Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 2 (2025)

Exploring the potential of organic seed treatment and foliar nutrition to achieve sustainability in pulses production

DOI
https://doi.org/10.14719/pst.4385
Submitted
19 July 2024
Published
05-05-2025 — Updated on 19-05-2025
Versions

Abstract

Low productivity is a major challenge in organic farming and needs to be addressed to achieve sustainability. Due to their capacity to fix nitrogen, pulses require less organic fertilizer, which makes organic farming feasible. However, a 20% loss in pulse productivity under organic cultivation has been reported. Conventional farming boosts yields with energy-intensive chemical inputs but causes long-term issues like pollution, greenhouse gas emissions, reduced soil fertility and land degradation. The yield loss can be minimised by alternative inputs like bio-formulations preferably derived from farm waste and other sustainable sources. These bio-formulations often include a mixture of beneficial microorganisms, organic nutrients and natural growth-promoting substances which are cost-effective when compared to conventional inputs and help in improved nutrient absorption, enhanced plant growth and yield, disease and pest resistance, stress tolerance and enhanced soil health. There are several approaches for applying bio-formulations to plants such as foliar spray, seed treatment, soil application, drenching, mulch integration and fertigation, all of which are designed to guarantee maximum absorption and efficacy. This review explores the various organic seed treatments and foliar fertilisation using bio-formulations such as panchagavya, jeevamrutha, beejamrutha, fish fermented waste extract, seaweed extract, vermiwash and biofertilizers to improve the productivity of pulses under organic cultivation.

References

  1. 1. Aviles-Vazquez K, Badgley C, Chappell MJ, Moghtader J, Perfecto I, Quintero E, et al. Organic agriculture and the global food supply. Renew Agr Food Syst. 2007;22(2):86-108. https://doi.org/10.1017/S1742170507001640
  2. 2. Jain D, Jain P, Bhojiya AA, Jain RK, Choudhary R, Sharma SK, et al. Microbiological and enzymatic properties of diverse Jaivik Krishi inputs used in organic farming. Indian J Tradit Knowl. 2021;20(1):237-43.
  3. 3. Ravisankar N, Ansari M, Panwar A, Aulakh C, Sharma S, Suganthy M, et al. Organic farming research in India: potential technologies and way forward. Indian J Agron. 2021;66:S142-62.
  4. 4. Rahman MM, Alam MS, Islam MM, Kamal MZU, Rahman GKMM, Haque MM, et al. Potential of legume-based cropping systems for climate change adaptation and mitigation. In: Meena RS, Kumar S, editors. Advances in Legumes for Sustainable Intensification. Chapter 20: Academic Press; 2022. p. 381-402. https://doi.org/10.1016/B978-0-323-85797-0.00030-6
  5. 5. Seufert V, Ramankutty N, Foley JA. Comparing the yields of organic and conventional agriculture. Nat. 2012;485(7397):229-32. https://doi.org/10.1038/nature11069
  6. 6. De la Cruz VYV, Tantriani, Cheng W, Tawaraya K. Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis. Agric Syst. 2023;211:103732. https://doi.org/10.1016/j.agsy.2023.103732
  7. 7. Ramesh T, Selvaraj R, Nandhini U, Jagadeesan R. Effect of organic foliar nutrition on performance and production potential of mungbean [Vigna radiata L.]. Legume Res. 2024;47(6):984-89. https://doi.org/10.18805/LR-5081
  8. 8. Yogananda S, Thimmegowda P, Shruthi G. Performance of cowpea [Vigna unguiculata (L.) Walp] under organic production system in southern dry zone of Karnataka. Legume Res. 2020;43(2):229-34. https://doi.org/10.18805/LR-4175
  9. 9. Sridhara M, Nandagavi R, Nooli S, Biradar A. Response of chickpea (Cicer arietinum L.) to foliar application of organics under rainfed condition. J Farm Sci. 2022;35(3):332-36.
  10. 10. Rathore SS, Chaudhary DR, Boricha GN, Ghosh A, Bhatt BP, Zodape ST, et al. Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. S Afr J Bot. 2009;75(2):351-55. https://doi.org/10.1016/j.sajb.2008.10.009
  11. 11. Singh P, Singh R, Madhu GS, Singh VP. Seed biopriming with Trichoderma Harzianum for growth promotion and drought tolerance in rice (Oryza sativus). Agric Res. 2023;12(2):154-62. https://doi.org/10.1007/s40003-022-00641-8
  12. 12. Abd El-Daim IA, Bejai S, Meijer J. Improved heat stress tolerance of wheat seedlings by bacterial seed treatment. Plant Soil. 2014;379(1):337-50. https://doi.org/10.1007/s11104-014-2063-3
  13. 13. Sajjan AS, Waddinakatti S, Jolli R, Goudar GD. In vitro investigation of biopriming on seed quality parameters in green gram [Vigna radiata (L.)]. Legume Res. 2021;44(1):98-100. https://doi.org/10.18805/LR-4071
  14. 14. Dileep Kumar R, Bara B, Rai P. Pre-sowing Seed Treatments with panchagavya, jeevamrutha and beejamrutha on growth, yield and yield attributing traits in chickpea (Cicer arietinum L.) Variety-RVG202. Int J of Plant Soil Sci. 2022;34(22):1183-87. https://doi.org/10.9734/IJPSS/2022/v34i2231483
  15. 15. Henningsen JN, Bahamonde HA, Muhling KH, Fernandez V. Tomato and pepper leaf parts contribute differently to the absorption of foliar-applied potassium dihydrogen phosphate. Plants. 2023;12(11):2152.
  16. 16. Hemida KA, Eloufey AZA, Hassan GM, Rady MM, El-Sadek AN, Abdelfattah MA. Integrative NPK soil and foliar application improves growth, yield, antioxidant and nutritional status of Capsicum annuum L. in sandy soils under semi-arid condition. J Plant Nutr. 2023;46(6):1091-107. https://doi.org/10.1080/01904167.2022.2046060
  17. 17. Ashraf AM, Ha A, Kumar MR, Iqshanullah M, Rajasekaran R, Dhinesh KS, et al. Potential foliar chemicals for enhancing yield and drought tolerance in leguminous crops: A Review. Legume Res. 2023;47(8):1251-57. https://doi.org/10.18805/LR-5127
  18. 18. El-Fouly M, El-Nour A. Foliar feeding with micronutrients to overcome adverse salinity effects on growth and nutrients uptake of bean (Phaseolus vulgaris). Egypt J Agron. 2021;43(1):1-12. https://doi.org/10.21608/agro.2021.49359.1238
  19. 19. Niu J-Y, Liu C, Huang M, Liu K, Yan D. Effects of foliar fertilization: A review of current status and future perspectives. J Soil Sci Plant Nutr. 2020;21:104-18. https://doi.org/10.1007/s42729-020-00346-3
  20. 20. Kumar D, Singh M, Kumar Meena R, Kumar S, Meena BL, Yadav MR, et al. Productivity and profitability improvement of fodder maize under combined application of indigenously prepared panchagavya with organic and inorganic sources of nutrient. J Plant Nutr. 2023;46(14):3519-34. https://doi.org/10.1080/01904167.2023.2206433
  21. 21. Swarnalatha Y, Seema S. Traditional method of mung beans (Vigna radiata) preservation using panchagavya and its effect on seed germination. Asian J Pharm Clin Res. 2020;13(8):65-68. https://doi.org/10.22159/ajpcr.2020.v13i8.37235
  22. 22. Sathiyaraj S, Suriyakala G, Gandhi AD, Baskaran TN, Babujanarthanam R. In vitro evaluation of antibacterial, antioxidant and anticancer properties of panchagavya. Res J Pharm Technol. 2022;15(4):1631-35.
  23. 23. Radha TK, Rao DLN. Plant Growth Promoting Bacteria from Cow Dung Based Biodynamic Preparations. Indian J Microbiol. 2014;54(4):413-18. https://doi.org/10.1007/s12088-014-0468-6
  24. 24. Somasundaram E, Nandhini DU, Ravisankar N. Metabolomic analysis, functional group identification and complete characterization of panchagavya (organic foliar nutrition). Indian J Agron. 2021;66(3):264-71.
  25. 25. Ram R, Singha A, Vaish S. Microbial characterization of on-farm produced bio-enhancers used in organic farming. Indian J Agric Sci. 2018;88(1):35-40. https://doi.org/10.56093/ijas.v88i1.79550
  26. 26. Selvaraj N, Anitha B, Anusha B, Guru Saraswathi M. Organic horticulture. Horticultural Research Station, Tamil Nadu Agricultural University, Udhagamandalam. 2007;643(001) Available from: https://agritech.tnau.ac.in/ta/org_farm/orgfarm_panchakavya.html
  27. 27. Gohil RB, Raval VH, Panchal RR, Rajput KN. Plant growth promoting activities and effect of fermented panchagavya isolate Klebsiella sp. PG-64 on Vigna radiata. World J Microb Biot. 2022;39(2):41. https://doi.org/10.1007/s11274-022-03482-3
  28. 28. Vimalendra L, Wahab KHA. Effect of foliar spray of panchagavya on yield attributes, yield and economics of babycorn. J Agron. 2013;12:109-12. https://doi.org/10.3923/ja.2013.109.112
  29. 29. Sarkar S, Kundu S, Ghorai D. Validation of ancient liquid organics-panchagavya and kunapajala as plant growth promoters. Indian J Tradit Knowl. 2014;13(2):398-403.
  30. 30. Shariff AF, Sajjan AS, Babalad H, Nagaraj L, Palankar SG. Effect of organics on seed yield and quality of green gram (Vigna radiata L.). Legume Res. 2017;40(2):388-92. https://doi.org/10.18805/lr.v0i0f.11297.
  31. 31. Gajjela S, Chatterjee R. Effect of foliar application of panchagavya and vermiwash on yield and quality of bitter gourd (Momordica charantia L.). Int J Chem Stud. 2019;7(3):218-24.
  32. 32. Somasundaram E, Sathya V. Evaluation of indigenous organic foliar nutrition panchagavya in maize based cropping system. 2016:59-61.
  33. 33. Mukherjee S, Sain S, Ali MN, Goswami R, Chakraborty A, Ray K, et al. Microbiological properties of Beejamrit, an ancient Indian traditional knowledge, uncover a dynamic plant beneficial microbial network. World J of Microb Biot. 2022;38(7):111. https://doi.org/10.1007/s11274-022-03296-3
  34. 34. Devakumar N, Shubha S, Gowder S, Rao G, editors. Microbial analytical studies of traditional organic preparations beejamrutha and jeevamrutha. In: ‘Building Organic Bridges’, at the Organic World Congress; 2014 Oct 13-15; Istanbul, Turkey. https://doi.org/10.3220/REP_20_1_2014
  35. 35. Nemagoudar M, Sreenivasa M, Hebsur N, Deshpande V, Nirmalnath P. Isolation and characterization of microflora in beejamrutha. Karnataka J Agric Sci. 2014;27(2):250-62.
  36. 36. Nandhini DU, Somasundaram E. Characterising the traditional organic liquid formulations used by the farmers of western agro climatic zone of Tamil Nadu. Indian J Tradit Knowl. 2023;22(2):297-306. https://doi.org/10.56042/ijtk.v22i2.40024
  37. 37. Goveanthan A, Sugumaran M, Somasundaram E. Scientific validation of organic liquid formulation-jeevamruth by studying its characteristics. Int J Plant Sci. 2021;16(1):15-18. https://doi.org/10.15740/HAS/IJPS/16.1/15-18
  38. 38. Duraivadivel P, Kongkham B, Satya S, Hariprasad P. Untangling microbial diversity and functional properties of Jeevamrutha. J Clean Prod. 2022;369:133218. https://doi.org/10.1016/j.jclepro.2022.133218
  39. 39. Kumar S, Latha M, Janaki P, Parameswari E, Kalaiselvi T, Krishnan R. Natural farming practices impact on yield and macro nutrient uptake of Sorghum. Int J Plant Soil Sci. 2023;35(20):221-27. https://doi.org/10.9734/ijpss/2023/v35i203801
  40. 40. Bhargavi Y, Sudhakar P, Rajeswari VR, Krishna TG. Influence of natural liquid organics on morphology and growth attributes of blackgram (Vigna mungo L.). Agric Sci Dig. 2022;42(6):710-16. https://doi.org/10.18805/ag.D-5288
  41. 41. Bhuimbar MV, Dandge PB. Production of organic liquid biofertilizer from fish waste and study of its plant growth promoting effect. Proc Natl Acad Sci, India, Section B: Biological Sciences. 2023;93(1):235-43. https://doi.org/10.1007/s40011-022-01413-8
  42. 42. Balraj T, Geetha A. Physicochemical characterization of traditionally fermented liquid manure from fish waste (Gunapaselam). Indian J Tradit Knowl. 2019;18(4):830-36. https://doi.org/10.13140/RG.2.2.28751.23206
  43. 43. Balraj T, Geetha A. Influence of Fermented Fish waste (Gunapaselam) on nodulation (nod D) and nitrogen fixation (nif H) transcripts of Bradyrhizobium japonicum - Vigna radiata. Res J Biotechnol. 2020;15(1):14-24.
  44. 44. Rioux LE, Turgeon SL, Beaulieu M. Characterization of polysaccharides extracted from brown seaweeds. Carbohydr Polym. 2007;69(3):530-37. https://doi.org/10.1016/j.carbpol.2007.01.009
  45. 45. Gajaria TK, Suthar P, Baghel RS, Balar NB, Sharnagat P, Mantri VA, et al. Integration of protein extraction with a stream of byproducts from marine macroalgae: A model forms the basis for marine bioeconomy. Bioresour Technol. 2017;243:867-73. https://doi.org/10.1016/j.biortech.2017.06.149
  46. 46. Kaur I. Seaweeds: Soil Health Boosters for Sustainable Agriculture. In: Giri B, Varma A, editors. Soil Health. Cham: Springer International Publishing; 2020. p. 163-82. https://doi.org/10.1007/978-3-030-44364-1_10
  47. 47. Sivasankari S, Venkatesalu V, Anantharaj M, Chandrasekaran M. Effect of seaweed extracts on the growth and biochemical constituents of Vigna sinensis. Bioresour Technol. 2006;97(14):1745-51. https://doi.org/10.1016/j.biortech.2005.06.016
  48. 48. Ara J, Sultana V, Qasim R, Ehteshamul-Haque S, Ahmad VU. Biological activity of Spatoglossum asperum: A brown alga. Phytother Res. 2005;19(7):618-23. https://doi.org/10.1002/ptr.1699
  49. 49. Arunkumar K, Selvapalam N, Rengasamy R. The antibacterial compound sulphoglycerolipid 1-0 palmitoyl-3-0(6?-sulpho-?-quinovopyranosyl)-glycerol from Sargassum wightii Greville (Phaeophyceae). Bot Mar. 2005;48(5):441-45. https://doi.org/10.1515/BOT.2005.058
  50. 50. Raja K, Geetha R. Herbal and seaweed extracts on seed yield improvement in blackgram (Vigna mungo (L.)) Hepper. Int J Plant Sci. 2010;5(2):513-14.
  51. 51. Mancuso S, Briand X, Mugnai S, Azzarello E. Marine Bioactive Substances (IPA Extract) Improve Foliar Ion Uptake and Water Stress Tolerance in Potted "Vitis vinifera" Plants. Adv Hortic Sci. 2006:1000-06. https://doi.org/10.1400/53262
  52. 52. Kalaivanan C, Venkatesalu V. Utilization of seaweed Sargassum myriocystum extracts as a stimulant of seedlings of Vigna mungo (L.) Hepper. Spanish J Agric Res. 2012;10(2):466-70. https://doi.org/10.5424/sjar/2012102-507-10
  53. 53. Sundareswaran NQTaS. Effect of seed priming with seaweed extracts on seed quality parameters in blackgram (Vigna mungo L.) Cv. CO 6. Int J Chem Stud. 2019;7(3):813-17.
  54. 54. Mattner SW, Villalta ON, Wite D, Porter IJ, Arioli T. In vitro suppression of Sclerotinia minor by a seaweed extract from Durvillaea potatorum and Ascophyllum nodosum. Australas Plant Dis Notes. 2014;9(1):137. https://doi.org/10.1007/s13314-014-0137-y
  55. 55. Ambika S, Sujatha K. Organic seaweed nano powder effect on growth and yield attributes of pigeonpea. Legume Res. 2017;40(4):731-34. https://doi.org/10.18805/lr.v0iOF.4481
  56. 56. Jithesh MN, Shukla PS, Kant P, Joshi J, Critchley AT, Prithiviraj B. Physiological and transcriptomics analyses reveal that Ascophyllum nodosum extracts induce salinity tolerance in Arabidopsis by regulating the expression of stress responsive genes. J Plant Growth Regul. 2019;38(2):463-78. https://doi.org/10.1007/s00344-018-9861-4
  57. 57. Kopperundevi K, Aiyamperumal B, Elangovan M, Noorjahan A, Anantharaman P. Effect of liquid extract from Turbinaria conoides on growth parameters and germination of Arachis hypogaea. Int J Pharm Biol Sci. 2019;9(2):127-31.
  58. 58. El-Aziz FE-ZAA, Hifney AF, Mohany M, Al-Rejaie SS, Banach A, Sayed AM. Insecticidal activity of brown seaweed (Sargassum latifolium) extract as potential chitin synthase inhibitors: Toxicokinetic and molecular docking approaches. S Afr J Bot. 2023;160:645-56. https://doi.org/10.1016/j.sajb.2023.07.058
  59. 59. Elbrense H, Gheda S. Evaluation of the insecticidal and antifeedant activities of some seaweed extracts against the Egyptian cotton leaf worm, Spodoptera littoralis and the lesser grain borer Rhyzopertha dominica. Egypt J Exp Biol (Zoo). 2021;17(1). https://doi.org/10.5455/egysebz.20201218092110
  60. 60. Osuna-Ruiz I, Ledezma AKD, Martinez-Montano E, Salazar-Leyva JA, Tirado VAR, Garcia IB. Enhancement of in-vitro antioxidant properties and growth of amaranth seed sprouts treated with seaweed extracts. J Appl Phycol. 2023;35(1):471-81. https://doi.org/10.1007/s10811-022-02872-2
  61. 61. Thakur S, Sood AK. Lethal and inhibitory activities of natural products and biopesticide formulations against Tetranychus urticae Koch (Acarina: Tetranychidae). Int J Acarol. 2019;45(6-7):381-90. https://doi.org/10.1080/01647954.2019.1666920
  62. 62. Nadana GRV, Rajesh C, Kavitha A, Sivakumar P, Sridevi G, Palanichelvam K. Induction of growth and defense mechanism in rice plants towards fungal pathogen by eco-friendly coelomic fluid of earthworm. Environ Technol Innov. 2020;19:101011. https://doi.org/10.1016/j.eti.2020.101011
  63. 63. Pathma J, Sakthivel N. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus. 2012;1(1):26. https://doi.org/10.1186/2193-1801-1-26
  64. 64. Belmeskine H, Ouameur WA, Dilmi N, Aouabed A. The vermicomposting for agricultural valorization of sludge from Algerian wastewater treatment plant: impact on growth of snap bean Phaseolus vulgaris L. Heliyon. 2020;6(8):e04679. https://doi.org/10.1016/j.heliyon.2020.e04679
  65. 65. Akazawa S-i, Badamkhatan T, Omiya K, Shimizu Y, Hasegawa N, Sakai K, et al. The Growth-Promoting Effect of Earthworm Vermiwash on House Tomato Plants. Sustain. 2023;15(13):10327. https://doi.org/10.3390/su151310327
  66. 66. Rabani MS, Hameed I, Gupta MK, Wani BA, Fayaz M, Hussain H, et al. Introduction of Biofertilizers in Agriculture with Emphasis on Nitrogen Fixers and Phosphate Solubilizers. In: Dar GH, Bhat RA, Mehmood MA, editors. Microbiomes for the Management of Agricultural Sustainability. Cham: Springer Nature Switzerland; 2023. p. 71-93. https://doi.org/10.1007/978-3-031-32967-8_4
  67. 67. Srivastav AL, Patel N, Rani L, Kumar P, Dutt I, Maddodi BS, et al. Sustainable options for fertilizer management in agriculture to prevent water contamination: A review. Environ Dev Sustain. 2023;26:8303–27. https://doi.org/10.1007/s10668-023-03117-z
  68. 68. Mng'ong'o ME, Ojija F, Aloo BN. The role of Rhizobia toward food production, food and soil security through microbial agro-input utilization in developing countries. Case Studies in Chemical and Environmental Engineering. 2023;8:100404. https://doi.org/10.1016/j.cscee.2023.100404
  69. 69. Fahde S, Boughribil S, Sijilmassi B, Amri A. Rhizobia: A promising source of plant growth-promoting molecules and their non-legume interactions: examining applications and mechanisms. Agric. 2023;13(7):1279. https://doi.org/10.3390/agriculture13071279
  70. 70. Zhao H, Sun N, Huang L, Qian R, Lin X, Sun C, et al. Azospirillum brasilense activates peroxidase-mediated cell wall modification to inhibit root cell elongation. iScience. 2023;26(7):107144. https://doi.org/10.1016/j.isci.2023.107144
  71. 71. Kour D, Kour H, Khan SS, Khan RT, Bhardwaj M, Kailoo S, et al. Biodiversity and functional attributes of rhizospheric microbiomes: potential tools for sustainable agriculture. Curr Microbiol. 2023;80(6):192. https://doi.org/10.1007/s00284-023-03300-5
  72. 72. Jaiswal SK, Mohammed M, Ibny FY, Dakora FD. Rhizobia as a source of plant growth-promoting molecules: Potential applications and possible operational mechanisms. Front Sustain Food Syst. 2021;4:619676. https://doi.org/10.3389/fsufs.2020.619676
  73. 73. Raja K, Anandham R, Sivasubramaniam K. Infusing microbial consortia for enhancing seed germination and vigour in pigeonpea (Cajanus cajan (L.) Millsp.). Curr Sci. 2019;117(12):2052-58. https://doi.org/10.18520/cs/v117/i12/2052-2058
  74. 74. Alamzeb M, Inamullah. Management of phosphorus sources in combination with Rhizobium and phosphate solubilizing bacteria improve nodulation, yield and phosphorus uptake in chickpea. Gesunde Pflanz. 2023;75(3):549-64. https://doi.org/10.1007/s10343-022-00722-2.
  75. 75. Raja K, Sivasubramaniam K, Anandham R. Seed infusion with liquid microbial consortia for improving germination and vigour in blackgram [Vigna mungo (L.) Hepper]. Legume Res. 2019;42(3):334-40. https://doi.org/10.18805/LR-3948
  76. 76. Paul SK, Malik GC, Banerjee M, Chowdhury A. Effect of carrier and liquid based biofertilisers on summer green gram [Vigna radiata (L.) Wilczek] grown in red laterite soil. Legume Res. 2023;46(9):1216-20. https://doi.org/10.18805/LR-4680
  77. 77. Janati W, Mikou K, El Ghadraoui L, Errachidi F. Growth stimulation of two legumes (Vicia faba and Pisum sativum) using phosphate-solubilizing bacteria inoculation. Front Microbiol. 2023;14. https://doi.org/10.3389/fmicb.2023.1212702
  78. 78. Ali Q, Shabaan M, Ashraf S, Kamran M, Zulfiqar U, Ahmad M, et al. Comparative efficacy of different salt tolerant rhizobial inoculants in improving growth and productivity of Vigna radiata L. under salt stress. Sci Rep. 2023;13(1):17442. https://doi.org/10.1038/s41598-023-44433-8
  79. 79. PP R. Recent advances in crop protection. 2012. https://doi.org/10.1007/978-81-322-0723-8
  80. 80. Raj CM, Sundareswaran S, Nakkeeran S. Biopriming of seed with bioagents to control seed-borne fungi of chilli cv. K 2. Trends Biosci. 10(2):823-26.
  81. 81. Duan Y, Han M, Grimm M, Schierstaedt J, Imani J, Cardinale M, et al. Hordeum vulgare differentiates its response to beneficial bacteria. Plant Biol. 2023;23(1):460. https://doi.org/10.1186/s12870-023-04484-5
  82. 82. Kumar S, Shukla V, Tripathi YN, Aamir M, Divyanshu K, Yadav M, et al. Biochemical changes, antioxidative profile and efficacy of the bio-stimulant in plant defense response against Sclerotinia sclerotiorum in common bean (Phasaeolus vulgaris L.). Heliyon. 2024;10(1):e23030. https://doi.org/10.1016/j.heliyon.2023.e23030
  83. 83. Yadav P, Tripathi AK. Growth and yield of greengram (Vigna radiata) under foliar application of panchgavya and leaf extracts of endemic plants. Indian J Agron. 2013;58:618-21. https://doi.org/10.59797/ija.v58i4.4250
  84. 84. Sutar R, Sujith G, Devakumar N. Growth and yield of cowpea [Vigna unguiculata (L.) Walp] as influenced by jeevamrutha and panchagavya application. Legume Res. 2018;42(6):824-28. https://doi.org/10.18805/LR-3932
  85. 85. Arun K, Debbarma V. Effect of spacing and panchagavya on growth and yield attributes of chickpea (Cicer arietinum L.). Int J Environ Clim Change. 2022;12(11):2890-95. https://doi.org/10.9734/ijecc/2022/v12i1131281
  86. 86. Reddy GS, Rai PK, Nagar S. Pre-sowing seed treatment with panchagavya, beejamruth and leaf extract of moringa and neem on growth, yield and yield attributing traits of cowpea (Vigna unguiculata L.) cv-Bali265. Int J Plant Soil Sci. 2022;34(22):906-16. https://doi.org/10.9734/IJPSS/2022/v34i2231451
  87. 87. Bhargavi M, Rai PK. Standardization of selected organics seed treatments on growth yield and yield attributing traits of black gram (Vigna mungo) var. PU-19. Environ Ecol. 2022;40(4D):2807-11.
  88. 88. Bhargavi Y, Sudhakar P, Rajeswari VR, Krishna TG. Effect of Beejamrutha on seed germination, vigour and enzyme activity in blackgram seeds. Andhra Pradesh J Agric Sci. 2019;5(2):142-45.
  89. 89. Singh A, Lal M, Shivashankar K, Tiwari R, Singh KS, Pandey SR. Effect of different natural farming treatments on growth, yield and quality of pigeon pea in inter-cropping system in Western U.P. Int J Environ Clim Change. 2023;13(5):334-39. https://doi.org/10.9734/ijecc/2023/v13i51775
  90. 90. Sethi P. Anti Phytoviral activities of gunapaselam, on Tobacco Necrotic Virus (Tnv) affecting Cyamopsis Tetragonoloba L (Taub). J Virol Res Rep. 2023:1-2. https://doi.org/10.47363/JVRR/2023(4)147
  91. 91. Maquen-Perleche J, Aldana-Carbonel S, Muguerza LS, Sanchez-Purihuaman M, Caro-Castro J, Carreno-Farfan C. Biofertilizer based on fish waste increases the yield of Vigna unguiculata L. Walp, Zea mays L. and the rhizospheric microbiota. Sci Agropecu. 2023;14(4):529-38. https://doi.org/10.17268/sci.agropecu.2023.044
  92. 92. Jadhao GR, Chaudhary DR, Khadse V, Zodape ST. Utilization of seaweeds in enhancing productivity and quality of black gram [Vigna mungo (L.) Hepper] for sustainable agriculture. Indian J Nat Prod Resour. 2015;6(1):16-22.
  93. 93. Nath G, Singh KK. Combined effect of vermiwash with biopesticides against infestation of pod borer (Helicoverpa armigera Hub.). Int J Zoo Invest. 2015;8(3):172-202. https://doi.org/10.5958/0975-4385.2016.00029.7
  94. 94. Chattopadhyay A. Effect of vermiwash of Eisenia foetida produced by different methods on seed germination of green mung, Vigna radiata. Int J Recycl Org Waste Agric. 2015;4(4):233-37. https://doi.org/10.1007/s40093-015-0103-5
  95. 95. Aghamohammadi Z, Etesami H, Alikhani HA. Vermiwash allows reduced application rates of acaricide azocyclotin for the control of two spotted spider mite, Tetranychus urticae Koch, on bean plant (Phaseolus vulgaris L.). Ecol Eng. 2016;93:234-41. https://doi.org/10.1016/j.ecoleng.2016.05.041
  96. 96. Rathod P. Effect of seed priming on growth and productivity of chickpea (cicer arietinum L.) Under rainfed conditions of karnataka. Bioscan. 2018;11(4):2695-98.
  97. 97. Kumar D, Sharma SK, Kumar B, Kumar S, Kashyap S, Kumar R. Potential of vermiwash prepared from different combinations of organic wastes to improve the growth, yield and quality of organic black gram. Legume Res. 2022. https://doi.org/10.18805/LR-4957
  98. 98. Minaxi, Saxena J. Disease suppression and crop improvement in moong beans (Vigna radiata) through Pseudomonas and Burkholderia strains isolated from semi arid region of Rajasthan, India Biol Control. 2010;55(6):799-810. https://doi.org/10.1007/s10526-010-9292-z
  99. 99. Sharma P, Borah P. Influence of seed inoculation treatments on yield and quality of green gram (Vigna radiata L.). Legume Res. 2021;44(6):730-35. https://doi.org/10.18805/LR-4140

Downloads

Download data is not yet available.