-3119(16)61615-5
  13. 10. Taggar GK, Arora R. Insect biotypes and host plant resistance. In: Breeding insect resistant crops for sustainable agriculture. 2017:387-421. https://doi.org/10.1007/978-981-10-6056-4_13
  14. 11. Claridge M, Den Hollander J. The biotype concept and its application to insect pests of agriculture. Crop Protection. 1983;2(1):85-95. https://doi.org/10.1016/0261-2194(83)90028-5
  15. 12. Den Hollander J, Pathak P. The genetics of the biotypes of the rice brown planthopper, Nilaparvata lugens. Entomologia Experimentalis et Applicata. 1981;29(1):76-86. https://doi.org/10.1111/j.1570-7458.1981.tb03044.x
  16. 13. Saxena R, Barrion A. Biotypes of insect pests of agricultural crops. International Journal of Tropical Insect Science. 1987;8(4-6):453-8. https://doi.org/10.1017/S1742758400022475
  17. 14. Granett J, Walker MA, Kocsis L, Omer AD. Biology and management of grape phylloxera. Annual Review of Entomology. 2001;46(1):387-412. https://doi.org/10.1146/annurev.ento.46.1.387
  18. 15. Goh H, Saxena R, Barrion A, Choi K, Kim J. Variations in leg characters among three biotypes of the brown planthopper, Nilaparvata lugens (Stal), in Korea. 1993.
  19. 16. Downie D. Baubles, bangles, and biotypes: a critical review of the use and abuse of the biotype concept. Journal of Insect Science. 2010;10(1):176. https://doi.org/10.1673/031.010.14136
  20. 17. Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annual Review of Genetics. 2008;42(1):165-90. https://doi.org/10.1146/annurev.genet.41.110306.130119
  21. 18. Oliver KM, Degnan PH, Burke GR, Moran NA. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annual Review of Entomology. 2010;55(1):247-66. https://doi.org/10.1146/annurev-ento-112408-085305
  22. 19. Saxena R, Barrion A. Biotypes of the brown planthopper Nilaparvata lugens (Stal) and strategies in deployment of host plant resistance. International Journal of Tropical Insect Science. 1985;6(3):271-89.
  23. https://doi.org/10.1017/S1742758400004549
  24. 20. Smith CM. Plant resistance to arthropods: molecular and conventional approaches. Springer; 2005.
  25. https://doi.org/10.1007/1-4020-3702-3
  26. 21. Khanal N, Vitek C, Kariyat R. The known and unknowns of aphid biotypes, and their role in mediating host plant defences. Diversity. 2023;15(2):186. https://doi.org/10.3390/d15020186
  27. 22. Mutti NS, Louis J, Pappan LK, Pappan K, Begum K, Chen MS, et al. A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant. Proceedings of the National Academy of Sciences. 2008;105(29):9965-9. https://doi.org/10.1073/pnas.0708958105
  28. 23. Michel AP, Mittapalli O, Mian MR, Sudaric A. Evolution of soybean aphid biotypes: understanding and managing virulence to host-plant resistance. In: Soybean-molecular aspects of breeding. InTech, New York; 2011:355-72.
  29. 24. Tang M, Lv L, Jing S, Zhu L, He G. Bacterial symbionts of the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae). Applied and Environmental Microbiology. 2010;76(6):1740-5.
  30. https://doi.org/10.1128/AEM.02240-09
  31. 25. Lapitan NL, Li YC, Peng J, Botha AM. Fractionated extracts of Russian wheat aphid eliciting defense responses in wheat. Journal of Economic Entomology. 2007;100(3):990-9. https://doi.org/10.1093/jee/100.3.990
  32. 26. Shi S, Zha W, Yu X, Wu Y, Li S, Xu H, et al. Integrated transcriptomics and metabolomics analysis provide insight into the resistance response of rice against brown planthopper. Frontiers in Plant Science. 2023;14:1213257.
  33. https://doi.org/10.3389/fpls.2023.1213257
  34. 27. Hu L, Yang D, Wang H, Du X, Wu Y, Lv L, et al. Metabolomic profiling of BPH14/BPH15 pyramiding rice and its implications for brown planthopper resistance. Agronomy. 2025;15(6):1428. https://doi.org/10.3390/agronomy15061428
  35. 28. Hu J, Xiao C, He Y. Recent progress on the genetics and molecular breeding of brown planthopper resistance in rice. Rice. 2016;9:1-12. https://doi.org/10.1186/s12284-016-0099-0
  36. 29. Jeevanandham N, Raman R, Ramaiah D, Senthilvel V, Mookaiah S, Jegadeesan R. Rice: Nilaparvata lugens Stal interaction-current status and future prospects of brown planthopper management. Journal of Plant Diseases and Protection. 2023;130(1):125-41. https://doi.org/10.1007/s41348-022-00672-x
  37. 30. Iamba K, Dono D. A review on brown planthopper (Nilaparvata lugens Stal), a major pest of rice in Asia and Pacific. Asian Journal of Research in Crop Science. 2021;6:7-19. https://doi.org/10.9734/ajrcs/2021/v6i430122
  38. 31. Denno RF, Olmstead KL, McCloud ES. Reproductive cost of flight capability: a comparison of life history traits in wing dimorphic planthoppers. Ecological Entomology. 1989;14(1):31-44. https://doi.org/10.1111/j.1365-2311.1989.tb00751.x
  39. 32. Nalinakumari T, Mammen K. Biology of the brown plant hopper, Nilaparvata lugens (Stal.) (Delphacidae, Hemiptera). 1975.
  40. 33. Skendžić S, Zovko M, Živković IP, Lešić V, Lemić D. The impact of climate change on agricultural insect pests. Insects. 2021;12(5):440. https://doi.org/10.3390/insects12050440
  41. 34. Govindharaj GPP, Choudhary JS, Chemura A, Basana-Gowda G, Annamalai M, Patil N, et al. Predicting the brown planthopper, Nilaparvata lugens (Stal) (Hemiptera: Delphacidae) potential distribution under climatic change scenarios in India. Current Science. 2021;121(12):1600-9. https://doi.org/10.18520/cs/v121/i12/1600-1609
  42. 35. Jena KK, Kim SM. Current status of brown planthopper (BPH) resistance and genetics. Rice. 2010;3:161-71.
  43. https://doi.org/10.1007/s12284-010-9050-y
  44. 36. Khush GS, Karim AR, Angeles E. Genetics of resistance of rice cultivar ARC10550 to Bangladesh brown pianthopper teletype. Journal of Genetics. 1985;64:121-5. https://doi.org/10.1007/BF02931140
  45. 37. Laksminarayana A, Khush GS. New genes for resistance to the brown planthopper in rice. Crop Science. 1977;17(1):96-100.
  46. https://doi.org/10.2135/cropsci1977.0011183X001700010028x
  47. 38. Listihani L, Ariati PEP, Yuniti IGAD, Selangga DGW. The brown planthopper (Nilaparvata lugens) attack and its genetic diversity on rice in Bali, Indonesia. Biodiversitas Journal of Biological Diversity. 2022;23(9):4696-704.
  48. https://doi.org/10.13057/biodiv/d230936
  49. 39. Jing S, Liu B, Peng L, Peng X, Zhu L, Fu Q, et al. Development and use of EST-SSR markers for assessing genetic diversity in the brown planthopper (Nilaparvata lugens Stal). Bulletin of Entomological Research. 2012;102(1):113-22.
  50. https://doi.org/10.1017/S0007485311000435
  51. 40. Claridge M, Den Hollander J. The "biotypes" of the rice brown planthopper, Nilaparvata lugens. Entomologia Experimentalis et Applicata. 1980;27(1):23-30. https://doi.org/10.1111/j.1570-7458.1980.tb02942.x
  52. 41. Pathak P, Heinrichs E. Selection of biotype populations 2 and 3 of Nilaparvata lugens by exposure to resistant rice varieties. Environmental Entomology. 1982;11(1):85-90. https://doi.org/10.1093/ee/11.1.85
  53. 42. Pandi G, Kar M, Chakraborti M, Behera L, Jena M, Sahu R, et al. Brown planthopper resistant rice: a journey from landraces to varieties. 2024.
  54. 43. Yang K, Liu H, Jiang W, Hu Y, Zhou Z, An X, et al. Large scale rice germplasm screening for identification of novel brown planthopper resistance sources. Molecular Breeding. 2023;43(9):70. https://doi.org/10.1007/s11032-023-01416-x
  55. 44. Khush G. Genetics of and breeding for resistance to the brown planthopper. In: Brown planthopper: Threat to rice production in Asia. 1979:321-32.
  56. 45. Athwal D, Pathak M, Bacalangco E, Pura C. Genetics of resistance to brown planthoppers and green leafhoppers in Oryza sativa L. Crop Science. 1971;11(5):747-50. https://doi.org/10.2135/cropsci1971.0011183X001100050043x
  57. 46. Kabis A, Khush G. Genetic analysis of resistance to brown planthopper in rice (Oryza sativa L.). Plant Breeding. 1988;100(1):54-8. https://doi.org/10.1111/j.1439-0523.1988.tb00216.x
  58. 47. Ishii T, Brar D, Multani D, Khush G. Molecular tagging of genes for brown planthopper resistance and earliness introgressed from Oryza australiensis into cultivated rice, O. sativa. Genome. 1994;37(2):217-21.
  59. https://doi.org/10.1139/g94-030
  60. 48. Bhanu KV, Lakshmi VJ, Katti G, Reddy AV. Antibiosis and tolerance mechanisms of resistance in rice varieties carrying brown planthopper resistance genes. 2014.
  61. 49. Sun L, Su C, Wang C, Zhai H, Wan J. Mapping of a major resistance gene to the brown planthopper in the rice cultivar Rathu Heenati. Breeding Science. 2005;55(4):391-6. https://doi.org/10.1270/jsbbs.55.391
  62. 50. Jairin J, Phengrat K, Teangdeerith S, Vanavichit A, Toojinda T. Mapping of a broad-spectrum brown planthopper resistance gene, Bph3, on rice chromosome 6. Molecular Breeding. 2007;19:35-44. https://doi.org/10.1007/s11032-006-9040-3
  63. 51. Jairin J, Sansen K, Wongboon W, Kothcharerk J. Detection of a brown planthopper resistance gene bph4 at the same chromosomal position of Bph3 using two different genetic backgrounds of rice. Breeding Science. 2010;60(1):71-5.
  64. https://doi.org/10.1270/jsbbs.60.71
  65. 52. Qiu Y, Guo J, Jing S, Zhu L, He G. Fine mapping of the rice brown planthopper resistance gene BPH7 and characterization of its resistance in the 93-11 background. Euphytica. 2014;198:369-79. https://doi.org/10.1007/s10681-014-1112-6
  66. 53. Ye Y, Xiong S, Guan X, Tang T, Zhu Z, Zhu X, et al. Insight into rice resistance to the brown planthopper: gene cloning, functional analysis, and breeding applications. International Journal of Molecular Sciences. 2024;25(24):13397.
  67. https://doi.org/10.3390/ijms252413397
  68. 54. Haliru BS, Rafii MY, Mazlan N, Ramlee SI, Muhammad II, Silas Akos I, et al. Recent strategies for detection and improvement of brown planthopper resistance genes in rice: a review. Plants. 2020;9(9):1202.
  69. https://doi.org/10.3390/plants9091202
  70. 55. Nemoto H, Ikeda R, Kaneda C. New genes for resistance to brown planthopper, Nilaparvata lugens Stal, in rice. Japanese Journal of Breeding. 1989;39(1):23-8. https://doi.org/10.1270/jsbbs1951.39.23
  71. 56. Qiu Y, Guo J, Jing S, Zhu L, He G. Development and characterization of japonica rice lines carrying the brown planthopper-resistance genes BPH12 and BPH6. Theoretical and Applied Genetics. 2012;124:485-94.
  72. https://doi.org/10.1007/s00122-011-1722-5
  73. 57. Renganayaki K, Fritz AK, Sadasivam S, Pammi S, Harrington SE, McCouch SR, et al. Mapping and progress toward map-based cloning of brown planthopper biotype-4 resistance gene introgressed from Oryza officinalis into cultivated rice, O. sativa. Crop Science. 2002;42(6):2112-7. https://doi.org/10.2135/cropsci2002.2112
  74. 58. Huang Z, He G, Shu L, Li X, Zhang Q. Identification and mapping of two brown planthopper resistance genes in rice. Theoretical and Applied Genetics. 2001;102:929-34. https://doi.org/10.1007/s001220000455
  75. 59. Jena K, Jeung J, Lee J, Choi H, Brar D. High-resolution mapping of a new brown planthopper (BPH) resistance gene, Bph18(t), and marker-assisted selection for BPH resistance in rice (Oryza sativa L.). Theoretical and Applied Genetics. 2006;112:288-97. https://doi.org/10.1007/s00122-005-0127-8
  76. 60. Chen J, Wang L, Pang X, Pan Q. Genetic analysis and fine mapping of a rice brown planthopper (Nilaparvata lugens Stal) resistance gene bph19(t). Molecular Genetics and Genomics. 2006;275:321-9.
  77. https://doi.org/10.1007/s00438-005-0088-2
  78. 61. Rahman ML, Jiang W, Chu SH, Qiao Y, Ham T-H, Woo M-O, et al. High-resolution mapping of two rice brown planthopper resistance genes, Bph20 (t) and Bph21 (t), originating from Oryza minuta. Theoretical and Applied Genetics. 2009;119:1237-46.
  79. https://doi.org/10.1007/s00122-009-1125-z
  80. 62. Deen R, Ramesh K, Gautam S, Rao Y, Lakshmi V, Viraktamath B, et al. Identification of new gene for BPH resistance introgressed from Oryza rufipogon. 2010.
  81. 63. Myint KKM, Fujita D, Matsumura M, Sonoda T, Yoshimura A, Yasui H. Mapping and pyramiding of two major genes for resistance to the brown planthopper (Nilaparvata lugens [Stal]) in the rice cultivar ADR52. Theoretical and Applied Genetics. 2012;124:495-504. https://doi.org/10.1007/s00122-011-1723-4
  82. 64. Tamura Y, Hattori M, Yoshioka H, Yoshioka M, Takahashi A, Wu J, et al. Map-based cloning and characterization of a brown planthopper resistance gene BPH26 from Oryza sativa L. ssp. indica cultivar ADR52. Scientific Reports. 2014;4(1):5872.
  83. https://doi.org/10.1038/srep05872
  84. 65. Huang D, Qiu Y, Zhang Y, Huang F, Meng J, Wei S, et al. Fine mapping and characterization of BPH27, a brown planthopper resistance gene from wild rice (Oryza rufipogon Griff.). Theoretical and Applied Genetics. 2013;126:219-29.
  85. https://doi.org/10.1007/s00122-012-1975-7
  86. 66. He J, Liu Y, Liu Y, Jiang L, Wu H, Kang H, et al. High-resolution mapping of brown planthopper (BPH) resistance gene Bph27 (t) in rice (Oryza sativa L.). Molecular Breeding. 2013;31:549-57. https://doi.org/10.1007/s11032-012-9814-8
  87. 67. Wu H, Liu Y, He J, Liu Y, Jiang L, Liu L, et al. Fine mapping of brown planthopper (Nilaparvata lugens Stal) resistance gene Bph28 (t) in rice (Oryza sativa L.). Molecular Breeding. 2014;33:909-18. https://doi.org/10.1007/s11032-013-0005-z
  88. 68. Prahalada G, Shivakumar N, Lohithaswa H, Sidde Gowda D, Ramkumar G, Kim S-R, et al. Identification and fine mapping of a new gene, BPH31 conferring resistance to brown planthopper biotype 4 of India to improve rice, Oryza sativa L. Rice. 2017;10:1-15. https://doi.org/10.1186/s12284-017-0178-x
  89. 69. Naik SB, Divya D, Sahu N, Sundaram RM, Sarao PS, Singh K, et al. A new gene Bph33 (t) conferring resistance to brown planthopper (BPH), Nilaparvata lugens (Stal) in rice line RP2068-18-3-5. Euphytica. 2018;214:1-12.
  90. https://doi.org/10.1007/s10681-018-2131-5
  91. 70. Kumar K, Sarao PS, Bhatia D, Neelam K, Kaur A, Mangat GS, et al. High-resolution genetic mapping of a novel brown planthopper resistance locus, Bph34 in Oryza sativa L. × Oryza nivara (Sharma & Shastry) derived interspecific F2 population. Theoretical and Applied Genetics. 2018;131:1163-71. https://doi.org/10.1007/s00122-018-3069-7
  92. 71. Yuexiong Z, Gang Q, Qianqian M, Minyi W, Xinghai Y, Zengfeng M, et al. Identification of major locus Bph35 resistance to brown planthopper in rice. Rice Science. 2020;27(3):237-45. https://doi.org/10.1016/j.rsci.2020.04.006
  93. 72. Li Z, Xue Y, Zhou H, Li Y, Usman B, Jiao X, et al. High-resolution mapping and breeding application of a novel brown planthopper resistance gene derived from wild rice (Oryza rufipogon Griff). Rice. 2019;12:1-13.
  94. https://doi.org/10.1186/s12284-019-0289-7
  95. 73. Balachiranjeevi C, Prahalada G, Mahender A, Jamaloddin M, Sevilla M, Marfori-Nazarea C, et al. Identification of a novel locus, BPH38 (t), conferring resistance to brown planthopper (Nilaparvata lugens Stal.) using early backcross population in rice (Oryza sativa L.). Euphytica. 2019;215:1-14. https://doi.org/10.1007/s10681-019-2506-2
  96. 74. Srivastava A, Pusuluri M, Balakrishnan D, Vattikuti JL, Neelamraju S, Sundaram RM, et al. Identification and functional characterization of two major loci associated with resistance against brown planthoppers (Nilaparvata lugens [Stal]) derived from Oryza nivara. Genes. 2023;14(11):2066. https://doi.org/10.3390/genes14112066
  97. 75. Tan HQ, Palyam S, Gouda J, Kumar PP, Chellian SK. Identification of two QTLs, BPH41 and BPH42, and their respective gene candidates for brown planthopper resistance in rice. Scientific Reports. 2022;12(1):18538.
  98. https://doi.org/10.1038/s41598-022-21973-z
  99. 76. Kim J, An X, Yang K, Miao S, Qin Y, Hu Y, et al. Molecular mapping of a new brown planthopper resistance gene Bph43 in rice (Oryza sativa L.). Agronomy. 2022;12(4):808. https://doi.org/10.3390/agronomy12040808
  100. 77. Li C-P, Wu D-H, Huang S-H, Meng M, Shih H-T, Lai M-H, et al. The Bph45 gene confers resistance against brown planthopper in rice by reducing the production of limonene. International Journal of Molecular Sciences. 2023;24(2):1798.
  101. https://doi.org/10.3390/ijms24021798
  102. 78. Li F, Yan L, Shen J, Liao S, Ren X, Cheng L, et al. Fine mapping and breeding application of two brown planthopper resistance genes derived from landrace rice. PLoS One. 2024;19(4):e0297945.
  103. https://doi.org/10.1371/journal.pone.0297945
  104. 79. Hu J, Xiao C, Cheng M-x, Gao G-j, Zhang Q-l, He Y-q. A new finely mapped Oryza australiensis-derived QTL in rice confers resistance to brown planthopper. Gene. 2015;561(1):132-7.https://doi.org/10.1016/j.gene.2015.02.026
  105. 80. Mohanty SK, Panda RS, Mohapatra SL, Nanda A, Behera L, Jena M, et al. Identification of novel quantitative trait loci associated with brown planthopper resistance in the rice landrace Salkathi. Euphytica. 2017;213:1-15.
  106. https://doi.org/10.1007/s10681-017-1835-2
  107. 81. Qiu Y, Cheng L, Liu F, Li R. Identification of a new locus conferring antixenosis to the brown planthopper in rice cultivar Swarnalata (Oryza sativa L.). Genetics and Molecular Research. 2013;3:3201-11. https://doi.org/10.4238/2013.August.29.4
  108. 82. Painter RH. Insect resistance in crop plants. 1951. https://doi.org/10.1097/00010694-195112000-00015
  109. 83. Sarao PS, Bentur JS. Antixenosis and tolerance of rice genotypes against brown planthopper. Rice Science. 2016;23(2):96-103. https://doi.org/10.1016/j.rsci.2016.02.004
  110. 84. Heinrichs E. Genetic evaluation for insect resistance in rice. 1985.
  111. 85. Jung JK, Im DJ. Feeding inhibition of the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae) on a resistant rice variety. Journal of Asia-Pacific Entomology. 2005;8(3):301-8. https://doi.org/10.1016/S1226-8615(08)60250-2
  112. 86. Wang X, Zhou G, Xiang C, Du M, Cheng J, Liu S, et al. β-Glucosidase treatment and infestation by the rice brown planthopper Nilaparvata lugens elicit similar signalling pathways in rice plants. Chinese Science Bulletin. 2008;53(1):53-7.
  113. https://doi.org/10.1007/s11434-008-0048-4
  114. 87. Hao P, Liu C, Wang Y, Chen R, Tang M, Du B, et al. Herbivore-induced callose deposition on the sieve plates of rice: an important mechanism for host resistance. Plant Physiology. 2008;146(4):1810-20. https://doi.org/10.1104/pp.107.111484
  115. 88. Sogawa K, Pathak M. Mechanisms of brown planthopper resistance in Mudgo variety of rice (Hemiptera: Delphacidae). Applied Entomology and Zoology. 1970;5(3):145-58. https://doi.org/10.1303/aez.5.145
  116. 89. Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J. Callose deposition: a multifaceted plant defense response. Molecular Plant-Microbe Interactions. 2011;24(2):183-93. https://doi.org/10.1094/MPMI-07-10-0149
  117. 90. Yuan H, Chen X, Zhu L, He G. Identification of genes responsive to brown planthopper Nilaparvata lugens Stal (Homoptera: Delphacidae) feeding in rice. Planta. 2005;221(1):105-12. https://doi.org/10.1007/s00425-004-1422-3
  118. 91. Chaerani C, Dadang A, Fatimah F, Husin BA, Sutrisno S, Yunus M. SRAP analysis of brown planthopper (Nilaparvata lugens) populations maintained on differential rice host varieties. Biodiversitas Journal of Biological Diversity. 2021;22(10).
  119. https://doi.org/10.13057/biodiv/d221018
  120. 92. Wang D, Shi X, Liu D, Yang Y, Shang Z. Genetic divergence of two Sitobion avenae biotypes on barley and wheat in China. Insects. 2020;11(2):117. https://doi.org/10.3390/insects11020117
  121. 93. Lu Z, Yu X, Wu G, Tao L, Chen J, Zheng X. The virulence change and damage characteristics of various geographic populations of brown planthopper. Insect Science. 1999;6(2):146-54. https://doi.org/10.1111/j.1744-7917.1999.tb00161.x
  122. 94. AICRPR. AICRPR annual report. 2023.
  123. 95. Sogawa K. Studies on the host resistance-breaking biotypes of the brown planthopper, Nilaparvata lugens (Stal) (Homoptera: Delphacidae) at the IRRI, the Philippines. 1982. https://doi.org/10.1303/aez.16.193
  124. 96. Saxena R, Barrion A. Biotypes of the brown planthopper, Nilaparvata lugens (Stal). Korean Journal of Applied Entomology. 1983;22(2):52-66.
  125. 97. Saxena RC, Demayo CG, Barrion AA. Allozyme variation among biotypes of the brown planthopper Nilaparvata lugens in the Philippines. Biochemical Genetics. 1991;29:115-23. https://doi.org/10.1007/BF02401806
  126. 98. Kobayashi T. Evolving ideas about genetics underlying insect virulence to plant resistance in rice-brown planthopper interactions. Journal of Insect Physiology. 2016;84:32-9. https://doi.org/10.1016/j.jinsphys.2015.12.001
  127. 99. Shufran K, Whalon M. Genetic analysis of brown planthopper biotypes using random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). International Journal of Tropical Insect Science. 1995;16(1):27-33.
  128. https://doi.org/10.1017/S1742758400018282
  129. 100. Horgan FG. Virulence adaptation by rice planthoppers and leafhoppers to resistance genes and loci: a review. Insects. 2024;15(9):652. https://doi.org/10.3390/insects15090652
  130. 101. Sriram M, Manonmani S, Gopalakrishnan C, Sheela V, Shanmugam A, Revanna Swamy K, et al. Breeding for brown planthopper resistance in rice: recent updates and future perspectives. Molecular Biology Reports. 2024;51(1):1038.
  131. https://doi.org/10.1007/s11033-024-09966-9
  132. 102. Horgan FG, Cruz AP, Bernal CC, Ramal AF, Almazan MLP, Wilby A. Resistance and tolerance to the brown planthopper, Nilaparvata lugens (Stal), in rice infested at different growth stages across a gradient of nitrogen applications. Field Crops Research. 2018;217:53-65. https://doi.org/10.1016/j.fcr.2017.12.008
  133. 103. Rajwinder KS, Preetinder SS, Neelam K. Biochemical responses associated with resistance to Nilaparvata lugens (Stal) in wild rice accessions. Rice Science. 2020;27(6):449. https://doi.org/10.1016/j.rsci.2020.09.002
  134. 104. Li S, Feng Z, Yang B, Li H, Liao F, Gao Y, et al. An intelligent monitoring system of diseases and pests on rice canopy. Frontiers in Plant Science. 2022;13:972286. https://doi.org/10.3389/fpls.2022.972286

Downloads

Download data is not yet available.