This is an outdated version published on 10-05-2025. Read the
most recent version.
Research Articles
Early Access
Biochemical composition of blackberry varieties cultivated under the climatic conditions of the Samarkand region
Department of Plant Physiology and Microbiology, Samarkand State University named after Sharof Rashidov, Samarkand 140 104, Uzbekistan
Department of Plant Physiology and Microbiology, Samarkand State University named after Sharof Rashidov, Samarkand 140 104, Uzbekistan
Department of Plant Physiology and Microbiology, Samarkand State University named after Sharof Rashidov, Samarkand 140 104, Uzbekistan
Institute of Bioorganic Chemistry of The Academy of Sciences of The Republic of Uzbekistan, Tashkent 100 125, Uzbekistan
Abstract
This study examined blackberry fruits' biochemical composition and quality at full ripeness. The content of carbohydrates, vitamins, flavonoids and amino acids was analyzed in dried fruits from the following blackberry varieties: Jumbo, Thornfree, Karaka Black, Brazos, Brzezina, Cacanska Bestrna and Chester. The results indicated that the fruits contained relatively high concentrations of the amino acids asparagine, cysteine, alanine and proline. Among the varieties, Chester exhibited the highest amino acid content (22.55 mg/g), closely followed by Thornfree (22.30 mg/g). Carbohydrate content was observed to be the highest in the Cacanska Bestrna variety (9.01 mg/g) and the lowest in the Karaka Black variety (3.37 mg/g). Vitamins (B2, B6, B9, B12, PP and C) and flavonoids (Hypolyethylen, Hypolyethylen 7-O-D-Gly, Rutin, Isorhamnetin and Hyperoside) were also quantified. The analysis revealed that flavonoid content was exceptionally high in the Karaka Black variety (84.116 mg/100 g) and relatively low in the Brzezina variety (35.389 mg/100 g). Regarding vitamin C content, Karaka Black recorded the highest levels (211.321 mg/100 g), whereas Jumbo exhibited the lowest levels (135.265 mg/100 g). These findings could be a valuable resource for the food processing industry and agricultural practices. They provide a basis for establishing quality standards for different blackcurrant varieties and identifying the optimal harvest period for each.
References
- 1. Lykins S, Scammon K, Lawrence BT, Melgar JC. Photosynthetic light response of floricane leaves of erect blackberry cultivars from fruit development into the postharvest period. HortScience. 2021; 56:347–51. https://doi.org/10.21273/hortsci15571-20
- 2. Грюнер ЛА. Адаптационные возможности ежевики в условиях Орловской области. Современное садоводство – Contemp Hortice. 2019;(3):27–41. https://doi.org/10.24411/2312-6701-2019-10305 [in Russian]
- 3. Moser R, Raffaelli R, Thilmany-McFadden D. Consumer preferences for fruit and vegetables with credence-based attributes: A review. Int Agribus Manag Rev. 2011;14:121–41. https://ageconsearch.umn.edu/record/103990
- 4. Strik BC. Berry crops: Worldwide area and production systems. In: Zhao Y, editor. Berry Fruit Value Added Products for Health Promotion. 1st ed. Boca Raton, FL: CRC; 2007. p. 349. https://books.google.co.uz
- 5. Mikulic-Petkovsek M, Schmitzer V, Slatnar A, Stampar F, Veberic R. Composition of sugars, organic acids and total phenolics in 25 wild or cultivated berry species. J Food Sci. 2012;77(10):C1064–70. https://doi.org/10.1111/j.1750-3841.2012.02896.x
- 6. Zia-Ul-Haq M, Riaz M, De Feo V, Jaafar HZE, Moga M. Rubus Fruticosus L.: Constituents, biological activities and health-related uses. Molecules. 2014;19:10998–11029. https://doi.org/10.3390/molecules190810998
- 7. Wang Y, Johnson-Cicalese J, Singh AP, Vorsa N. Characterization and quantification of flavonoids and organic acids over fruit development in American cranberry (Vaccinium macrocarpon) cultivars using HPLC and APCI-MS/MS. Plant Sci. 2017;262:91–102. https://doi.org/10.1016/j.plantsci.2017.06.004
- 8. Sharma N, Kaur H, Kaur G, Singh A, Sharma S. Appraisal of cutting-edge techniques for prolonging fresh berries' shelf life: Innovations in essential oil nanoemulsion-based edible coatings. Sci Hortic. 2024;337:113564. https://doi.org/10.1016/j.scienta.2024.113564
- 9. Kaume L, Howard LR, Devareddy L. The blackberry fruit: A review on its composition and chemistry, metabolism and bioavailability and health benefits. J Agric Food Chem. 2012;60(23):5716–27. https://doi.org/10.1021/jf203318p
- 10. Salanta LC, Uifalean A, Iuga CA, Tofana M, Cropotova J, Pop OL, et al. Valuable food molecules with potential benefits for human health. In: The Health Benefits of Foods - Current Knowledge and Further Development. London, UK: IntechOpen; 2020. http://dx.doi.org/10.5772/intechopen.91218
- 11. Milivojevic J, Maksimovic V, Nikolic M, Bogdanovic J, Maletic R, Milatovic D. Chemical and antioxidant properties of cultivated and wild Fragaria and Rubus berries. J Food Qual. 2011;34:1–9. https://doi.org/10.1111/j.1745-4557.2010.00360.x
- 12. Garcia-Seco D, Zhang Y, Gutierrez-Manero FJ, Martin C, Ramos-Solano B. Application of Pseudomonas fluorescens to blackberry under field conditions improves fruit quality by modifying flavonoid metabolism. PLoS One. 2015;10:e0142639. https://doi.org/10.1371/journal.pone.0142639
- 13. Kolniak-Ostek J, Kucharska AZ, Sokol-Letowska A, Fecka I. Characterization of phenolic compounds of thorny and thornless blackberries. J Agric Food Chem. 2015;63:3012–21. https://doi.org/10.1021/jf5039794
- 14. Kiss AK, Piwowarski JP. Ellagitannins, gallotannins and their metabolites—the contribution to the anti-inflammatory effect of food products and medicinal plants. Curr Med Chem. 2018;25:4946–67. https://doi.org/10.2174/0929867323666160919111559
- 15. Parmenter BH, Croft KD, Hodgson JM, Dalgaard F, Bondonno CP, Lewis JR, et al. An overview and update on the epidemiology of flavonoid intake and cardiovascular disease risk. Food Funct. 2020;11:6777–806. https://doi.org/10.1039/d0fo01118e
- 16. Pereira WL, de Oliveira TT, Kanashiro MM, Filardi MA, da Costa MR, da Costa LM. Anticarcinogenic potential of the morin bioflavonoid against SK-MEL-5 human melanoma cells. Biointerface Res Appl Chem. 2017;7:2098–102.
- 17. Mahmood T, Anwar F, Abbas M, Boyce MC, Saari N. Compositional variation in sugars and organic acids at different maturity stages in selected small fruits from Pakistan. Int J Mol Sci. 2012;13:1380–92. https://doi.org/10.3390/ijms13021380
- 18. Jennings DL. Blackberries and related fruits. In: Caballero B, Finglas P, Toldra F, editors. Encyclopedia of Food Sciences and Nutrition. 2nd ed. Cambridge, MA: Academic Press; 2003. p. 546–50. https://doi.org/10.3390/foods10071581
- 19. Mikulic-Petkovsek M, Koron D, Zorenc Z, Veberic R. Do optimally ripe blackberries contain the highest levels of metabolites? Food Chem. 2017;215:41–49. https://doi.org/10.1016/j.foodchem.2016.07.144
- 20. Cho MJ, Howard LR, Prior RL, Clark JR. Flavonoid glycosides and antioxidant capacity of various blackberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry. J Sci Food Agric. 2004;84:1771–82. https://doi.org/10.1002/jsfa.1885
- 21. Dai J, Patel JD, Mumper RJ. Characterization of blackberry extract and its antiproliferative and anti-inflammatory properties. J Med Food. 2007;10:258–65. https://doi.org/10.1089/jmf.2006.238
- 22. Karlsen A, Retterstol L, Laake P, Paur I, Kjolsrud-Bohn S, Sandvik L, et al. Anthocyanins inhibit nuclear factor-kappaB activation in monocytes and reduce plasma concentrations of pro-inflammatory mediators in healthy adults. J Nutr. 2007;137:1951–4. https://doi.org/10.1093/jn/137.8.1951
- 23. Retterstol K, et al. Studies on the metabolism of essential fatty acids in isolated human testicular cells. Reproduction. 2001;121(6):881–7. https://doi.org/10.1530/rep.0.1210881
- 24. Krikorian R, Shidler MD, Nash TA, Kalt W, Vinqvist-Tymchuk MR, Shukitt-Hale B, et al. Blueberry supplementation improves memory in older adults. J Agric Food Chem. 2010;58:3996–4000. https://doi.org/10.1021/jf9029332
- 25. Jensen GS, Wu X, Patterson KM, Barnes J, Carter SG, Scherwitz L, et al. In vitro and in vivo antioxidant and anti-inflammatory capacities of an antioxidant-rich fruit and berry juice blend: Results of a pilot and randomized, double-blinded, placebo-controlled, crossover study. J Agric Food Chem. 2008;56:8326–33. https://doi.org/10.1021/jf8016157
- 26. Meiers S, Kemeny M, Weyand U, Gastpar R, von Angerer E, Marko D. The anthocyanidins cyanidin and delphinidin are potent inhibitors of the epidermal growth factor receptor. J Agric Food Chem. 2001;49:958–62. https://doi.org/10.1021/jf0009100
- 27. Bomser J, Madhavi DL, Singletary K, Smith MA. In vitro anticancer activity of fruit extracts from Vaccinium species. Planta Med. 1996;62:212–16. https://doi.org/10.1055/s-2006-957862
- 28. Jayaprakasam B, Olson LK, Schutzki RE, Tai MH, Nair MG. Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by anthocyanins and ursolic acid in Cornelian cherry (Cornus mas). J Agric Food Chem. 2006;54:243–48. https://doi.org/10.1021/jf0520342
- 29. Tsuda T, Horio F, Uchida K, Aoki H, Osawa T. Dietary cyanidin 3-O-?-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J Nutr. 2003;133:2125–32. https://doi.org/10.1093/jn/133.7.2125
- 30. Babakholov, S, Bobojonov, I, Hasanov, S, Glauben T. An empirical assessment of the interactive impacts of irrigation and climate on farm productivity in Samarkand region, Uzbekistan. Environ Chall. 2022;7:100502. https://doi:10.1016/j.envc.2022.100502
- 31. Davidson M, Louvet F, Meudec E, Landolt C, Grenier K, Périno S, et al. Optimized single-step recovery of lipophilic and hydrophilic compounds from raspberry, strawberry and blackberry pomaces using a simultaneous ultrasound-enzyme-assisted extraction (UEAE). Antioxidants. 2023;12(10):1793. https://doi.org/10.3390/antiox12101793
- 32. Mikuli?-Petkovšek M, Koron D, Veberi? R. Quality parameters of currant berries from three different cluster positions. Sci Hortic. 2016;210:188–96. https://doi.org/10.1016/j.scienta.2016.07.030
- 33. Salakhov MS, et al. Synthesis of endo, exo-1,2,3,4,11,11-hexachlorotricyclo[6.2.1.05,10]-undec-2-en-7,8-dicarboxylic acid N-(2,4,6-tribromophenyl) imide. Russ J Org Chem. 2007;43:679–80. https://doi.org/10.1134/s1070428007050077
- 34. Bobinait? R, Viškelis P, Venskutonis PR. Chemical composition of raspberry (Rubus spp.) cultivars. Nutr Compo Fruit Cul. 2016:713–31. https://doi.org/10.1016/B978-0-12-408117-8.00029-5
- 35. ?echovi?ien? I, Tarasevi?ien? Ž, Hallman E, Jab?o?ska-Trypu? A, ?esonien? L, Šileikien? D. Ultrasound and microwave-assisted extraction of blackberry (Rubus fruticosus L.) pomace: analysis of chemical properties and anticancer activity. Plants. 2025;14(3):384. https://doi.org/10.3390/plants14030384
- 36. Tkacz K, Chmielewska J, Turkiewicz IP, Nowicka P, Wojdy?o A. Dynamics of changes in organic acids, sugars, phenolic compounds and antioxidant activity of sea buckthorn and sea buckthorn-apple juices during malolactic fermentation. Food Chem. 2020;332. https://doi.org/10.3390/plants14030384
- 37. Tosun I, Ustun NS, Tekguler B. Physical and chemical changes during ripening of blackberry fruits. Sci Agric. 2008;65:87–90. https://doi.org/10.1590/S0103-90162008000100012
- 38. Mikuli?-Petkovšek M, Veberi? R, Hudina M, Zorenc Z, Koron D, Senica M. Fruit quality characteristics and biochemical composition of fully ripe blackberries harvested at different times. Foods. 2021;10:1581. https://doi.org/10.3390/foods10071581
- 39. Veberi? R, Štampar F, Schmitzer V, Cunja V, Zupan A, Koron D, et al. Changes in the contents of anthocyanins and other compounds in blackberry fruits due to freezing and long-term frozen storage. J Agric Food Chem. 2014;62(29):6926–35. https://doi.org/10.1021/jf405143w
- 40. Milivojevi? J, Maksimovi? V, Nikoli? M, Bogdanovi? J, Maleti? R, Milatovi? D. Chemical and antioxidant properties of cultivated and wild Fragaria and Rubus berries. J Food Qual. 2011;34(1):1–9. https://doi.org/10.1111/j.1745-4557.2010.00360.x
- 41. Croge CP, Cuquel FL, Pintro PTM, Biasi LA, De Bona CM. Antioxidant capacity and polyphenolic compounds of blackberries produced in different climates. HortScience. 2019;54:2209–13. https://doi.org/10.21273/hortsci14377-19
- 42. Kaume L, Howard LR, Devareddy L. The blackberry fruit: A review on its composition and chemistry, metabolism and bioavailability and health benefits. J Agric Food Chem. 2012;60:5716–27. https://doi.org/10.1590/S0103-90162008000100012
- 43. Prior RL, Wu X, Cao G. Absorption and metabolism of anthocyanins in elderly women after consumption of elderberry or blueberry. J Nutr. 2002;132(7):1865–71. https://doi.org/10.1093/jn/132.7.1865
- 44. Čanadanović-Brunet J, Tumbas Šaponjac V, Stajčić S, Ćetković G, Čanadanović V, Ćebović T, Vulić J. Polyphenolic composition, antiradical and hepatoprotective activities of bilberry and blackberry pomace extracts. J Berry Res. 2019;9(2):349–62. https://content.iospress.com/articles/journal-of-berry-research/jbr180362
- 45. Hollman P, De Vries J, van Leeuwen SD, Mengelers M, Katan MB. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am J Clin Nutr. 1995;62:1276–82. https://doi.org/10.1093/ajcn/62.6.1276
- 46. Gee JM, DuPont MS, Rhodes MJ, Johnson IT. Quercetin glucosides interact with the intestinal glucose transport pathway. Free Rad Biol Med. 1998;25(1):19–25. https://doi.org/10.1016/S0891-5849(98)00020-3
- 47. Yang JH, Shin BY, Han JY, Kim MG, Wi JE, Kim YW, et al. Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes. Toxicology and applied pharmacology. 2014;274(2):293–301. https://doi.org/10.1016/j.taap.2013.10.026
- 48. Popiolek-Kalisz J, Blaszczak P, Fornal E. Dietary isorhamnetin intake is associated with lower blood pressure in coronary artery disease patients. Nutrients. 2022;14(21):4586. https://doi.org/10.3390/nu14214586
- 49. Gong G, Guan YY, Zhang ZL, Rahman K, Wang SJ, Zhou S, et al. Isorhamnetin: A review of pharmacological effects. Biomed Pharmaco. 2020;128:110301. https://doi.org/10.1016/j.biopha.2020.110301
- 50. Nikitina VS, Shendel' GV, Gerchikov AY, Efimenko NB. Flavonoids from raspberry and blackberry leaves and their antioxidant activities. Pharma Chem J. 2000;34:596–98. https://doi.org/10.1023/A:1010344221983
Downloads
Download data is not yet available.