In-silico structural modelling of cytochrome complex proteins of white turmeric (Curcuma zedoaria)

Authors

DOI:

https://doi.org/10.14719/pst.1436

Keywords:

3D-structures, Ramachandran plot, Cytochrome proteins, Structural validation

Abstract

Curcuma zedoaria (Christm.) Roscoe (white turmeric) is a perennial herbaceous plant of family Zingiberaceae and mainly found in the wild areas of tropical and subtropical regions worldwide. The cytochrome proteins in plants play important roles in promoting their growth and development, as well as protecting them from stresses and diseases. Cytochrome proteins like psbF, psbE, petB, petD, petN, petG, and ccsA play important roles in degradation of mis-folded proteins, ATP formation, cyclic electron flow and biogenesis of c-type cytochrome of C. zedoaria. However, due to lack of structural availability of these C. zedoaria cytochrome proteins in structural databases, the physiochemical parameters of sequences were estimated using Expasy ProtParam web tool. Self-Optimized Prediction Method with Alignment (SOPMA) server and MODELLER version 9.23 were used for modelling along with Qualitative Model Energy Analysis (QMEAN) and Protein Structure Analysis (ProSA) servers were implemented for validating the secondary and tertiary structures of these proteins. The obtained QMEAN4 values of the modelled cytochrome proteins were -2.04, -1.20, -3.01, -1.57, -2.11, -1.74 and -12.87. The Z-scores obtained from ProSA server were 0.5, -0.83, -1.5, -0.58, -0.02, 0.14 and -3.73. All seven modelled structures have been submitted to protein model database (PMDB). The derived results will be helpful in further investigations towards determining the crystal structure of the hypothetical proteins, structural motifs, physiochemical properties, and also protein-protein interaction studies of various cytochrome proteins.

Downloads

Download data is not yet available.

References

Lobo R, Prabhu KS, Shirwaikar A, Shirwaikar A. Curcuma zedoaria Rosc. (white turmeric): a review of its chemical, pharmacological and ethnomedicinal properties. JPharmPharmacol. 2009 Jan;61(1):13-21. DOI: 10.1211/jpp/61.01.0003.https://doi.org/10.1211/jpp/61.01.0003

Etoh H, Kondoh T, Yoshioka N, Sugiyama K, Ishikawa H, Tanaka H. 9-Oxo-neoprocurcumenol from Curcuma aromatica (Zingiberaceae) as an attachment inhibitor against the blue mussel, Mytilus edulis galloprovincialis. Bioscience, biotechnology, and biochemistry. 2003 Jan 1;67(4):911-3. DOI: 10.1271/bbb.67.911.https://doi.org/10.1271/bbb.67.911

Wilson B, Abraham G, Manju VS, Mathew M, Vimala B, Sundaresan S, Nambisan B. Antimicrobial activity of Curcuma zedoaria and Curcuma malabarica tubers. Journal of Ethnopharmacology. 2005 May 13;99(1):147-51.https://doi.org/10.1016/j.jep.2005.02.004

Dhal YO, Deo BA, Sahu RK. Antioxidant activity of enzymatic extracts of Curcuma zedoaria (Christm.). International Journal of Pharmacy and Pharmaceutical Sciences 2012;4:343-6.

Chu HA, Chiu YF. The roles of cytochrome b559 in assembly and photoprotection of photosystem II revealed by site-directed mutagenesis studies. Frontiers in plant science. 2016 Jan 12;6:1261.https://doi.org/10.3389/fpls.2015.01261

Kurisu G, Zhang H, Smith JL, Cramer WA. Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science. 2003 Nov 7;302(5647):1009-14. DOI: 10.1126/science.1090165.https://doi.org/10.1126/science.1090165

Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ. UniProt: the universal protein knowledgebase. Nucleic acids research. 2004 Jan 1;32(suppl_1):D115-9. DOI: 10.1093/nar/gkh131.https://doi.org/10.1093/nar/gkh131

Santhoshkumar R, Yusuf A. In silico structural modeling and analysis of physicochemical properties of curcumin synthase (CURS1, CURS2, and CURS3) proteins of Curcuma longa. Journal of Genetic Engineering and Biotechnology. 2020 Dec;18(1):1-9. DOI: 10.1186/s43141-020-00041-x.https://doi.org/10.1186/s43141-020-00041-x

Bharathi SV. In silico analysis of proteins of Curcuma Caesia Roxb. Int J Phar Pharmaceut Sci. 2014;6(2):216-20.

Geourjon C, Deleage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics. 1995 Dec 1;11(6):681-4. DOI: 10.1093/bioinformatics/11.6.681.https://doi.org/10.1093/bioinformatics/11.6.681

Webb B, Sali A. Comparative protein structure modeling using MODELLER. Current protocols in bioinformatics. 2016 Jun;54(1):5-6. DOI: 10.1002/cpbi.3.https://doi.org/10.1002/cpbi.3

Fiser A, Do RK. Modeling of loops in protein structures. Protein science. 2000 Sep;9(9):1753-73. DOI: 10.1110/ps.9.9.1753.https://doi.org/10.1110/ps.9.9.1753

Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics. 2011 Feb 1;27(3):343-50. https://doi.org/10.1093/bioinformatics/btq662

Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic acids research. 2007 Jul 1;35(suppl_2):W407-10.https://doi.org/10.1093/nar/gkm290

Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic acids research. 2003 Jul 1;31(13):3784-8.https://doi.org/10.1093/nar/gkg563

Syngai GG, Barman PR, Bharali RU, Dey SU. BLAST: An introductory tool for students to Bioinformatics Applications. Keanean Journal of Science. 2013;2:67-76.

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic acids research. 2000 Jan 1;28(1):235-42. DOI: 10.1093/nar/28.1.235.https://doi.org/10.1093/nar/28.1.235

Wang S, Li W, Liu S, Xu J. RaptorX-Property: a web server for protein structure property prediction. Nucleic acids research. 2016 Jul 8;44(W1):W430-5. DOI: 10.1093/nar/gkw306.https://doi.org/10.1093/nar/gkw306

Rodriguez R, Chinea G, Lopez N, Pons T, Vriend G. Homology modeling, model and software evaluation: three related resources. Bioinformatics (Oxford, England). 1998 Jan 1;14(6):523-8. DOI: 10.1093/bioinformatics/14.6.523.https://doi.org/10.1093/bioinformatics/14.6.523

Benkert P, Künzli M, Schwede T. QMEAN server for protein model quality estimation. Nucleic acids research. 2009 Jul 1;37(suppl_2):W510-4.https://doi.org/10.1093/nar/gkp322

Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic acids research. 2007 Jul 1;35(suppl_2):W407-10.https://doi.org/10.1093/nar/gkm290

Kar B, Nanda S, Nayak PK, Nayak S, Joshi RK. Molecular characterization and functional analysis of CzR1, a coiled-coil-nucleotide-binding-site-leucine-rich repeat R-gene from Curcuma zedoaria Loeb. that confers resistance to Pythium aphanidermatum. Physiological and molecular plant pathology. 2013 Jul 1;83:59-68. DOI: 10.6026/97320630009560.https://doi.org/10.6026/97320630009560

Joshi RK, Nanda S, Rout E, Kar B, Naik PK, Nayak S. Molecular modeling and docking characterization of CzR1, a CC-NBS-LRR R-gene from Curcuma zedoaria Loeb. that confers resistance to Pythium aphanidermatum. Bioinformation. 2013;9(11):560. DOI: 10.6026/97320630009560.https://doi.org/10.6026/97320630009560

Venkatasamy K. In silico Analysis and Homology Modeling of Putative Hypothetical Protein Q4QH83 of Leishmania major. Advanced BioTech. 2013;13(3):1-4.

Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. Journal of molecular biology. 1982 May 5;157(1):105-32. DOI: 10.1016/0022-2836(82)90515-0.https://doi.org/10.1016/0022-2836(82)90515-0

Perticaroli S, Nickels JD, Ehlers G, Sokolov AP. Rigidity, secondary structure, and the universality of the boson peak in proteins. Biophysical journal 2014;106(12):2667-2674. DOI: 10.1016/j.bpj.2014.05.009.https://doi.org/10.1016/j.bpj.2014.05.009

Kumar P, Arya A. Ramachandran Plot: A simplified approach. 2018.

Srivani G, Behera SK, Dariya B, Chalikonda G, Alam A, Nagaraju GP. HIF-1? and RKIP: A computational approach for pancreatic cancer therapy. Molecular and Cellular Biochemistry. 2020 Sep;472(1):95-103. DOI: 10.1007/s11010-020-03788-6.https://doi.org/10.1007/s11010-020-03788-6

Published

25-04-2022 — Updated on 01-07-2022

Versions

How to Cite

1.
Tripathy CS, Sahoo BC, Dash M, Sahoo D, Sahoo S, Kar B. In-silico structural modelling of cytochrome complex proteins of white turmeric (Curcuma zedoaria). Plant Sci. Today [Internet]. 2022 Jul. 1 [cited 2024 May 4];9(3):555-63. Available from: https://www.horizonepublishing.com/journals/index.php/PST/article/view/1436

Issue

Section

Research Articles

Most read articles by the same author(s)