Domestication of crop species occurred through the processes of natural selection followed by human intervention which further diversified the crop species and contributed to the accelerated crop cultivation from the ancient civilizations across the world. Based on the soil and climatic factors, crops were domesticated primarily for food purposes in different regions of the world which now recognized as the centres of origin. The genetic diversity patterns of genomes of crop plants have provided a detailed understanding of domestication processes. Elucidation of structural and functional perspectives of genomic changes during crop domestication covering strategies, current status and future perspectives are discussed in this article. Domestication of crop phenotypes is influenced by both pre-existing variations in the progenitor species as well as novel mutations. Genes responsible for the domestication syndrome in different crops have been dissected through several QTL and GWAS studies. The intergenerational selection of plant traits promotes improved acclimatization and adaptation to agricultural management strategies. Only a small number of genes are involved in crop domestication, despite the lengthy process, some of these genes are conserved across species. De novo wild species domestication as well as targeted re-domestication are both possible. Modern genetic tools can be effectively utilized for the modifications of targeted genes. In the era of global climatic change patterns, the potential of super domesticating wild crop species will play a major role in adaptation processes, which in turn would safeguard food security effectively through sustainable approaches.