Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 2 (2025)

Physiological response of lentil (Lens culinaris Medik) to rice residual soil moisture influenced by tillage and residue management

DOI
https://doi.org/10.14719/pst.5089
Submitted
16 September 2024
Published
24-05-2025 — Updated on 31-05-2025
Versions

Abstract

Rapid depletion of root zone soil moisture, coupled with rising atmospheric temperatures after  monsoon rice cultivation, creates water shortage for rainfed winter crops, highlighting the need for moisture conservation strategies. To test this, an experiment was conducted with winter lentil (Lens culinaris Medik) at the university experimental farm, West Bengal, India, during the 2012-2013 and 2013-2014 growing seasons. The experiment was framed using an Augmented Factorial Design with three types of tillage, viz., no tillage (NT i.e., T1), minimum tillage (MT i.e., T2) and conventional tillage (CT) and three residue management, viz.,10 cm (N1) and 20 cm (N2) rice stubble retention and rice straw mulch addition (N3). It was observed that T1N3 stored the maximum soil moisture followed by T2N3 and CT stored the least. T2N3 shaped the highest the relative leaf water content (84.9 %), Leaf Area Index (LAI) (3.7), chlorophyll content (3.0 g l-1), crop growth rate (19.8 g m-2day-1) and specific leaf weight (11.8 g cm-2) followed by T1N3 and the least was encountered under CT. Treatment T2N3 had significantly the higher biomass content (12.3 Mg ha-1) and yield (19.4 kg ha-1), resulting in higher biomass (35.2 %) and grain (37.6 %) yield over control. Hence, modification of the micro-climate by using rice straw mulch under minimum tillage needs to be adopted for lentil cultivation after monsoon rice.

References

  1. 1. Kumar R, Mishra JS, Rao KK, Mondal S, Hazra KK, Choudhary JS, et al. Crop rotation and tillage management options for sustainable intensification of rice-fallow agro-ecosystem in eastern India. Sci Rep. 2020;10(1):11146. https://doi.org/10.1038/s41598-020-67973-9
  2. 2. Pathak H, Tripathi R, Jambhulkar NN, Bisen JP, Panda BB. Eco-regional-based rice farming for enhancing productivity, profitability and sustainability. NRRI Research Bulletin. 2020. https://krishi.icar.gov.in/jspui/bitstream/123456789/31841/1/Eco-regional%20Rice%20farming.pdf
  3. 3. Malik DP, Devi M, Reddy AA. Global status of lentil production with special reference to India. Indian J Agric Sci. 2022;92(4):474-79. https://doi.org/10.56093/ijas.v92i4.123972
  4. 4. Nandi R, Mukherjee S, Bandyopadhyay PK, Saha M, Singh KC, Ghatak P, et al. Assessment and mitigation of soil water stress of rainfed lentil (Lens culinaries Medik) through sowing time, tillage and potassic fertilization disparities. Agric Water Manage. 2023;277:108120. https://doi.org/10.1016/j.agwat.2022.108120
  5. 5. Saha M, Sarkar A, Bandyopadhyay PK, Nandi R, Singh KC. Tillage and potassium management for improving yield, physiological and biochemical responses of rainfed lentil under moisture stressed rice-fallow. J Soil Sci Plant Nutr. 2021;21:637-54. https://doi.org/10.1007/s42729-020-00389-6
  6. 6. Bandyopadhyay PK, Halder S, Mondal K, Singh KC, Nandi R, Ghosh PK. Response of lentil (Lens culinaries) to post-rice residual soil moisture under contrasting tillage practices. Agric Res. 2018;7:463-79. https://doi.org/10.1007/s40003-018-0337-3
  7. 7. Mairghany M, Yahya A, Adam NM, Su ASM, Aimrun W, Elsoragaby S. Rotary tillage effects on some selected physical properties of fine textured soil in wetland rice cultivation in Malaysia. Soil & Till Res. 2019;194:104318. https://doi.org/10.1016/j.still.2019.104318
  8. 8. Datt N, Mishra R. Agro-ecosystem analysis (AESA) based integrated pest management (IPM) in sugarcane. In: Kumar P, Kumar A, Shanker R, Mishra PK, editors. Advanced Trends in Agricultural Entomology. AkiNik Publications, Sector-3, Rohini, Delhi-110085, India. 2023:63-87. https://doi.org/10.22271/ed.book.2195
  9. 9. Singh KC. Rooting behaviour and actual evapotranspiration of lentil under different tillage and residue management. PhD thesis, Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India. 2016:312. http://doi.org/10.13140/RG.2.1.1628.2486
  10. 10. Castellini M, Fornro F, Garofalo P, Giglio L, Rinaldi M, Ventrella D, et al. Effects of no-tillage and conventional tillage on physical and hydraulic properties of fine textured soils under winter wheat. Water. 2019;11(3):484. https://doi.org/10.3390/w11030484
  11. 11. Reddy AA. Pulses production technology: Status and way forward. Economic and Political Weekly. 2009;26:73-80. https://www.epw.in/journal/2009/52/review-agriculture-review-issues-specials/pulses-production-technology-pulses
  12. 12. Kalaiselvi B, Kumari S, Sathya S, Dharumarajan S, Kumar KA, Hegde R. Crop management practices for carbon sequestration. In: Meena SK, Ferreira ADV, Meena VS, Rakshit A, Shrestha RP, Rao Ch. S, Siddique KHM, editors. Agricultural Soil Sustainability and Carbon Management. Academic Press.2023:27-68. https://doi.org/10.1016/B978-0-323-95911-7.00008-6
  13. 13. Ram H, DadhwalV, Vashist KK, Kaur H. Grain yield and water use efficiency of wheat (Triticum aestivum L.) in relation to irrigation levels and rice straw mulching in North West India. Agric Water Manage. 2013;128:92-101. https://doi.org/10.1016/j.agwat.2013.06.011
  14. 14. Kumar V, Singh S, Chhokar RS, Malik RK, Brainard DC, Ladha JK. Weed management strategies to reduce herbicide use in zero-till rice-wheat cropping systems of the Indo-Gangetic Plains. Weed Technol. 2017;27(1):241-54. https://doi.org/10.1614/WT-D-12-00069.1
  15. 15. Aeric Haphaquept, US Soil Taxonomy, Soil Survey Staff. 2003.
  16. 16. Sahu PK, Das AK. Agriculture and applied statistics-II, Kalyani Publishers, New Delhi. 2014;(2):549.
  17. 17. Blake GR, Hartge KH. Bulk density. Methods of soil analysis: Part 1 Physical and mineralogical methods. 1986;5:363-75. https://doi.org/10.2136/sssabookser5.1.2ed.c13
  18. 18. Barrs HD, Weatherley PE. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci. 1962;15(3):413-28. https://www.publish.csiro.au/BI/pdf/BI9620413
  19. 19. Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24(1):1. http://doi.org/10.1104/pp.24.1.1
  20. 20. Sestak Z, Catský J, Jarvis PG. Plant photosynthetic production. Manual of methods. Plant photosynthetic production. Manual of Methods. 1972;47(2):235. https://doi.org/10.1086/407275
  21. 21. Radford PJ. Growth analysis formulae-their use and abuse 1. Crop Sci. 1967;7(3):171-75. https://doi.org/10.2135/cropsci1967.0011183X000700030001x
  22. 22. Watson DJ. The physiological basis of variation in yield. Adv Agron. 1952;4:101-45. https://doi.org/10.1016/S0065-2113(08)60307-7
  23. 23. Nandi R, Mondal K, Singh KC, Saha M, Bandyopadhyay PK, Ghosh PK. Yield-water relationships of lentil grown under different rice establishments in Lower Gangetic Plain of India. Agric Water Manage. 2021;246:106675. https://doi.org/10.1016/j.agwat.2020.106675
  24. 24. Bandyopadhyay PK, Singh KC, Mondal K, Nath R, Ghosh PK, Kumar N, et al. Effects of stubble length of rice in mitigating soil moisture stress and on yield of lentil (Lens culinaris Medik) in rice-lentil relay crop. Agric Water Manage. 2016;173:91-102. https://doi.org/10.1016/j.agwat.2016.05.009
  25. 25. Martínez-Mena M, Carrillo-López E, Boix-Fayos C, Almagro M, Franco NG, Díaz-Pereira E, et al. Long-term effectiveness of sustainable land management practices to control runoff, soil erosion and nutrient loss and the role of rainfall intensity in Mediterranean rainfed agroecosystems. Catena. 2020;187:104352. https://doi.org/10.1016/j.catena.2019.104352
  26. 26. Pittelkow CM, Liang X, Linquist BA, Groenigen KJV, Lee J, Lundy ME, et al. Productivity limits and potentials of the principles of conservation agriculture. Nature. 2014;517(7534):365-68. https://doi.org/10.1038/nature13809
  27. 27. Usowicz B. Lipiec J. Spatial variability of saturated hydraulic conductivity and its links with other soil properties at the regional scale. Sci Rep. 2021;11(1):8293. https://doi.org/10.1038/s41598-021-86862-3
  28. 28. Das A, Layek J, Ramkrushna GI, Rangappa K, Lal R, Ghosh PK, et al. Effects of tillage and rice residue management practices on lentil root architecture, productivity and soil properties in India’s Lower Himalayas. Soil & Till Res. 2019;194:104313. https://doi.org/10.1016/j.still.2019.104313
  29. 29. Mukherjee S, Nandi R, Kundu A, Bandyopadhyay PK, Nalia A, Ghatak P, et al. Soil water stress and physiological responses of chickpea (Cicer arietinum L.) subject to tillage and irrigation management in lower Gangetic plain. Agric Water Manage. 2022;263:107443. https://doi.org/10.1016/j.agwat.2021.107443
  30. 30. Kuotsu K, Das A, Lal R, Munda GC, Ghosh PK, Ngachan SV. Land forming and tillage effects on soil properties and productivity of rainfed groundnut (Arachis hypogaea L.)–rapeseed (Brassica campestris L.) cropping system in north eastern India. Soil and Till Res. 2014;142:15-24. https://doi.org/10.1016/j.still.2014.04.008
  31. 31. Biswas T, Bandyopadhyay PK, Nandi R, Mukherjee S, Kundu A, Reddy P, et al. Impact of mulching and nutrients on soil water balance and actual evapotranspiration of irrigated winter cabbage (Brassica oleracea var. capitata L.). Agric Water Manage. 2022;263:107456. https://doi.org/10.1016/j.agwat.2022.107456
  32. 32. Sharma BR, Rao KV, Vittal KP, Ramakrishna YS, Amarasinghe U. Estimating the potential of rainfed agriculture in India: Prospects for water productivity improvements. Agric Water Manage. 2010;97(1):23-30. https://doi.org/10.1016/j.agwat.2009.08.002
  33. 33. Richards RA, Rebetzke GJ, Watt M, Spielmeyer W, Dolferus R. Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment. Funct Plant Biol. 2010;37(2):85-97. https://doi.org/10.1071/FP09219
  34. 34. Sadras VO. Does partial root-zone drying improve irrigation water productivity in the field? A meta-analysis. Irrig Sci. 2008;27:183-90. https://doi.org/10.1007/s00271-008-0141-0
  35. 35. Thidar M, Gong D, Mei, Gao L, Li H, Hao W, et al. Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China. Agric Water Manage. 2020;241:106340. https://doi.org/10.1016/j.agwat.2020.106340
  36. 36. Ngangom B, Das A, Lal R, Idapuganti RG, Layek J, Basavaraj S, et al. Double mulching improves soil properties and productivity of maize-based cropping system in eastern Indian Himalayas. Int Soil Water Conserv Res. 2020;8(3):308-20.https://doi.org/10.1016/j.iswcr.2020.07.001
  37. 37. Sharma P, Abrol V, Sharma KR, Sharma N, Phogat VK, Vikas V. Impact of conservation tillage on soil organic carbon and physical properties–A review. Int J Bio-resource Stress Manage. 2016;7(1):151-61. https://doi.org/10.23910/IJBSM/2016.7.1.1387
  38. 38. Mehra P, Kumar P, Bolan N, Desbiolles J, Orgill S, Denton MD. Changes in soil-pores and wheat root geometry due to strategic tillage in a no-tillage cropping system. Soil Res. 2020;59(1):83-96. https://doi.org/10.1071/SR20010
  39. 39. da Silva GF, Calonego JC, Luperini BCO, Chamma L, Alves ER, Rodrigues SA, et al. Soil-plant relationships in soybean cultivated under conventional tillage and long-term no-Tillage. Agron. 2022;12(3):697. https://doi.org/10.3390/agronomy12030697
  40. 40. Xu L, Tang G, Tian J, Wang X, Zhang J. Effects of no-tillage sowing on soil properties and forage wheat and Italian ryegrass yields in winter fallow paddy fields. Peer J. 2021;28(9):e10573. https://doi.org/10.7717/peerj.10573
  41. 41. Layek J, Das A, Ghosh PK, Rangappa K, Lal R, Idapuganti RG, et al. Double no-till and rice straw retention in terraced sloping lands improves water content, soil health and productivity of lentil in Himalayan foothills. Soil & Till Res. 2022;221:105381. https://doi.org/10.1016/j.still.2022.105381
  42. 42. Panettieri M, de Sosa LL, Domínguez MT, Madejón E. Long-term impacts of conservation tillage on Mediterranean agricultural soils: Shifts in microbial communities despite limited effects on chemical properties. Agric Ecosyst Environ. 2020;304:107144. https://doi.org/10.1016/j.agee.2020.107144
  43. 43. El-Hendawy S, Alsamin B, Mohammed N, Al-Suhaibani N, Refay Y, Alotaibi M, et al. Combining planting patterns with mulching bolsters the soil water content, growth, yield and water use efficiency of spring wheat under limited water supply in arid regions. Agron. 2022;12(6):1298. https://doi.org/10.3390/agronomy12061298
  44. 44. Chauhan MP, Singh IS. Relationship between seed yield and its component characters in lentil (Lens culinaris medik.). Leg Res.2001;24(4):278-80.
  45. 45. Bhagat P, Gosal SK, Singh CB. Effect of mulching on soil environment, microbial flora and growth of potato under field conditions. Indian J Agric Sci. 2016;50(6):542-48. https://doi.org/10.18805/ijare.v50i6.6671
  46. 46. Mukherjee A, Kundu M, Sarkar S. Role of irrigation and mlch on yield, evapotranspiration rate and water use pattern of tomato (Lycopersicon esculentum L.). Agric Water Manage. 2010;9u8(1):182-89. https://doi.org/10.1016/j.agwat.2010.08.018
  47. 47. Chadordooz-Jeddi A, Ghassemi-Golezani K, Zehtab-Salmasi S. The impact of seed size and aging on physiological performance of lentil under water stress. J Plant Physiology and Breeding. 2015;5(1):13-21. https://breeding.tabrizu.ac.ir/article_3793.html
  48. 48. Loka DA, Oosterhuis DM, Baxevanos D, Noulas C, Hu W. Single and combined effects of heat and water stress and recovery on cotton (Gossypium hirsutum L.) leaf physiology and sucrose metabolism. Plant Physiol Biochem. 2020;148:166-79. https://doi.org/10.1016/j.plaphy.2020.01.015
  49. 49. Marchin RM, Ossola A, Leishman MR, Ellsworth DS. A simple method for simulating drought effects on plants. Front Plant Sci. 2020;10:493655. https://doi.org/10.3389/fpls.2019.01715
  50. 50. Dalin C, Wada Y, Kastner T, Puma MJ. Ground water depletion embedded in international food trade. Nature. 2017;543(7647):700-04. https://doi.org/10.1038/nature21403
  51. 51. Mairghany M. Yahya A, Adam NM, Su ASM, Aimrun W, Elsoragaby S. Rotary tillage effects on some selected physical properties of fine textured soil in wetland rice cultivation in Malaysia. Soil & Till Res. 2019;194:104318. https://doi.org/10.1016/j.still.2019.104318
  52. 52. Varatharajan T, Choudhary AK, PooniyaV, Dass A, Harish MN. Integrated crop management practices for enhancing productivity, profitability, production-efficiency and monetary-efficiency of pigeon pea (Cajanus cajan) in Indo-Gangetic plains region. Indian J Agric Sci. 2019;89(3):559-63. https://doi.org/10.56093/ijas.v89i3.87606
  53. 53. Jinger D, Dhar S, Dass A, Sharma VK, Paramesh V, Parihar M, et al. Co-fertilization of silicon and phosphorus influences the dry matter accumulation, grain yield, nutrient uptake and nutrient-use efficiencies of aerobic rice. Silicon. 2022;14:4683-97. https://doi.org/10.1007/s12633-021-01239-5
  54. 54. Rangappa K, Das A, Layek J, Basavaraj S, Debnath S, Bhupenchandra I, et al. Conservation tillage and residue management practices in rice improves stress tolerance of succeeding vegetable pea by regulating physiological traits in Eastern Himalayas. Sci Hortic. 2024;327:112842. https://doi.org/10.1016/j.scienta.2024.112842

Downloads

Download data is not yet available.