Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. Sp2 (2025): Current Trends in Plant Science and Microbiome for Sustainability

Molecular genetic diversity and inter-generation association parameters for yield attributes in the segregating generation of barnyard millet [Echinochloa frumentacea (Roxb.) Link] crosses

DOI
https://doi.org/10.14719/pst.4805
Submitted
25 August 2024
Published
15-04-2025
Versions

Abstract

Barnyard millet, recognized for its high nutritional and agronomic value, has garnered significant attention in recent times. However, no short-duration varieties of barnyard millet have been released so far in Tamil Nadu. To ad- dress this gap, a study was conducted at the Agricultural College and Re- search Institute, TNAU, Madurai, Tamil Nadu, India, during the summer of 2020 and 2021. The study aimed to evaluate the diversity among ten barn- yard millet parents, varying in duration used in various crosses, employing 30 EST-SSR and SSR markers. Twenty of the thirty primers used demon- strated polymorphism, highlighting molecular diversity. The Polymorphic Information Content (PIC) value extended from 0.18 (BMESSR 101 and BMESSR 114) to 0.62 (BMESSR 120). Two to three alleles per locus were pro- duced by these polymorphic markers. The ten parents were grouped into four clusters, based on Jaccard’s coefficient. The parents used for different crosses in the hybridization program were chosen from the distant clusters as confirmed by the parental diversity analysis. The intergeneration herita- bility parameters, including parent-progeny correlation, regression, and narrow-sense heritability, were analyzed between the F2 and F3 generations of crosses involving extra-early parents ACM-15-343 x IEc 82 and Co (Kv) 2 x IEc 107. Regression values for yield attributes were positive and highly sig- nificant, confirming the successful inheritance of traits with minimal envi- ronmental influence. High narrow-sense heritability estimates for all yield traits indicated the potential for developing early-maturing, high-yielding genotypes. This study highlights the molecular diversity and genetic poten- tial of barnyard millet, paving the way for the development of improved cultivars.

References

  1. Chandrkar L, Sahu T, Shahi S. A systematic review of barnyard millet. Afr J Bio Sci. 2024;6(9):2674?80. https://doi.org/10.33472/AFJBS.6.9.2024.2673-2680
  2. Sood S, Khulbe RK, Gupta AK, Agrawal PK, Upadhyaya HD, Bhatt JC. Barnyard millet–a potential food and feed crop of future. Plant Breed. 2015;134(2):135?47. https://doi.org/10.1111/pbr.12243
  3. Renganathan VG, Vanniarajan C, Renuka R, Veni K, Vetriventhan M. Current status and future prospects of omics strategies in barnyard millet. In: Pudake RN, Solanke AU, Sevanthi AM, Rajendrakumar P, editors. Omics of climate resilient small millets. Springer Nature, Singapore; 2022. p. 53?68. https://doi.org/10.1007/978-981-19-3907-5
  4. Monika S, Vanniarajan C, Chandirakala R, Renuka R. Genetic variability and association analysis in the segregating population of extra early barnyard millet [Echinochloa frumentaceae (Roxb.) Link] involved crosses. Electron J Plant Breed. 2021;12(3):841?48. https://doi.org/10.37992/2021.1203.117
  5. Vanniarajan C, Anand G, Kanchana S, Veeranan V, Giridhari A, Renganathan VG. A short duration high yielding culture-Barnyard millet ACM 10145. Agric Sci Dig. 2018;38(2):123?26. https://doi.org/10.18805/ag.D-4574
  6. Rani R, Singh V, Punia M. Intergeneration correlation and parent-offspring regression in rust resistance derived F4 and F5 generations in bread wheat. Indian J Agric Sci. 2021;91(5):683?88. https://doi.org/10.56093/ijas.v91i5.112983
  7. Dellaporta SL, Wood J, Hicks JB. A plant DNA minipreparation: version II. Plant Mol Biol Rep. 1983;1:19?21. https://doi.org/10.1007/BF02712670
  8. Özkan G, Halilo?lu K, Türko?lu A, Özturk HI, Elkoca E, Poczai P. Determining genetic diversity and population structure of common bean (Phaseolus vulgaris L.) landraces from Türkiye using SSR markers. Genes. 2022;13(8):1410. https://doi.org/10.3390/genes13081410
  9. Rohlf FJ. NTSYS-pc: numerical taxonomy and multivariate analysis system. Exeter Publishing Ltd., New York; 1988.
  10. Sneath Peter HA, Sokal RR. Numerical taxonomy. The principles and practice of numerical classification. Freeman and Company, San Francisco;1973.
  11. Jaccard P. Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat. 1908;44:223?70. https://doi.org/10.5169/seals-268384
  12. Lush JL. Intra-sire correlations or regressions of offspring on dam as a method of estimating heritability of characteristics. J Anim Sci. 1940;1940(1):293?301. https://doi.org/10.2527/jas1940.19401293x
  13. Dubey S, Rangaiah S. Broad sense and narrow sense heritability in F4 and F5 generations of finger millet, Eleusine coracana (L.) Gaertn. Electron J Plant Breed. 2019;10(1):66?75. https://doi.org/10.5958/0975-928X.2019.00008.5
  14. Smith JD, Kinman ML. The use of parent-off spring regression as an estimator of heritability. Crop Sci. 1965;5:595?96. https://doi.org/10.2135/cropsci1965.0011183X000500060035x
  15. Zhu Y, Ma T, Lin Y, et al. SSR molecular marker developments and genetic diversity analysis of Zanthoxylum nitidum (Roxb.) DC. Sci Rep. 2023;13:20767. https://doi.org/10.1038/s41598-023-48022-7
  16. Vieira ML, Santini L, Diniz AL, Munhoz CD. Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol. 2016;39(3):312?28. https://doi.org/10.1590/1678-4685-GMB-2016-0027
  17. Ding Y, Zhang J, Lu Y, Lou L, Tong Z. Development of EST-SSR markers and analysis of genetic diversity in natural populations of endemic and endangered plant Phoebe chekiangensis. Biochem Systemat Ecol. 2015; 63:183?89. https://doi.org/10.1016/j.bse.2015.10.008
  18. Manimekalai M, Dhasarathan M, Karthikeyan A, Murukarthick J, Renganathan VG, Thangaraj K, et al. Genetic diversity in the barnyard millet (Echinochola frumentacea) germplasms revealed by morphological traits and simple sequence repeat markers. Curr Plant Biol. 2018;14:71?78. https://doi.org/10.1016/j.cpb.2018.09.006
  19. Roy P, Sogir SB, Basak T. On the Polymorphism Information Content (PIC)- A practical application for the DNA sequencing data. Eur J Med Health Res. 2023;1(1):21?29. https://doi.org/10.59324/ejmhr.2023.1(1).04
  20. Gimode D, Odeny DA, de Villiers EP, Wanyonyi S, Dida MM, Mneney EE, et al. Identification of SNP and SSR markers in finger millet using next generation sequencing technologies. PLoS One. 2016;11(7):e0159437. https://doi.org/10.1371/journal.pone.0159437
  21. Prabhu R. Genetics studies in barnyard millet [Echinochloa frumentaceae (Roxb.) Link] for earliness. Ph.D [Thesis]. Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai; 2020.
  22. Sallam A, Alqudah AM, Baenziger PS, Rasheed A. Editorial: Genetic validation and its role in crop improvement. Front Genet. 2023;4(13):1078246. https://doi.org/10.3389/fgene.2022.1078246
  23. Viswabharathy S, Thulasinathan T, Subburaj S, Seeli FD, Ayyenar B, Kambale R, et al. Harnessing parent-offspring regression analysis to develop high-yielding submergence tolerant lines of Oryza sativa L. Electron J Plant Breed. 2023;14(2):675?86. https://doi.org/10.37992/2023.1402.080
  24. Kahani F, Hittalmani S. Identification of F2 and F3 segregants of fifteen rice crosses suitable for cultivation under aerobic situation. SABRAO J Breed Genet. 2016;48(2):219?29.
  25. Seeli FD, Manonmani S, Pushpam R, Raveendran M. Parent progeny regression analysis in segregating generations of drought QTLs pyramided rice lines (Oryza sativa L.). Electron J Plant Breed. 2021;12(4):1178?88. https://doi.org/10.37992/2021.1204.162
  26. Viswabharathy S, Kalaimagal T, Manonmani S, Jeyakumar P, Raveendran M. Estimation of narrow sense heritability in early segregating generations of rice introgressed with Sub1 QTL. Electron J Plant Breed. 2023;14(3):912?22. https://doi.org/10.37992/2023.1403.103
  27. Kumar S, Kumar P, Arya VK, Kumar R, Kerkhi SA. Estimates of genetic components and regression analysis for grain yield and various morphological traits in bread wheat (Triticum aestivum L.). J Appl Nat Sci. 2018;10(1):6?11. https://doi.org/10.31018/jans.v10i1.1569
  28. Jayakodi M, Madheswaran M, Adhimoolam K, Perumal S, Manickam D, Kandasamy T, et al. Transcriptomes of Indian barnyard millet and barnyardgrass reveal putative genes involved in drought adaptation and micronutrient accumulation. Acta Physiol Plant. 2019;41:66. https://doi.org/10.1007/s11738-019-2855-4
  29. Qi X, Lindup S, Pittaway TS, Allouis S, Gale MD, Devos KM. Development of simple sequence repeat markers from bacterial artificial chromosomes without subcloning. Biotechniques. 2001;31(2):355?62. https://doi.org/10.2144/01312st08
  30. Supari N, Javed MA, Jahan N, Khalili E, Khan S. Screening of previously reported microsatellite markers, associated with panicle characteristics, for maker assisted selection in Malaysian rice (Oryza sativa L.). The J Anim Plant Sci. 2016;26(4):1117?23.

Downloads

Download data is not yet available.