Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Differential phenotypic response of the black gram genotypes under salinity stress at the tissue level

DOI
https://doi.org/10.14719/pst.6870
Submitted
23 December 2024
Published
24-07-2025 — Updated on 31-07-2025
Versions

Abstract

Salinity stress in black gram is an important challenging issue, especially in delta regions. The independent evolving nature of the salt tolerance in each genotype is the main drawback of saline tolerance crop improvement. The previous study identified two tolerant and two susceptible black gram genotypes under salinity stress at the vegetative stage through hydroponics. In this study, these genotypes were screened for the accumulation of sodium and potassium ions and photosynthetic activity. Different parts of plants viz., roots, stems and leaves were analyzed with the internal sodium and potassium ions. The tolerant genotypes showed a low level of sodium accumulation and a higher level of potassium accumulation in all plant parts compared to the susceptible genotypes. The tolerant genotypes had higher SPAD and fluorescence values, which signify the photosynthetic activity. The tolerant genotypes had higher ion homeostasis compared to the susceptible genotypes. These findings can be adopted in the salinity tolerance breeding programme in black gram.

References

  1. 1. Kaewwongwal A, Kongjaimun A, Somta P, Chankaew S, Yimram T, Srinives P. Genetic diversity of the black gram [Vigna mungo (L.) Hepper] gene pool as revealed by SSR markers. Breed Sci [Internet]. 2015;65(2):127–37. https://doi.org/10.1270/jsbbs.65.127
  2. 2. Nair RM, Chaudhari S, Devi N, Shivanna A, Gowda A, Boddepalli VN, et al. Genetics, genomics and breeding of black gram [Vigna mungo (L.) Hepper]. Front Plant Sci [Internet]. 2024;14:1273363. https://doi.org/10.3389/fpls.2023.
  3. 1273363
  4. 3. Shanthi P, Ramesh P, Parameshwaran M, Umadevi M, Sakaravarthy KS, Vivekananthan T. Morphological and yield attribute of black gram genotypes under different salinity stress conditions. Indian J Agric Res [Internet]. 2021;1. https://doi.org/10.18805/IJARe.A-5697
  5. 4. Iseki K, Takahashi Y, Muto C, Naito K, Tomooka N. Diversity and evolution of salt tolerance in the genus Vigna. In; Mondal TK, editor. PLoS One [Internet]. 2016;11(10):e0164711. https://doi.org/10.1371/journal.pone.0164711
  6. 5. Noda Y, Sugita R, Hirose A, Kawachi N, Tanoi K, Furukawa J, et al. Diversity of Na+ allocation in salt-tolerant species of the genus Vigna. Breed Sci [Internet]. 2022;72(4):22012. https://doi.org/10.1270/jsbbs.22012
  7. 6. Naveed SA, Zhang F, Zhang J, Zheng TQ, Meng LJ, Pang YL, et al. Identification of QTN and candidate genes for salinity tolerance at the germination and seedling stages in rice by genome-wide association analyses. Sci Rep [Internet]. 2018;8(1):6505. https://doi.org/10.1038/s41598-018-24946-3
  8. 7. Julkowska MM, Hoefsloot HCJ, Mol S, Feron R, de Boer GJ, Haring MA, et al. Capturing Arabidopsis root architecture dynamics with root-fit reveals diversity in responses to salinity. Plant Physiol [Internet]. 2014;166(3):1387–402. https://doi.org/10.1104/pp.114.248963
  9. 8. Munns R. Genes and salt tolerance: bringing them together. New Phytol. [Internet]. 2005;167(3):645–63. https://doi.org/10.1111/j.1469-8137.2005.01487.x
  10. 9. Roy SJ, Negrão S, Tester M. Salt resistant crop plants. Curr Opin Biotechnol [Internet]. 2014;26:115–24. https://doi.org/10.1016/j.copbio.2013.12.004
  11. 10. Jackson P, Robertson M, Cooper M, Hammer G. The role of physiological understanding in plant breeding; from a breeding perspective. Field Crops Res [Internet]. 1996;49(1):11–37. https://doi.org/10.1016/S0378-4290(96)01012-X
  12. 11. Munns R. Comparative physiology of salt and water stress. Plant Cell Environ [Internet]. 2002;25(2):239–50. https://doi.org/10.1046/j.0016-8025.2001.00808.x
  13. 12. Zhu JK. Plant salt tolerance. Trends Plant Sci [Internet]. 2001;6(2):66–71. https://doi.org/10.1016/S1360-1385(00)
  14. 01838-0
  15. 13. Lacerda CF, Júnior AJO, Filho LCA, Oliveira TS de, Guimarães FVA, Gomes-Filho E, et al. Morpho-physiological responses of cowpea leaves to salt stress. Braz J Plant Physiol [Internet]. 2006;18(4):455–65. https://doi.org/10.1590/S1677-04202006000400003
  16. 14. Punithavathy. Variability analysis for yield, yield components and salinity tolerance in black gram [Vigna mungo (L.) Hepper]. [Coimbatore]: Anbil Dharmalingam Agricultural College and Research Institute, Tamil Nadu Agricultural University; 2020
  17. 15. Hoagland DR, Snyder WC. Nutrition of strawberry plant under controlled conditions:(a) effects of deficiencies of boron and certain other elements: (b) susceptibility to injury from sodium salts. In: Proceedings of the American Society of Horticultural Sci; 1933. p. 288–94
  18. 16. IRRI. STAR - Statistical Tool for Agricultural Research [Internet]. LosBaños, Laguna, Philippines: Biometrics and Breeding Informatics, PBGB Division, International Rice Research Institute; 2016 [cited 2024 Nov 27]. Available from: https://bbi.irri.org/products
  19. 17. Lê S, Josse J, Husson F. FactoMineR: An R package for multivariate analysis. J Stat Softw [Internet]. 2008;25(1):1–18. https://doi.org/10.18637/jss.v025.i01
  20. 18. Kassambara A. ggcorrplot: Visualization of a correlation matrix using “ggplot2” [Internet]. Vol. 3, CRAN: Contributed Packages; 2016. p. 908. https://doi.org/10.32614/CRAN.package.ggcorrplot
  21. 19. Zhang JL, Flowers TJ, Wang SM. Mechanisms of sodium uptake by roots of higher plants. Plant Soil. 2010;326(1–2):45–60. https://doi.org/10.1007/s11104-009-0076-0
  22. 20. Warwick NWM, Halloran GM. Accumulation and excretion of sodium, potassium and chloride from leaves of two accessions of Diplachne fusca (L.) Beauv. New Phytol. 1992;121(1):53–61. https://doi.org/10.1111/j.1469-8137.1992.
  23. tb01092.x
  24. 21. Schachtman D, Liu W. Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends Plant Sci [Internet]. 1999;4(7):281–87. https://doi.org/10.1016/S1360-1385(99)01428-4
  25. 22. Wang F, Iki Y, Tanoi K, Naito K. Phenotypic responses in the root of salt-tolerant accessions of Vigna marina and Vigna luteola under salt stress. Genet Resour Crop Evol [Internet]. 2024;71(6):2631–40. https://doi.org/10.1007/s107
  26. 22-023-01794-3
  27. 23. Iwahashi M, Tachibana Y, Ohta Y. Accumulation of calcium, magnesium, potassium and sodium with growth of individual leaves, petioles and stems of cucumber plants. Soil Sci Plant Nutr. 1982;28(4):441–49. https://doi.org/10.
  28. 1080/00380768.1982.10432384
  29. 24. Poustini K, Siosemardeh A. Ion distribution in wheat cultivars in response to salinity stress. Field Crops Res [Internet]. 2004;85(2–3):125–33. https://doi.org/10.1016/S0378-4290(03)00157-6
  30. 25. de Lacerda CF, Cambraia J, Oliva MA, Ruiz HA, Prisco JT. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environ Exp Bot [Internet]. 2003;49(2):107–20. https://doi.org/10.1016/S0098-8472(02)00064-3
  31. 26. Nandy (Datta) P, Das S, Ghose M, Spooner-Hart R. Effects of salinity on photosynthesis, leaf anatomy, ion accumulation and photosynthetic nitrogen use efficiency in five Indian mangroves. Wetl Ecol Manag [Internet]. 2007;15(4):347–57. https://doi.org/10.1007/s11273-007-9036-8

Downloads

Download data is not yet available.