Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Enhancing rooting efficiency and nutrient uptake in Rosa damascena Mill. cuttings: insights into auxin and cutting type optimization

DOI
https://doi.org/10.14719/pst.2585
Submitted
5 April 2023
Published
15-10-2023
Versions

Abstract

Auxin application plays a crucial role in successfully propagating and cultivating Rosa damascena Mill., a valuable plant species with cultural and economic significance. In this study, we aimed to investigate the effects of auxin dose and leaf presence on rooting success and nutrient uptake efficiency in Rosa damascena cuttings. Our results demonstrated that applying IBA significantly improved rooting success and nutrient absorption capacity, with a concentration of 1000 ppm being the most effective, resulting in a remarkable rooting percentage (48 ? 6%), increased root length (2.52 ? 0.25 cm) and improving leaf area (70.18 ? 5.10 cm2). The inclusion of leaves on cuttings has greatly magnified root success (90 ? 10%), leaf area (98.86 ? 17.86 cm2) and nutrient absorption efficiency, highlighting the vital role of leaves in early root development. Our findings provide valuable insights into the development of sustainable and productive cultivation methods for this significant plant species. Furthermore, our investigation emphasized the importance of optimizing auxin application, with leafy cuttings treated with 1000 ppm of auxin showing the most promising results regarding growth attributes, nutrient assimilation and survival rate.

References

  1. Alizadeh Z, Fattahi M. Essential oil, total phenolic, flavonoids, anthocyanins, carotenoids and antioxidant activity of cultivated Damask rose (Rosa damascena) from Iran: With chemotyping approach concerning morphology and composition. Scientia Horticulturae. 15 oct 2021;288:110341. https://doi.org/10.1016/j.scienta.2021.110341
  2. Kumari P, S Hegde A, Gupta S, Sharma S, Srivatsan V. Edible rose flowers: A doorway to gastronomic and nutraceutical research. Food Research International. 29 sept 2022;111977. https://doi.org/10.1016/j.foodres.2022.111977
  3. Maiti S, Geetha KA. Medicinal and aromatic plants in India; 2008.
  4. Ghavam M. Relationships of irrigation water and soil physical and chemical characteristics with yield, chemical composition and antimicrobial activity of Damask rose essential oil. PLoS One. 2021;16(4):e0249363. https://doi.org/10.1371/journal.pone.0249363
  5. Amal A, Abdelghani T, Latifa A, Amina IHL, Mimoun M. Effects of cutting origin and exogenous auxin treatment on the rooting of Rosa damascena (Mill) cuttings from the M’goun-Dades valleys in Morocco. Arabian Journal of Medicinal and Aromatic Plants. 2022;8(1):134-54.
  6. Mahajan M, Pal PK. Flower yield and chemical composition of essential oil from Rosa damascena under foliar application of Ca(NO3)2 and seasonal variation. Acta Physiologiae Plantarum. 2020;42:1-13. https://doi.org/10.1007/s11738-019-2996-5
  7. Shishkova M, Ivanova B, Beluhova-Uzunova R, Harizanova A. Opportunities and challenges for sustainable production and processing of Rosa damascena in Bulgaria. Industrial Crops and Products. 2022;186:115184. https://doi.org/10.1016/j.indcrop.2022.115184
  8. Izadi Z, Rezaei Nejad A, Abadía J. Iron chelate improves rooting in indole-3-butyric acid-treated rosemary (Rosmarinus officinalis) stem cuttings. Agriculture. 2022;12(2):210. https://doi.org/10.3390/agriculture12020210
  9. Devi J, Kumar R, Singh K, Gehlot A, Bhushan S, Kumar S. In vitro adventitious roots: A non-disruptive technology for the production of phytoconstituents on the industrial scale. Critical Reviews in Biotechnology. 2021;41(4):564-79. https://doi.org/10.1080/07388551.2020.1869690
  10. Pamfil D, Bellini C. Auxin control in the formation of adventitious roots. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2011;39(1):307-16. https://doi.org/10.15835/nbha3916101
  11. Sofo A, Bochicchio R, Amato M, Rendina N, Vitti A, Nuzzaci M et al. Plant architecture, auxin homeostasis and phenol content in Arabidopsis thaliana grown in cadmium-and zinc-enriched media. Journal of Plant Physiology. 2017;216:174-80. https://doi.org/10.1016/j.jplph.2017.06.008
  12. Mao J, Niu C, Li K, Mobeen Tahir M, Khan A, Wang H et al. Exogenous 6-benzyladenine application affects root morphology by altering hormone status and gene expression of developing lateral roots in Malus hupehensis. Plant Biology. 2020;22(6):1150-59. https://doi.org/10.1111/plb.13154
  13. Ruiz Herrera LF, Shane MW, López-Bucio J. Nutritional regulation of root development. Wiley Interdisciplinary Reviews: Developmental Biology. 2015;4(4):431-43. https://doi.org/10.1002/wdev.183
  14. Opuni-Frimpong E, Karnosky DF, Storer AJ, Cobbinah JR. Key roles of leaves, stockplant age and auxin concentration in vegetative propagation of two African mahoganies: Khaya anthotheca Welw. and Khaya ivorensis A. Chev. New Forests. 2008;36:115-23. https://doi.org/10.1007/s11056-008-9087-6
  15. Querejeta JI, Ren W, Prieto I. Vertical decoupling of soil nutrients and water under climate warming reduces plant cumulative nutrient uptake, water-use efficiency and productivity. New Phytologist. 2021;230(4):1378-93. https://doi.org/10.1111/nph.17258
  16. Wang X lan, Su C jiang, Peng L, Wang H e, Wang H ming, Liu W et al. Ecological suitability assessment and introduction experiment on Rosa damascenatrigintipetala in Sichuan Province, China. Journal of Mountain Science. 2014;11:805-15. https://doi.org/10.1007/s11629-013-2802-6
  17. Magyar Z, De Veylder L, Atanassova A, Bako L, Inze D, Bögre L. The role of the Arabidopsis E2FB transcription factor in regulating auxin-dependent cell division. The Plant Cell. 2005;17(9):2527-41. https://doi.org/10.1105/tpc.105.033761
  18. Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist. 2012;193(1):30-50. https://doi.org/10.1111/j.1469-8137.2011.03952.x
  19. Pallardy SG. Physiology of woody plants. Academic Press; 2010.
  20. Druege U, Hilo A, Pérez-Pérez JM, Klopotek Y, Acosta M, Shahinnia F et al. Molecular and physiological control of adventitious rooting in cuttings: Phytohormone action meets resource allocation. Annals of Botany. 2019;123(6):929-49. https://doi.org/10.1093/aob/mcy234
  21. Pacurar DI, Perrone I, Bellini C. Auxin is a central player in the hormone cross-talks that control adventitious rooting. Physiologia Plantarum. 2014;151(1):83-96. https://doi.org/10.1111/ppl.12171
  22. Zhang P, Su ZQ, Xu L, Shi XP, Du KB, Zheng B et al. Effects of fragment traits, burial orientation and nutrient supply on survival and growth in Populus deltoides× P. simonii. Scientific Reports. 2016;6(1):21031. https://doi.org/10.1038/srep21031
  23. Mubarok S, Fauzi AA, Nuraini A, Rufaidah F, Qonit MAH. Effect of benzyl amino purine and 1-methylcyclopropene in maintaining rooting quality of Chrysanthemum (Chrysanthemum morifolium Ramat cv.‘White Fiji’) cuttings. Research on Crops. 2020;21(1):141-50. https://doi.org/10.31830/2348-7542.2020.024
  24. Doty SL, James CA, Moore AL, Vajzovic A, Singleton GL, Ma C et al. Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. In: Proceedings of the National Academy of Sciences. 2007;104(43):16816-21. https://doi.org/10.1073/pnas.0703276104
  25. Wang J, Moeen-ud-din M, Yang S. Dose-dependent responses of Arabidopsis thaliana to zinc are mediated by auxin homeostasis and transport. Environmental and Experimental Botany. 1 sept 2021;189:104554. https://doi.org/10.1016/j.envexpbot.2021.104554
  26. Nasri F, Fadakar A, Saba MK, Yousefi B. Study of indole butyric acid (IBA) effects on cutting rooting improving some of wild genotypes of Damask roses (Rosa damascena Mill.). Journal of Agricultural Sciences, Belgrade. 2015;60(3):263-75. https://doi.org/10.2298/JAS1503263N
  27. Thompson M, Gamage D, Hirotsu N, Martin A, Seneweera S. Effects of elevated carbon dioxide on photosynthesis and carbon partitioning: A perspective on root sugar sensing and hormonal crosstalk. Frontiers in Physiology. 2017;578. https://doi.org/10.3389/fphys.2017.00578
  28. Para?ikovi? N, Tekli? T, Zeljkovi? S, Lisjak M, Špoljarevi? M. Biostimulants research in some horticultural plant species—A review. Food and Energy Security. 2019;8(2):e00162. https://doi.org/10.1002/fes3.162
  29. Yeshiwas T, Alemayehu M, Alemayehu G. Effects of indole butyric acid (IBA) and stem cuttings on growth of stenting-propagated rose in Bahir Dar, Ethiopia. World Journal of Agricultural Sciences. 2015;11(4):191-97.
  30. Loconsole D, Sdao AE, Cristiano G, De Lucia B. Different responses to adventitious rhizogenesis under indole-3-butyric acid and seaweed extracts in ornamental’s cuttings: First Results in Photinia x fraseri ‘Red Robin’. Agriculture. 2023;13(3):513. https://doi.org/10.3390/agriculture13030513
  31. Baig MMQ, Hafiz IA, Hussain A, Ahmad T, Abbasi NA. An efficient protocol for in vitro propagation of Rosa gruss an teplitz and Rosa centifolia. African Journal of Biotechnology. 2011;10(22):4564-73.
  32. Shiri M, Mudyiwa RM, Takawira M, Musara C, Gama T. Effects of rooting media and indole-3-butyric acid (IBA) concentration on rooting and shoot development of Duranta erecta tip cuttings. African Journal of Plant Science. 2019;13(10):279-85. https://doi.org/10.5897/AJPS2019.1851
  33. Yeshiwas T, Alemayehu M, Alemayehu G. Effects of indole butyric acid (IBA) and stem cuttings on growth of stenting-propagated rose in Bahir Dar, Ethiopia. World Journal of Agricultural Sciences. 2015;11(4):191-97.
  34. Begum S, Nakaba S, Yamagishi Y, Oribe Y, Funada R. Regulation of cambial activity in relation to environmental conditions: Understanding the role of temperature in wood formation of trees. Physiologia Plantarum. 2013;147(1):46-54. https://doi.org/10.1111/j.1399-3054.2012.01663.x
  35. Teixeira da Silva JA, Nezami-Alanagh E, Barreal ME, Kher MM, Wicaksono A, Gulyás A et al. Shoot tip necrosis of in vitro plant cultures: A reappraisal of possible causes and solutions. Planta. 2020;252:1-35. https://doi.org/10.1007/s00425-020-03449-4
  36. Lopez-Moya F, Escudero N, Zavala-Gonzalez EA, Esteve-Bruna D, Blázquez MA, Alabadí D et al. Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in Arabidopsis exposed to chitosan. Scientific Reports. 2017;7(1):1-14. https://doi.org/10.1038/s41598-017-16874-5
  37. Krajnc AU, Ivanus A, Kristl J, Susek A. Seaweed extract elicits the metabolic responses in leaves and enhances growth of pelargonium cuttings. Eur J Hortic Sci. 2012;77:170-81.
  38. Wang H, Yang J, Zhang M, Fan W, Firon N, Pattanaik S et al. Altered phenylpropanoid metabolism in the maize Lc-expressed sweet potato (Ipomoea batatas) affects storage root development. Scientific Reports. 2016;6(1):18645. https://doi.org/10.1038/srep18645
  39. Kuzmicheva YV, Shaposhnikov AI, Petrova SN, Makarova NM, Tychinskaya IL, Puhalsky JV et al. Variety specific relationships between effects of rhizobacteria on root exudation, growth and nutrient uptake of soybean. Plant and Soil. 2017;419:83-96. https://doi.org/10.1007/s11104-017-3320-z
  40. Farooq A, Kiani M, Khan MA, Riaz A, Khan AA, Anderson N et al. Microsatellite analysis of Rosa damascena from Pakistan and Iran. Hortic Environ Biotechnol. 1 apr 2013;54(2):141-47. https://doi.org/10.1007/s13580-013-0042-x
  41. Monteiro MV, Blanuša T, Verhoef A, Hadley P, Cameron RW. Relative importance of transpiration rate and leaf morphological traits for the regulation of leaf temperature. Australian Journal of Botany. 2016;64(1):32-44. https://doi.org/10.1071/BT15198
  42. Nagasuga K, Murai-Hatano M, Kuwagata T. Effects of low root temperature on dry matter production and root water uptake in rice plants. Plant Production Science. jan 2011;14(1):22-29. https://doi.org/10.1626/pps.14.22
  43. Ai G, Huang R, Zhang D, Li M, Li G, Li W et al. SlGH3.15, a member of the GH3 gene family, regulates lateral root development and gravitropism response by modulating auxin homeostasis in tomato. Plant Science. 1 may 2023;330:111638. https://doi.org/10.1016/j.plantsci.2023.111638
  44. Gul MU, Paul A, SM, Chehri A. Hydrotropism: Understanding the impact of water on plant movement and adaptation. Water. jan 2023;15(3):567. https://doi.org/10.3390/w15030567
  45. Yousefi F, Jabbarzadeh Z, Amiri J, Rasouli-Sadaghiani M, Shaygan A. Foliar application of polyamines improve some morphological and physiological characteristics of rose. Folia Horticulturae. 1 jun 2021;33(1):147-56. https://doi.org/10.2478/fhort-2021-0012
  46. Wu W, Du K, Kang X, Wei H. The diverse roles of cytokinins in regulating leaf development. Horticulture Research. 1 jan 2021;8:118. https://doi.org/10.1038/s41438-021-00558-3
  47. Mishra B, Sharma M, Laxmi A. Role of sugar and auxin crosstalk in plant growth and development. Physiologia Plantarum. 4 sept 2021;174. https://doi.org/10.1111/ppl.13546
  48. Abdel-Rahman S, Abdul-Hafeez E, Saleh AMM. Improving rooting and growth of Conocarpus erectus stem cuttings using indole-3-butyric acid (IBA) and some biostimulants. Scientific Journal of Flowers and Ornamental Plants. 1 jun 2020;7(2):109-29. https://doi.org/10.21608/sjfop.2020.96213
  49. Ricci A, Rolli E, Dramis L, Diaz-Sala C. N,N?-bis-(2,3-Methylenedioxyphenyl)urea and N,N?-bis-(3,4-methylenedioxyphenyl)urea enhance adventitious rooting in Pinus radiata and affect expression of genes induced during adventitious rooting in the presence of exogenous auxin. Plant Science. 1 sept 2008;175(3):356-63. https://doi.org/10.1016/j.plantsci.2008.05.009
  50. Wang Y, Xing J, Wan J, Yao Q, Zhang Y, Mi G et al. Auxin efflux carrier ZmPIN1a modulates auxin reallocation involved in nitrate-mediated root formation. BMC Plant Biology. 3 féb 2023;23(1):74. https://doi.org/10.1186/s12870-023-04087-0

Downloads

Download data is not yet available.