Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Biochemical composition of blackberry varieties cultivated under the climatic conditions of the Samarkand region

DOI
https://doi.org/10.14719/pst.7675
Submitted
11 February 2025
Published
10-05-2025
Versions

Abstract

This study examined blackberry fruits' biochemical composition and quality at full ripeness. The content of carbohydrates, vitamins, flavonoids and amino acids was analyzed in dried fruits from the following blackberry varieties: Jumbo, Thornfree, Karaka Black, Brazos, Brzezina, Cacanska Bestrna and Chester. The results indicated that the fruits contained relatively high concentrations of the amino acids asparagine, cysteine, alanine and proline. Among the varieties, Chester exhibited the highest amino acid content (22.55 mg/g), closely followed by Thornfree (22.30 mg/g). Carbohydrate content was observed to be the highest in the Cacanska Bestrna variety (9.01 mg/g) and the lowest in the Karaka Black variety (3.37 mg/g). Vitamins (B2, B6, B9, B12, PP and C) and flavonoids (Hypolyethylen, Hypolyethylen 7-O-D-Gly, Rutin, Isorhamnetin and Hyperoside) were also quantified. The analysis revealed that flavonoid content was exceptionally high in the Karaka Black variety (84.116 mg/100 g) and relatively low in the Brzezina variety (35.389 mg/100 g). Regarding vitamin C content, Karaka Black recorded the highest levels (211.321 mg/100 g), whereas Jumbo exhibited the lowest levels (135.265 mg/100 g). These findings could be a valuable resource for the food processing industry and agricultural practices. They provide a basis for establishing quality standards for different blackcurrant varieties and identifying the optimal harvest period for each.

References

  1. 1. Lykins S, Scammon K, Lawrence BT, Melgar JC. Photosynthetic light response of floricane leaves of erect blackberry cultivars from fruit development into the postharvest period. HortScience. 2021; 56:347–51. https://doi.org/10.21273/hortsci15571-20
  2. 2. Грюнер ЛА. Адаптационные возможности ежевики в условиях Орловской области. Современное садоводство – Contemp Hortice. 2019;(3):27–41. https://doi.org/10.24411/2312-6701-2019-10305 [in Russian]
  3. 3. Moser R, Raffaelli R, Thilmany-McFadden D. Consumer preferences for fruit and vegetables with credence-based attributes: A review. Int Agribus Manag Rev. 2011;14:121–41. https://ageconsearch.umn.edu/record/103990
  4. 4. Strik BC. Berry crops: Worldwide area and production systems. In: Zhao Y, editor. Berry Fruit Value Added Products for Health Promotion. 1st ed. Boca Raton, FL: CRC; 2007. p. 349. https://books.google.co.uz
  5. 5. Mikulic-Petkovsek M, Schmitzer V, Slatnar A, Stampar F, Veberic R. Composition of sugars, organic acids and total phenolics in 25 wild or cultivated berry species. J Food Sci. 2012;77(10):C1064–70. https://doi.org/10.1111/j.1750-3841.2012.02896.x
  6. 6. Zia-Ul-Haq M, Riaz M, De Feo V, Jaafar HZE, Moga M. Rubus Fruticosus L.: Constituents, biological activities and health-related uses. Molecules. 2014;19:10998–11029. https://doi.org/10.3390/molecules190810998
  7. 7. Wang Y, Johnson-Cicalese J, Singh AP, Vorsa N. Characterization and quantification of flavonoids and organic acids over fruit development in American cranberry (Vaccinium macrocarpon) cultivars using HPLC and APCI-MS/MS. Plant Sci. 2017;262:91–102. https://doi.org/10.1016/j.plantsci.2017.06.004
  8. 8. Sharma N, Kaur H, Kaur G, Singh A, Sharma S. Appraisal of cutting-edge techniques for prolonging fresh berries' shelf life: Innovations in essential oil nanoemulsion-based edible coatings. Sci Hortic. 2024;337:113564. https://doi.org/10.1016/j.scienta.2024.113564
  9. 9. Kaume L, Howard LR, Devareddy L. The blackberry fruit: A review on its composition and chemistry, metabolism and bioavailability and health benefits. J Agric Food Chem. 2012;60(23):5716–27. https://doi.org/10.1021/jf203318p
  10. 10. Salanta LC, Uifalean A, Iuga CA, Tofana M, Cropotova J, Pop OL, et al. Valuable food molecules with potential benefits for human health. In: The Health Benefits of Foods - Current Knowledge and Further Development. London, UK: IntechOpen; 2020. http://dx.doi.org/10.5772/intechopen.91218
  11. 11. Milivojevic J, Maksimovic V, Nikolic M, Bogdanovic J, Maletic R, Milatovic D. Chemical and antioxidant properties of cultivated and wild Fragaria and Rubus berries. J Food Qual. 2011;34:1–9. https://doi.org/10.1111/j.1745-4557.2010.00360.x
  12. 12. Garcia-Seco D, Zhang Y, Gutierrez-Manero FJ, Martin C, Ramos-Solano B. Application of Pseudomonas fluorescens to blackberry under field conditions improves fruit quality by modifying flavonoid metabolism. PLoS One. 2015;10:e0142639. https://doi.org/10.1371/journal.pone.0142639
  13. 13. Kolniak-Ostek J, Kucharska AZ, Sokol-Letowska A, Fecka I. Characterization of phenolic compounds of thorny and thornless blackberries. J Agric Food Chem. 2015;63:3012–21. https://doi.org/10.1021/jf5039794
  14. 14. Kiss AK, Piwowarski JP. Ellagitannins, gallotannins and their metabolites—the contribution to the anti-inflammatory effect of food products and medicinal plants. Curr Med Chem. 2018;25:4946–67. https://doi.org/10.2174/0929867323666160919111559
  15. 15. Parmenter BH, Croft KD, Hodgson JM, Dalgaard F, Bondonno CP, Lewis JR, et al. An overview and update on the epidemiology of flavonoid intake and cardiovascular disease risk. Food Funct. 2020;11:6777–806. https://doi.org/10.1039/d0fo01118e
  16. 16. Pereira WL, de Oliveira TT, Kanashiro MM, Filardi MA, da Costa MR, da Costa LM. Anticarcinogenic potential of the morin bioflavonoid against SK-MEL-5 human melanoma cells. Biointerface Res Appl Chem. 2017;7:2098–102.
  17. 17. Mahmood T, Anwar F, Abbas M, Boyce MC, Saari N. Compositional variation in sugars and organic acids at different maturity stages in selected small fruits from Pakistan. Int J Mol Sci. 2012;13:1380–92. https://doi.org/10.3390/ijms13021380
  18. 18. Jennings DL. Blackberries and related fruits. In: Caballero B, Finglas P, Toldra F, editors. Encyclopedia of Food Sciences and Nutrition. 2nd ed. Cambridge, MA: Academic Press; 2003. p. 546–50. https://doi.org/10.3390/foods10071581
  19. 19. Mikulic-Petkovsek M, Koron D, Zorenc Z, Veberic R. Do optimally ripe blackberries contain the highest levels of metabolites? Food Chem. 2017;215:41–49. https://doi.org/10.1016/j.foodchem.2016.07.144
  20. 20. Cho MJ, Howard LR, Prior RL, Clark JR. Flavonoid glycosides and antioxidant capacity of various blackberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry. J Sci Food Agric. 2004;84:1771–82. https://doi.org/10.1002/jsfa.1885
  21. 21. Dai J, Patel JD, Mumper RJ. Characterization of blackberry extract and its antiproliferative and anti-inflammatory properties. J Med Food. 2007;10:258–65. https://doi.org/10.1089/jmf.2006.238
  22. 22. Karlsen A, Retterstol L, Laake P, Paur I, Kjolsrud-Bohn S, Sandvik L, et al. Anthocyanins inhibit nuclear factor-kappaB activation in monocytes and reduce plasma concentrations of pro-inflammatory mediators in healthy adults. J Nutr. 2007;137:1951–4. https://doi.org/10.1093/jn/137.8.1951
  23. 23. Retterstol K, et al. Studies on the metabolism of essential fatty acids in isolated human testicular cells. Reproduction. 2001;121(6):881–7. https://doi.org/10.1530/rep.0.1210881
  24. 24. Krikorian R, Shidler MD, Nash TA, Kalt W, Vinqvist-Tymchuk MR, Shukitt-Hale B, et al. Blueberry supplementation improves memory in older adults. J Agric Food Chem. 2010;58:3996–4000. https://doi.org/10.1021/jf9029332
  25. 25. Jensen GS, Wu X, Patterson KM, Barnes J, Carter SG, Scherwitz L, et al. In vitro and in vivo antioxidant and anti-inflammatory capacities of an antioxidant-rich fruit and berry juice blend: Results of a pilot and randomized, double-blinded, placebo-controlled, crossover study. J Agric Food Chem. 2008;56:8326–33. https://doi.org/10.1021/jf8016157
  26. 26. Meiers S, Kemeny M, Weyand U, Gastpar R, von Angerer E, Marko D. The anthocyanidins cyanidin and delphinidin are potent inhibitors of the epidermal growth factor receptor. J Agric Food Chem. 2001;49:958–62. https://doi.org/10.1021/jf0009100
  27. 27. Bomser J, Madhavi DL, Singletary K, Smith MA. In vitro anticancer activity of fruit extracts from Vaccinium species. Planta Med. 1996;62:212–16. https://doi.org/10.1055/s-2006-957862
  28. 28. Jayaprakasam B, Olson LK, Schutzki RE, Tai MH, Nair MG. Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by anthocyanins and ursolic acid in Cornelian cherry (Cornus mas). J Agric Food Chem. 2006;54:243–48. https://doi.org/10.1021/jf0520342
  29. 29. Tsuda T, Horio F, Uchida K, Aoki H, Osawa T. Dietary cyanidin 3-O-?-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J Nutr. 2003;133:2125–32. https://doi.org/10.1093/jn/133.7.2125
  30. 30. Babakholov, S, Bobojonov, I, Hasanov, S, Glauben T. An empirical assessment of the interactive impacts of irrigation and climate on farm productivity in Samarkand region, Uzbekistan. Environ Chall. 2022;7:100502. https://doi:10.1016/j.envc.2022.100502
  31. 31. Davidson M, Louvet F, Meudec E, Landolt C, Grenier K, Périno S, et al. Optimized single-step recovery of lipophilic and hydrophilic compounds from raspberry, strawberry and blackberry pomaces using a simultaneous ultrasound-enzyme-assisted extraction (UEAE). Antioxidants. 2023;12(10):1793. https://doi.org/10.3390/antiox12101793
  32. 32. Mikuli?-Petkovšek M, Koron D, Veberi? R. Quality parameters of currant berries from three different cluster positions. Sci Hortic. 2016;210:188–96. https://doi.org/10.1016/j.scienta.2016.07.030
  33. 33. Salakhov MS, et al. Synthesis of endo, exo-1,2,3,4,11,11-hexachlorotricyclo[6.2.1.05,10]-undec-2-en-7,8-dicarboxylic acid N-(2,4,6-tribromophenyl) imide. Russ J Org Chem. 2007;43:679–80. https://doi.org/10.1134/s1070428007050077
  34. 34. Bobinait? R, Viškelis P, Venskutonis PR. Chemical composition of raspberry (Rubus spp.) cultivars. Nutr Compo Fruit Cul. 2016:713–31. https://doi.org/10.1016/B978-0-12-408117-8.00029-5
  35. 35. ?echovi?ien? I, Tarasevi?ien? Ž, Hallman E, Jab?o?ska-Trypu? A, ?esonien? L, Šileikien? D. Ultrasound and microwave-assisted extraction of blackberry (Rubus fruticosus L.) pomace: analysis of chemical properties and anticancer activity. Plants. 2025;14(3):384. https://doi.org/10.3390/plants14030384
  36. 36. Tkacz K, Chmielewska J, Turkiewicz IP, Nowicka P, Wojdy?o A. Dynamics of changes in organic acids, sugars, phenolic compounds and antioxidant activity of sea buckthorn and sea buckthorn-apple juices during malolactic fermentation. Food Chem. 2020;332. https://doi.org/10.3390/plants14030384
  37. 37. Tosun I, Ustun NS, Tekguler B. Physical and chemical changes during ripening of blackberry fruits. Sci Agric. 2008;65:87–90. https://doi.org/10.1590/S0103-90162008000100012
  38. 38. Mikuli?-Petkovšek M, Veberi? R, Hudina M, Zorenc Z, Koron D, Senica M. Fruit quality characteristics and biochemical composition of fully ripe blackberries harvested at different times. Foods. 2021;10:1581. https://doi.org/10.3390/foods10071581
  39. 39. Veberi? R, Štampar F, Schmitzer V, Cunja V, Zupan A, Koron D, et al. Changes in the contents of anthocyanins and other compounds in blackberry fruits due to freezing and long-term frozen storage. J Agric Food Chem. 2014;62(29):6926–35. https://doi.org/10.1021/jf405143w
  40. 40. Milivojevi? J, Maksimovi? V, Nikoli? M, Bogdanovi? J, Maleti? R, Milatovi? D. Chemical and antioxidant properties of cultivated and wild Fragaria and Rubus berries. J Food Qual. 2011;34(1):1–9. https://doi.org/10.1111/j.1745-4557.2010.00360.x
  41. 41. Croge CP, Cuquel FL, Pintro PTM, Biasi LA, De Bona CM. Antioxidant capacity and polyphenolic compounds of blackberries produced in different climates. HortScience. 2019;54:2209–13. https://doi.org/10.21273/hortsci14377-19
  42. 42. Kaume L, Howard LR, Devareddy L. The blackberry fruit: A review on its composition and chemistry, metabolism and bioavailability and health benefits. J Agric Food Chem. 2012;60:5716–27. https://doi.org/10.1590/S0103-90162008000100012
  43. 43. Prior RL, Wu X, Cao G. Absorption and metabolism of anthocyanins in elderly women after consumption of elderberry or blueberry. J Nutr. 2002;132(7):1865–71. https://doi.org/10.1093/jn/132.7.1865
  44. 44. Čanadanović-Brunet J, Tumbas Šaponjac V, Stajčić S, Ćetković G, Čanadanović V, Ćebović T, Vulić J. Polyphenolic composition, antiradical and hepatoprotective activities of bilberry and blackberry pomace extracts. J Berry Res. 2019;9(2):349–62. https://content.iospress.com/articles/journal-of-berry-research/jbr180362
  45. 45. Hollman P, De Vries J, van Leeuwen SD, Mengelers M, Katan MB. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am J Clin Nutr. 1995;62:1276–82. https://doi.org/10.1093/ajcn/62.6.1276
  46. 46. Gee JM, DuPont MS, Rhodes MJ, Johnson IT. Quercetin glucosides interact with the intestinal glucose transport pathway. Free Rad Biol Med. 1998;25(1):19–25. https://doi.org/10.1016/S0891-5849(98)00020-3
  47. 47. Yang JH, Shin BY, Han JY, Kim MG, Wi JE, Kim YW, et al. Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes. Toxicology and applied pharmacology. 2014;274(2):293–301. https://doi.org/10.1016/j.taap.2013.10.026
  48. 48. Popiolek-Kalisz J, Blaszczak P, Fornal E. Dietary isorhamnetin intake is associated with lower blood pressure in coronary artery disease patients. Nutrients. 2022;14(21):4586. https://doi.org/10.3390/nu14214586
  49. 49. Gong G, Guan YY, Zhang ZL, Rahman K, Wang SJ, Zhou S, et al. Isorhamnetin: A review of pharmacological effects. Biomed Pharmaco. 2020;128:110301. https://doi.org/10.1016/j.biopha.2020.110301
  50. 50. Nikitina VS, Shendel' GV, Gerchikov AY, Efimenko NB. Flavonoids from raspberry and blackberry leaves and their antioxidant activities. Pharma Chem J. 2000;34:596–98. https://doi.org/10.1023/A:1010344221983

Downloads

Download data is not yet available.