Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Cross section of genetic diversity in mainland and insular populations of Costus speciosus (Koen ex. Retz.) Sm. using SPAR markers reveal patterns linked to allopolyploidy and biogeography

DOI
https://doi.org/10.14719/pst.1805
Submitted
6 April 2022
Published
23-02-2023
Versions

Abstract

Costus speciosus (Koen ex. Retz.) Sm. is a major source of diosgenin, used for the commercial synthesis of cortisone, sex hormones and contraceptives. The genetic diversity analysis in wild populations of C. speciosus from 3 biogeographic regions viz., Western Ghats (WG), Eastern Ghats (EG) and Andaman and Nicobar Islands (AN) were done using 2 different Single Primer Amplification Reaction (SPAR) methods. A total of 70 accessions spanning these regions were used in the present study. The assay yielded a total of 314 amplicons of which 268 were polymorphic, exhibiting 85.35% of polymorphism. The prevalence of high rate of genetic differentiation (mean Gst = 0.90) and low gene flow (mean Nm= 0.06) are the main attributes of the observed low diversity in these populations. The accessions clustered broadly under 2 major groups corresponding to the three biogeographic zones with insular populations diverse from the mainland. This was further resolved by AMOVA analysis. C. speciosus is found to exist in different cytotypes exhibiting allopolyploidy. The differences in distribution and genetic fitness of the population from EG and WG may be attributed to the allopolyploid nature of the taxa. In the present study, Island populations comprise very low heterozygosity (Ht = 0.10) suggesting that the rate of fixation is more in these populations. Similarly, the rate of gene flow was almost absent (Nm = 0.02). The higher levels of genetic similarity (0.99) may be due to an increase in fixation of the genes resulting from allopolyploidy. This is the first study on comparative genetic diversity of C. speciosus using SPAR markers.

References

  1. Sabitha A, Sulakshana G, Patnaik S. Costus speciosus, An Antidiabetic Plant-Review. FS. 2012; Jan 1;FS J Pharm Res. 2012;1(3):52-53.
  2. Dasgupta B, Pandey VB. A source of diosgenin (Costus speciosus). Experientia. 1970;26:475-76. https://doi.org/10.1007/BF01898450
  3. Jesus M, Martins APJ, Gallardo E, Silvestre S. Diosgenin: Recent Highlights on Pharmacology and Analytical Methodology. J Anal Methods Chem. 2016;2016:4156293. https://doi.org/10.1155/2016/4156293
  4. Subrahmanyam GV. Intraspecific polyploidy in Costus speciosus. Curr Sci. 1978;47:435-36.
  5. Nagendra P, Abraham PZ. Polyploisy and speciation in Costus speciosus (Koenig) J E Smith. Curr Sci. 1981;50:26-29.
  6. Chattopadhyay S, Sharma AK. Genetic diversity in Costus speciosus (Koen.) Sm. Cytologia. 1983;48:209-14. https://doi.org/10.1508/cytologia.48.209
  7. Tyagi BR, Gupta MM. Ploidy status and diosgenin content in Costus speciosus (Koen.) Sm. Cytologia. 1987;52(1):41-46. https://doi.org/10.1508/cytologia.52.41
  8. Pawar VA, Pawar PR. Costus speciosus: An Important Medicinal Plant. 2012;3(7):6.
  9. Specht CD, Stevenson DW. A new phylogeny-based generic classification of Costaceae (Zingiberales). Taxon. 2006;55(1):153-63. https://doi.org/10.2307/25065537
  10. Maji P, Ghosh Dhar D, Misra P, Dhar P. Costus speciosus (Koen ex. Retz.) Sm.: Current status and future industrial prospects. Industrial Crops and Products. 2020; Sep 15;152:112571. https://doi.org/10.1016/j.indcrop.2020.112571
  11. Virk PS, Ford-Lloyd BV, Jackson MT, Newbury HJ. Use of RAPD for the study of diversity within plant germplasm collections. Heredit. 1995;74(2):170-79. https://doi.org/10.1038/hdy.1995.25
  12. Amiteye S. Basic concepts and methodologies of DNA marker systems in plant molecular breeding. Heliyon. 2021; Sep 30;7(10):e08093. https://doi.org/10.1016/j.heliyon.2021.e08093
  13. Mohanty S, Panda MK, Acharya L, Nayak S. Genetic diversity and gene differentiation among ten species of Zingiberaceae from Eastern India. 3 Biotech. 2014;4:383-90. https://doi.org/10.1007/s13205-013-0166-9
  14. Hossain MdA, Hossen M, Karim MdR. Molecular Markers: Indispensable Tools for Genetic Diversity Analysis and Crop Improvement Biotechnology. 2020; Jan 29;
  15. Frankel OH. Genetic conservation: our evolutionary responsibility. Genetics. 1974;78(1):53-65. https://doi.org/10.1093/genetics/78.1.53
  16. Govindaraj M, Vetriventhan M, Srinivasan M. Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genetics Research International. 2015; Mar 19;2015:e431487. https://doi.org/10.1155/2015/431487
  17. Crawford DJ, Tago-Nakazawa M, Stuessy TF, Anderson GJ, Bernardello G., Ruiz E, Jensen RJ, Baeza C, Wolfe AD, Silva M. Intersimple sequece repeat (ISSR) variation in Lactoris fernandeziana (Lactoridaceae), a rare endemic of the Juan Fernández Archipelago, Chile. Plant Species Biology. 2001;16:185-92. https://doi.org/10.1046/j.1442-1984.2001.00065.x
  18. Emerson BC. Evolution on oceanic islands: molecular phylogenetic approaches to understanding pattern and process. Mol Ecol. 2002;11:951-66. https://doi.org/10.1046/j.1365-294X.2002.01507.x
  19. Sharma K, Agrawal V, Prasad M, Gupta S, Kumar R, Prasad M. ISSR marker-assisted selection of male and female plants in a promising dioecious crop, Jojoba (Simmondsia chinensis) Plant Biotechnol Rep. 2008;2:239-43. https://doi.org/10.1007/s11816-008-0070-7
  20. Das A, Kesari V, Satyanarayana VM, Parida A, Rangan L. Genetic relationship of Curcuma species from Northeast India using PCR-based markers. Molecular Biotechnology. 2011;49(1):65-76. https://doi.org/10.1007/s12033-011-9379-5
  21. Ronquist F, Sanmartín I. Phylogenetic methods in biogeography. Annual Review of Ecology, Evolution and Systematics. 2011;42:441-64. https://doi.org/10.1146/annurev-ecolsys-102209-144710
  22. Sang-Bok Lee, Soren KR. Molecular markers in some medicinal plants of the Apiaceae family. Euphytica. 2000;114:87-91. https://doi.org/10.1023/A:1003919416122
  23. Mondini L, Noorani A, Pagnotta MA. Assessing plant genetic diversity by molecular tools. Diversity. 2009; Sep;1(1):19-35. https://doi.org/10.3390/d1010019
  24. Subramanyam K, Nayar MP. Vegetation and phytogeography of the Western Ghats. In: Ecology and Biogeography in India. Springer, Netherlands. 1974;178-96. https://doi.org/10.1007/978-94-010-2331-3_7
  25. Ali S, Ripley SD. Handbook of the birds of India and Pakistan (compact edition). New Delhi: Oxford University Press;1983.
  26. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000; Feb 1;403:853-58. https://doi.org/10.1038/35002501
  27. Rao RR. Floristic Diversity In Western Ghats: Documentation, Conservation and Bioprospection– A priority agenda for action. Sahyadri: Western Ghats Biodiversity Information System. ENVIS @CES, 2016; Indian Institute of Science, Bangalore.
  28. Pullaiah T. Medicinal Plants in Andhra Pradesh. New Delhi: Regency Publication; India. 2002.
  29. Mandal AB, Thomas VA, Elanchezhian R. RAPD pattern of Costus speciosus Koen ex. Retz., an important medicinal plant from the Andaman and Nicobar Islands. Curr Sci. 2007;93(3):369-73.
  30. Arisdason W, Lakshminarasimhan P. An outline of plant diversity in the Andaman and Nicobar Islands. 8.
  31. Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980; Oct 10;8(19):4321-25. https://doi.org/10.1093/nar/8.19.4321
  32. Padmesh P, Reji JV, Jinish Dhar M, Seeni S. Estimation of genetic diversity in varieties of Mucuna pruriens using RAPD. Biol Plant. 2006; Sep 1;50(3):367-72. https://doi.org/10.1007/s10535-006-0051-z
  33. Padmesh P, Mukunthakumar S, Vineesh PS, Skaria R, Hari Kumar K, Krishnan PN. Exploring wild genetic resources of Musa acuminata Colla distributed in the humid forests of southern Western Ghats of peninsular India using ISSR markers. Plant Cell Rep. 2012; Sep 31;(9):1591-601. https://doi.org/10.1007/s00299-012-1273-5
  34. Yap IV, Nelson RJ. WinBoot: a program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. International Rice Research Institute, Manila. 1996;1-22.
  35. Peakall R, Smouse PE. genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes. 2006;6(1):288-95. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  36. Yeh FC, Yang RC, Boyle T. POPGENE version 1.31. University of Alberta, Canada. 1999.
  37. Manners V, Kumaria S, Tandon P. SPAR methods revealed high genetic diversity within populations and high gene flow of Vanda coerulea Griff ex Lindl (Blue Vanda), an endangered orchid species. Gene. 2013; Apr 25;519(1):91-97. https://doi.org/10.1016/j.gene.2013.01.037
  38. El-Esawi MA, Germaine K, Bourke P, Malone R. Genetic diversity and population structure of Brassica oleracea germplasm in Ireland using SSR markers. Comptes Rendus Biologies. 2016; Mar 1;339(3):133-40. https://doi.org/10.1016/j.crvi.2016.02.002
  39. Subrahmanyam GV, Khoshoo TN. Cytological studies in the genus Costus. Cytologia. 1986;51:737-48. https://doi.org/10.1508/cytologia.51.737
  40. Caspel P, Poulsen A, Moeller M. New chromosome counts of Asian costaceae and initial insights into the genome evolution of the family. Edinburgh Journal of Botany. 2021; Mar 10;78:1-13. https://doi.org/10.24823/EJB.2021.337
  41. Ingvarsson PK. A Metapopulation Perspective on Genetic Diversity and Differentiation in Partially Self-Fertilizing Plants. Evolution. 2002;56(12):2368-73. https://doi.org/10.1111/j.0014-3820.2002.tb00162.x
  42. Wright S. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution.1965; 395-420. https://doi.org/10.1111/j.1558-5646.1965.tb01731.x
  43. Emerson BC. Evolution on oceanic islands: molecular phylogenetic approaches to understanding pattern and process. Mol Ecol. 2002; Jun;11(6):951-66. https://doi.org/10.1046/j.1365-294X.2002.01507.x
  44. Meirmans PG, Liu S. Analysis of Molecular Variance (AMOVA) for Autopolyploids. Frontiers in Ecology and Evolution. 2018. https://www.frontiersin.org/articles/10.3389/fevo.2018.00066. https://doi.org/10.3389/fevo.2018.00066
  45. Carlquist S, Baldwin BG, Carr GD. Tarweeds and silverswords: evolution of the Madiinae (Asteraceae) Missouri Botanical Garden Press, St. Louis, Missouri, USA. 2003.
  46. Givnish TJ, Millam KC, Mast AR, Paterson TB, Theim TJ, Hipp AL, Sytsma KJ. Origin, adaptive radation and diversification of the Hawaiian lobeliads (Asterales: Campanulaceae). In: Proceedings of the Royal Society of London B: Biological Sciences. 2009;276(1656):407-16. https://doi.org/10.1098/rspb.2008.1204
  47. García-Verdugo C, Fay MF. Ecology and evolution on oceanic islands: broadening the botanical perspective. Botanical Journal of the Linnean Society. 2014;174(3):271-75. https://doi.org/10.1111/boj.12154
  48. Kueffer C, Drake DR, Fernández-Palacios JM. Island biology: looking towards the future. Biology Letters. 2014; Oct 31;10(10):20140719. https://doi.org/10.1098/rsbl.2014.0719
  49. Borregaard M, Amorim I, Borges P, Sarmento Cabral J, Fernández-Palacios J, Field R et al. Oceanic island biogeography through the lens of the general dynamic model: Assessment and prospect. Biological Reviews. 2017; May 1;92:830-53. https://doi.org/10.1111/brv.12256
  50. Barrett SCH, Husband BC, Brown AHD, Clegg MT, Kahler AL, Weir BS. The genetics of plant migration and colonization. Plant population genetics, breeding and genetic resources. 1990;254-77.
  51. Larson BM, Barrett SC. Reproductive biology of island and mainland populations of Primula mistassinica (Primulaceae) on Lake Huron shorelines. Canadian Journal of Botany. 1998;76(11):1819-27. https://doi.org/10.1139/b98-150
  52. Furlan E, Stoklosa J, Griffiths J, Gust N, Ellis R, Huggins RM et al. Small population size and extremely low levels of genetic diversity in island populations of the platypus, Ornithorhynchus anatinus. Ecol Evol. 2012; Apr;2(4):844-57. https://doi.org/10.1002/ece3.195
  53. Chaudhary A, Mair L, Strassburg BBN, Brooks TM, Menon V, McGowan PJK. Subnational assessment of threats to Indian biodiversity and habitat restoration opportunities. Environ Res Lett. 2022; Apr;17(5):054022. https://doi.org/10.1088/1748-9326/ac5d99
  54. Schlaepfer DR, Braschler B, Rusterholz HP, Baur B. Genetic effects of anthropogenic habitat fragmentation on remnant animal and plant populations: a meta-analysis. Ecosphere. 2018;9(10):e02488. https://doi.org/10.1002/ecs2.2488
  55. Sarath P, Dev SA, Sreekumar V, Dasgupta M. Anthropogenic threats and habitat degradation challenge the conservation of palm genetic resources—an appraisal of current status, threats and look-ahead strategies. Biodivers Conserv. 2022. Available from: https://doi.org/10.1007/s10531-022-02512-8
  56. Love A, Love D. Plant Chromosomes. J Cramer Inder A B Cortner Verlag Commanditgesellschaft. 1975.
  57. Stebbins, GL. Chromosomal Evolution in Higher Plants. Edward Arnold LTD, London. 1971;87-89.
  58. de Resende KFM. Karyotype Evolution: Concepts and Applications. In: Bhat TA, Wani AA, editors. Chromosome Structure and Aberrations [Internet]. New Delhi: Springer India. 2017;p. 181-200. Available from: https://doi.org/10.1007/978-81-322-3673-3_9. https://doi.org/10.1007/978-81-322-3673-3_9
  59. Sun W, Wang H, Wu R, Sun H, Li Z. Karyomorphology of three endemic plants (Brassicaceae: Euclidieae and Arabideae) from the Qinghai-Tibet Plateau and its significance. Plant Diversity. 2020; Jun 1;42(3):135-41. https://doi.org/10.1016/j.pld.2020.03.002
  60. Chakravorti AK. Multiplication of chromosome numbers in relation to speciation in Zingeberaceae. Sci Cult. 1948;14:137-40.
  61. Sharma AK, Bhattacharya NK. Cytology of several members of Zingeberaceae and a study of intensity of their chromosome complements. La cellule. 1959;59:299-346.
  62. Nopporncharoenkul N, Chanmai J, Jenjittikul T, Anamthawat-Jónsson K, Soontornchainaksaeng P. Chromosome number variation and polyploidy in 19 Kaempferia (Zingiberaceae) taxa from Thailand and one species from Laos. Journal of Systematics and Evolution. 2017;55(5):466-76. https://doi.org/10.1111/jse.12264
  63. Anamthawat-Jónsson K, Umpunjun P, Anamthawat-Jónsson K, Umpunjun P. Polyploidy in the Ginger Family from Thailand. Chromosomal Abnormalities. IntechOpen. 2020. Available from: https://www.intechopen.com/state.item.id. https://doi.org/10.5772/intechopen.92859
  64. Ramachandran K. Chromosome numbers in Zingeberaceae. Cytologia. 1969;34:213-21. https://doi.org/10.1508/cytologia.34.213
  65. Eksomtramage L, Sirirugsa P, Sawangchote P, Jornead S, Saknimit T, Leeratiwong C. Chromosome number of some monocot species from Ton-Nga-Chang Wildlife Sanctuary, southern Thailand. Thai Forest Bulletin (Botany). 2001;(29):63-71.
  66. Lodh D, Basu S. Karyomorphological analysis and cytotypic diversity in natural populations of Costus speciosus Koen. ex Retz. Nucleus. 2013; Dec 1;56(3):155-62. https://doi.org/10.1007/s13237-013-0092-6
  67. Manju Baby I, Mathew PJ, Mathew PM. Cytological studies in Cheilocostus speciosus (Koenig) Specht. (Costaceae). J cytol Genet. 2013;14(NS):115-22.
  68. Mathew PM, Thomas KJ.Cytological studies in Chlorophytum. New Botanist 1974;1:34-45.
  69. Lekhak MM, Adsul AA, Yadav SR. Cytotaxonomical investigations into the genus Chlorophytum from India. Kew Bulletin. 2012;67(2):285-92. https://doi.org/10.1007/s12225-012-9355-7
  70. Vijayavalli B, Mathew PM. Cytotaxonomy of the Liliaceae and allied families. Trivandrum, India: Continental Publishers. 1990.
  71. Mathew A, Mathew PM. (). Cytological studies on the South Indian Compositae. In: PKK Nair (Editor), Glimpses in plant sciences Vol VII, Cytological Research Monograph. New Delhi: Today and Tomorrow Printers & Publishers. 1988.
  72. Salles-de-Melo M, Lucena R, Semir J, Carvalho R, Pereira R, Iseppon A. Karyological features and cytotaxonomy of the tribe Vernonieae (Asteraceae). Plant Systematics and Evolution. 2010; Mar 1;285:189-99. https://doi.org/10.1007/s00606-010-0277-2
  73. Blanc G. Wolfe KH. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell. 2004;16:1667-78. https://doi.org/10.1105/tpc.021345
  74. Chen Z. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol. 2007;58:377-406. https://doi.org/10.1146/annurev.arplant.58.032806.103835
  75. Soltis P, Soltis D. The role of hybridization in plant speciation. Ann Rev Plant Biol 2009;60:561-88. https://doi.org/10.1146/annurev.arplant.043008.092039
  76. Madlung A, Henkhaus N, Jurevic L, Kahsai EA, Bernhard J. Natural variation and persistent developmental instabilities in geographically diverse accessions of the allopolyploid Arabidopsis suecica. Physiol Plant Stebbins G L (1971). Chromosomal evolution in higher plants. 2012;144:123-33. https://doi.org/10.1111/j.1399-3054.2011.01526.x
  77. Madlung A. Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity. 2013; Feb;110(2):99-104. https://doi.org/10.1038/hdy.2012.79
  78. Mallick PK. Karyotypic Analysis of four Species of Genus Blumea (Asteraceae) from Nepal. International Journal of Applied Sciences and Biotechnology. 2018; Jun 29;6(2):115-21. https://doi.org/10.3126/ijasbt.v6i2.20414
  79. Zhang K, Wang X, Cheng F. Plant Polyploidy: Origin, Evolution and Its Influence on Crop Domestication. Horticultural Plant Journal. 2019; Nov 1;5(6):231-39. https://doi.org/10.1016/j.hpj.2019.11.003
  80. Van de Peer Y, Ashman TL, Soltis PS, Soltis DE. Polyploidy: an evolutionary and ecological force in stressful times. The Plant Cell. 2021; Jan 1;33(1):11-26. https://doi.org/10.1093/plcell/koaa015
  81. Ohno S. Evolution by Gene Duplication. Springer Verlag: New York. 1970. https://doi.org/10.1007/978-3-642-86659-3
  82. Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet. 2005;6:836-46. https://doi.org/10.1038/nrg1711
  83. Baduel P, Bray S, Vallejo-Marin M, Kolá? F, Yant L. The “Polyploid Hop”: Shifting challenges and opportunities over the evolutionary lifespan of genome duplications. Frontiers in Ecology and Evolution. 2018;6. Available from: https://www.frontiersin.org/articles/10.3389/fevo.2018.00117. https://doi.org/10.3389/fevo.2018.00117
  84. Adams K, Wendel J. Polyploidy and genome evolution in plants. Curr Opin Plant Biol. 2005;8:135-41. https://doi.org/10.1016/j.pbi.2005.01.001
  85. Moore RC, Purugganan MD. The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol. 2005; 8:122-28. https://doi.org/10.1016/j.pbi.2004.12.001
  86. Lynch M. The Origins of Genome Architecture. Sinauer: Sunderland, MA. 2007.
  87. Haldane JBS. Theoretical genetics of autopolyploids. J Genet. 1930;22:359-72. https://doi.org/10.1007/BF02984197
  88. Moody ME, Mueller LD, Soltis DE. Genetic-variation and random drift in autotetraploid populations. Genetics 134:1993;649-57. https://doi.org/10.1093/genetics/134.2.649
  89. Obbard DJ, Harris S, Pannell JR. Simple allelic-phenotype diversity and differentiation statistics for allopolyploids. Heredity. 2006;97:296-303. https://doi.org/10.1038/sj.hdy.6800862
  90. Birchler JA. Genetic consequences of polyploidy in plants. In: Soltis PS, Soltis DE, Editors. Polyploidy and Genome Evolution. Berlin, Heidelberg: Springer; 2012. Available from: https://doi.org/10.1007/978-3-642-31442-1_2
  91. Assoumane A, Zoubeirou AM, Rodier-Goud M, Favreau B, Bezançon G, Verhaegen D. Highlighting the occurrence of tetraploidy in Acacia senegal (L.) Willd. and genetic variation patterns in its natural range revealed by DNA microsatellite markers. Tree Genetics and Genomes. 2013; Feb 1;9(1):93-106. https://doi.org/10.1007/s11295-012-0537-0
  92. Meirmans PG, Van Tienderen PH. The effects of inheritance in tetraploids on genetic diversity and population divergence. Heredity. 2013;110:131-37. https://doi.org/10.1038/hdy.2012.80
  93. Levin D. Minority cytotype exclusion in local plant populations. Taxon. 1975; 24:35-43. https://doi.org/10.2307/1218997
  94. Kovalsky IE, Roggero Luque JM, Elías G, Fernández SA, Solís Neffa VG. The role of triploids in the origin and evolution of polyploids of Turnera sidoides complex (Passifloraceae, Turneroideae). J Plant Res. 2018; Jan 1;131(1):77-89. https://doi.org/10.1007/s10265-017-0974-9
  95. Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, Rieseberg LH. Recently formed polyploid plants diversify at lower rates. Science. 2011;333:1257. https://doi.org/10.1126/science.1207205

Downloads

Download data is not yet available.