Skip to main navigation menu Skip to main content Skip to site footer

Research communications

Vol. 2 No. 1 (2015)

RP-HPLC analysis of phenolic antioxidant compound 6-gingerol from in vitro cultures of Zingiber officinale Roscoe

DOI
https://doi.org/10.14719/pst.2015.2.1.103
Submitted
15 November 2014
Published
01-01-2015

Abstract

Relation between 6-gingerol content and antioxidant activity in in vitro grown cultures of ginger was studied. Reverse phase HPLC analysis revealed that rhizome derived callus culture and micropropagated plants produced lowest amount of 6-gingerol compare to conventionally grown plants. The antioxidant activity of extracts was determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay and Ferric Reducing power assay (FRAP) and correlated with the content of total phenolics and total flavonoids in the extracts. Strong correlation was found between antioxidant activity, total phenolics and 6- gingerol content.

References

  1. Aeschbach, R., J. Lo¨ liger, B. C. Scott, A. Murcia, J. Butler, and B. Halliwell. 1994. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food and Chemical Toxicology 32: 31–36. doi:10.1016/0278-6915(84)90033-4
  2. Afzal, M., D. Al-Hadidi, M. Menon, J. Pesek, and M, S. Dhami. 2001. Ginger: an ethmomedical, chemical and pharmacological review. Drug Metabolism and Drug Interactions 18 (3-4): 159 – 190. doi:10.1515/DMDI.2001.18.3-4.159
  3. Bartley, J., and A. Jacobs. 2000. Effects of drying on flavour compounds in Australian-grown ginger (Zingiber officinale). Journal of the Science of Food and Agriculture 80: 209–215. doi:10.1002/(SICI)1097-0010(20000115)80:2<209::AID-JSFA516>3.0.CO;2-8
  4. Benzie, I. F. F., and J. J. Strain. 1996. The ferric reducing ability of plasma (FRAP) as a measure of Antioxidant Power': The FRAP assay. Annals Biochemistry 239: 70-76. doi:10.1006/abio.1996.0292
  5. Brand-Williams, W., M. E. Cuvelier, and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensmittel Wissenschaft and Technologie 28: 25-30. doi:10.1016/S0023-6438(95)80008-5
  6. Chen, C. C., M. C. Kuo, C. M. Wu, and C. T. Ho. 1986. Pungent compounds of ginger (Zingiber officinale Roscoe) extracted by liquid carbon dioxide. J. Agric. Food Chem. 34: 477–480. doi:10.1021/jf00069a027
  7. Gil, M. I., F. A. Tomas-Barberan, B. Hess-Pierce, D. M. Holcroft, and A. A. Kader. 2000. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. Agric. Food Chem. 48: 4581-4589. doi:10.1021/jf000404a
  8. Grzegorczyk, I., A. Matkowski, and H. Wysokinska. 2007. Antioxidant activity of extracts from in vitro cultures of Salvia officinalis L. Food Chemistry 104: 536–541. doi:10.1016/j.foodchem.2006.12.003
  9. Herrmann, K. 1994. Antioxidativ wiksame Pflanzenphenole sowie Carotinoide als wichtige Inhaltsstoffe von Gewu¨rzen. Gordian 94: 113–117.
  10. Ippoushi, K., H. Ito, H. Horie, and K. Azuma. 2005. Mechanism of inhibition of peroxynitrite-induced oxidation and nitration by [6]- gingerol. Planta Medica 71: 563–566. doi:10.1055/s-2005-864160
  11. Ippoushi, K., K. Azuma, H. Ito, H. Horie, and H. Higashio. 2003. [6]- Gingerol inhibits nitric oxide synthesis in activated J774.1 mouse macrophages and prevents peroxynitrite-induced oxidation and nitration reactions. Life Sciences 73: 3427–3437. doi:10.1016/j.lfs.2003.06.022
  12. Koo, K. L., A. J. Ammit, V. H. Tran, C. C. Duke, and B. D. Roufogalis. 2001. Gingerols and related analogues inhibit arachidonic acid-induced human platelet serotonin release and aggregation. Thrombosis Research 103(5): 387-397. doi:10.1016/S0049-3848(01)00338-3
  13. Luximon-Ramma, A., T. Bahorum, M. A. Soobrattee, and O. I. Aruoma, 2002. Antioxidant activities of phenolic, proanthocyanidin and flavonoid components in extracts of Cassia fistula. J. Agric. Food Chem. 50: 5042-5047. doi:10.1021/jf0201172
  14. Masuda, Y., Kikuzaki, H. Hisamoto, M. and Nakatani, N. 2004. Antioxidant properties of gingerol related compounds from ginger. Biofactors 21: 293–296. doi:10.1002/biof.552210157
  15. Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum 15: 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x
  16. Nirmal Babu, K. 1997. In vitro studies in ginger, Zingiber officinale Rosc. Ph.D. Thesis, University of Calicut, Kerala, India.
  17. Pawar N., S. Pai, M. Nimbalkar, and G. Dixit. 2011. RP-HPLC analysis of phenolic antioxidant compound 6-gingerol from different ginger cultivars. Food Chemistry 126: 1330-1336 doi:10.1016/j.foodchem.2010.11.090
  18. Radi, R., G. Peluffo, M. N. Alvarez, M. Naviliat, and A. Cayota. 2001. Unraveling peroxynitrite formation in biological systems. Free Radical Biology and Medicine 30: 463–488. doi:10.1016/S0891-5849(00)00373-7
  19. Roja, G. 2008. Micropropagation and production of Camptothecin from in vitro plants of Ophiorrhiza rugosa var. decumbens. Natural Product Research 22(12): 1017-1023. doi:10.1080/14786410802006165
  20. Sakato, K., and M. Misawa. 1974. Effects of chemical and physical conditions on growth of Camptotheca acuminata cell cultures. Agricultural and Biological Chemistry 38: 491–497. doi:10.1271/bbb1961.38.491
  21. Sekiwa, Y., K. Kubota, and A. Kobayashi. 2000. Isolation of novel glucosides related to gingerdiol from ginger and their antioxidative activities. J. Agric. Food Chem. 48: 373–377. doi:10.1021/jf990674x
  22. Wiedenfield, H., M. Furmanowa, E. Roeder, J. Guzewska, and W. Guzewska. 1997. Camptothecin and 10-hydroxy camptothecin in callus and plantlets of Camptotheca acuminata. Plant Cell Tissue and Organ Culture 49: 213–218. doi:10.1023/A:1005704429339
  23. Wolfe, K. X. Wu, and R. H. Liu, 2003. Antioxidant activity of apple peel. J. Agric. Food Chem. 51: 609-614. doi:10.1021/jf020782a

Downloads

Download data is not yet available.