Review Articles
Vol. 12 No. 2 (2025)
Genetic frontiers in tomato breeding: Overcoming heat stress for sustainable yield
Department of Vegetable Science, Tamil Nadu Agricultural University, Coimbatore 641 003,Tamil Nadu, India
Vegetable Research Station, Palur, Cuddalore 607 102, Tamil Nadu, India
Department of Post-harvest Technology, Horticultural college and Research Institute, Periyakulam 625 604, Tamil Nadu, India
Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Department of Plant Breeding and Genetics, Eachangottai, Thanjavur 614 902, Tamil Nadu, India
Department of Food Process Engineering, Tamil Nadu Agricultural University, Coimbatore 641 301, Tamil Nadu, India
Abstract
Tomatoes (Solanum lycopersicum) are a vital global crop, valued for their nutrition and culinary uses. However, rising heatwaves from climate change threaten tomato production, making it critical to enhance heat tolerance for food security and sustainable agriculture. This review highlights strategies to improve tomato resilience to high temperatures. Traditional breeding focuses on traits like deeper roots, smaller leaves and thicker cuticles, which enhance heat tolerance, supported by Marker-Assisted Selection (MAS) to identify and incorporate heat-tolerant genes. Genetic engineering introduces genes like those for Heat Shock Proteins (HSPs), boosting plant resilience. Understanding physiological and biochemical responses to heat stress enables targeted measures, such as applying osmoprotectants and plant hormones, to mitigate damage. Agronomic practices, including adjusted planting schedules, shading, optimized irrigation and soil enhancement, create favorable conditions under heat stress. Precision agriculture technologies provide real-time monitoring, enabling timely interventions. Beneficial microorganisms like plant growth-promoting rhizobacteria and mycorrhizal fungi enhance nutrient uptake, water retention and overall plant health, further improving heat tolerance. A multidisciplinary approach combining traditional breeding, genetic engineering, physiological insights, agronomic methods and technological innovations is essential to develop heat-resilient tomato varieties. These integrated strategies ensure sustainable agricultural practices, enhance crop resilience and safeguard global food security in the face of climate change.
References
- Masson-Delmotte V, Zhai P, Portner H-O, Roberts D, Skea J, Shukla PR, et al. Global warming of 1.5 C. An IPCC Special report on the impacts of global warming. 2019;1:93-174.
- Porter JR, Semenov MA. Crop responses to climatic variation. Philosophical transactions of the royal society. Biological Sciences. 2005;360(1463):2021-35. https://doi.org/10.1098/rstb.2005.1752
- Saeed A, Hayat K, Khan AA, Iqbal S. Heat tolerance studies in tomato (Lycopersicon esculentum Mill.). International Journal of Agriculture and Biology. 2007;9(4):649-52.
- Dinar M, Rudich J. Effect of heat stress on assimilate partitioning in tomato. Annals of Botany. 1985;56(2):239-48. https://doi.org/10.1093/oxfordjournals.aob.a087008
- Dinar M, Rudich J. Effect of heat stress on assimilate metabolism in tomato flower buds. Annals of Botany. 1985;56(2):249-57. https://doi.org/10.1093/oxfordjournals.aob.a087009
- Sehgal A, Sita K, Siddique KH, Kumar R, Bhogireddy S, Varshney RK, et al. Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields and nutritional quality. Frontiers in Plant Science. 2018;9:1705. https://doi.org/10.3389/fpls.2018.01705
- Janni M, Gullì M, Maestri E, Marmiroli M, Valliyodan B, Nguyen HT, et al. Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. Journal of Experimental Botany. 2020;71(13):3780-802. https://doi.org/10.1093/jxb/eraa034
- Haider S, Raza A, Iqbal J, Shaukat M, Mahmood T. Analyzing the regulatory role of heat shock transcription factors in plant heat stress tolerance: A brief appraisal. Molecular Biology Reports. 2022;49(6):5771-85. https://doi.org/10.1007/s11033-022-07190-x
- Boopathy LRA, Jacob-Tomas S, Alecki C, Vera M. Mechanisms tailoring the expression of heat shock proteins to proteostasis challenges. Journal of Biological Chemistry. 2022;298(5). https://doi.org/10.1016/j.jbc.2022.101796
- Mondal S, Karmakar S, Panda D, Pramanik K, Bose B, Singhal RK. Crucial plant processes under heat stress and tolerance through heat shock proteins. Plant Stress. 2023:100227. https://doi.org/10.1016/j.stress.2023.100227
- Wen JunQin WJ, Jiang FangLing JF, Weng YiQun WY, Sun MinTao SM, Shi XiaoPu SX, Zhou YanZhao ZY, et al. Identification of heat-tolerance QTLs and high-temperature stress-responsive genes through conventional QTL mapping, QTL-seq and RNA-seq in tomato. 2019. https://doi.org/10.1186/s12870-019-2008-3
- Xu J, Wolters-Arts M, Mariani C, Huber H, Rieu I. Heat stress affects vegetative and reproductive performance and trait correlations in tomato (Solanum lycopersicum). Euphytica. 2017;213:1-12. https://doi.org/10.1007/s10681-017-1949-6
- Siddiqui MN, Mostofa MG, Akter MM, Srivastava AK, Sayed MA, Hasan MS, et al. Impact of salt-induced toxicity on growth and yield-potential of local wheat cultivars: Oxidative stress and ion toxicity are among the major determinants of salt-tolerant capacity. Chemosphere. 2017;187:385-94. https://doi.org/10.1016/j.chemosphere.2017.08.078
- Zhou R, Kjær KH, Rosenqvist E, Yu X, Wu Z, Ottosen CO. Physiological response to heat stress during seedling and anthesis stage in tomato genotypes differing in heat tolerance. Journal of Agronomy and Crop Science. 2017;203(1):68-80. https://doi.org/10.1111/jac.12166
- Ilík P, Špundová M, Šicner M, Melkovi?ová H, Ku?erová Z, Krch?ák P, et al. Estimating heat tolerance of plants by ion leakage: A new method based on gradual heating. New Phytologist. 2018;218(3):1278-87. https://doi.org/10.1111/nph.15097
- Jahan MS, Wang Y, Shu S, Zhong M, Chen Z, Wu J, et al. Exogenous salicylic acid increases the heat tolerance in Tomato (Solanum lycopersicum L) by enhancing photosynthesis efficiency and improving antioxidant defense system through scavenging of reactive oxygen species. Scientia Horticulturae. 2019;247:421-29. https://doi.org/10.1016/j.scienta.2018.12.047
- Xu J, Driedonks N, Rutten MJ, Vriezen WH, de Boer G-J, Rieu I. Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Molecular Breeding. 2017;37:1-9. https://doi.org/10.1007/s11032-017-0664-2
- Giri A, Heckathorn S, Mishra S, Krause C. Heat stress decreases levels of nutrient-uptake and-assimilation proteins in tomato roots. Plants. 2017;6(1):6. https://doi.org/10.3390/plants6010006
- Tiwari S, Patel A, Singh M, Prasad SM. Regulation of temperature stress in plants. Plant life under changing environment: Elsevier. 2020:25-45. https://doi.org/10.1016/B978-0-12-818204-8.00002-3
- Meng X, Wang J-R, Wang G-D, Liang X-Q, Li X-D, Meng Q-W. An R2R3-MYB gene, LeAN2, positively regulated the thermo-tolerance in transgenic tomato. Journal of Plant Physiology. 2015;175:1-8. https://doi.org/10.1016/j.jplph.2014.09.018
- Pan C, Ahammed GJ, Li X, Shi K. Elevated CO2 improves photosynthesis under high temperature by attenuating the functional limitations to energy fluxes, electron transport and redox homeostasis in tomato leaves. Frontiers in Plant Science. 2018;9:1739. https://doi.org/10.3389/fpls.2018.01739
- Zhou R, Yu X, Wen J, Jensen NB, Dos Santos TM, Wu Z, et al. Interactive effects of elevated CO2 concentration and combined heat and drought stress on tomato photosynthesis. BMC Plant Biology. 2020;20:1-12. https://doi.org/10.1186/s12870-020-02457-6
- Xu C, Yang Z, Yang S, Wang L, Wang M. High humidity alleviates photosynthetic inhibition and oxidative damage of tomato seedlings under heat stress. Photosynthetica. 2020;58(1). https://doi.org/10.32615/ps.2019.168
- Müller F, Xu J, Kristensen L, Wolters-Arts M, de Groot PF, Jansma SY, et al. High-temperature-induced defects in tomato (Solanum lycopersicum) anther and pollen development are associated with reduced expression of B-class floral patterning genes. PLoS One. 2016;11(12):e0167614. https://doi.org/10.1371/journal.pone.0167614
- Alsamir M, Mahmood T, Trethowan R, Ahmad N. An overview of heat stress in tomato (Solanum lycopersicum L.). Saudi Journal of Biological Sciences. 2021;28(3):1654-63. https://doi.org/10.1016/j.sjbs.2020.11.088
- Razzaq MK, Rauf S, Khurshid M, Iqbal S, Bhat JA, Farzand A, et al. Pollen viability an index of abiotic stresses tolerance and methods for the improved pollen viability. Pakistan Journal of Agricultural Research. 2019;32(4). https://doi.org/10.17582/journal.pjar/2019/32.4.609.624
- Liu Y, Feng Z, Zhu W, Liu J, Zhang Y. Genome-wide identification and characterization of cysteine-rich receptor-like protein kinase genes in tomato and their expression profile in response to heat stress. Diversity. 2021;13(6):258. https://doi.org/10.3390/d13060258
- Wang X, Xu N, Dong K, Li H, Shi S, Liu Z, et al. SlNCED1 affects pollen maturation in tomato by regulating the expression of anther-specific genes. Plant Growth Regulation. 2021;95:191-205. https://doi.org/10.1007/s10725-021-00732-6
- Hu J, Israeli A, Ori N, Sun T-p. The interaction between DELLA and ARF/IAA mediates crosstalk between gibberellin and auxin signaling to control fruit initiation in tomato. The Plant Cell. 2018;30(8):1710-28. https://doi.org/10.1105/tpc.18.00363
- Mounet F, Moing A, Kowalczyk M, Rohrmann J, Petit J, Garcia V, et al. Down-regulation of a single auxin efflux transport protein in tomato induces precocious fruit development. Journal of Experimental Botany. 2012;63(13):4901-17. https://doi.org/10.1093/jxb/ers167
- Kai W, Fu Y, Wang J, Liang B, Li Q, Leng P. Functional analysis of SlNCED1 in pistil development and fruit set in tomato (Solanum lycopersicum L.). Scientific Reports. 2019;9(1):16943. https://doi.org/10.1038/s41598-019-52948-2
- Coluccio Leskow C, Conte M, Del Pozo T, Bermúdez L, Lira BS, Gramegna G, et al. The cytosolic invertase NI6 affects vegetative growth, flowering, fruit set and yield in tomato. Journal of Experimental Botany. 2021;72(7):2525-43. https://doi.org/10.1093/jxb/eraa594
- Gonzalo MJ, Li Y-C, Chen K-Y, Gil D, Montoro T, Nájera I, et al. Genetic control of reproductive traits in tomatoes under high temperature. Frontiers in Plant Science. 2020;11:326. https://doi.org/10.3389/fpls.2020.00326
- Bineau E, Diouf I, Carretero Y, Duboscq R, Bitton F, Djari A, et al. Genetic diversity of tomato response to heat stress at the QTL and transcriptome levels. The Plant Journal. 2021;107(4):1213-27. https://doi.org/10.1111/tpj.15379
- Matsuo S, Miyatake K, Endo M, Urashimo S, Kawanishi T, Negoro S, et al. Loss of function of the Pad-1 aminotransferase gene, which is involved in auxin homeostasis, induces parthenocarpy in Solanaceae plants. Proceedings of the National Academy of Sciences. 2020;117(23):12784-90. https://doi.org/10.1073/pnas.2001211117
- Berry S, Uddin MR. Effect of high temperature on fruit set in tomato cultivars and selected germplasm. HortScience. 1988;23(3):606-08. https://doi.org/10.21273/HORTSCI.23.3.606
- Naika S, de Jeude JvL, de Goffau M, Hilmi M. AD17E Cultivation of tomato: Agromisa Foundation. 2005.
- Abdul-Baki AA. Tolerance of tomato cultivars and selected germplasm to heat stress. 1991. https://doi.org/10.21273/JASHS.116.6.1113
- Mazzeo MF, Cacace G, Iovieno P, Massarelli I, Grillo S, Siciliano RA. Response mechanisms induced by exposure to high temperature in anthers from thermo-tolerant and thermo-sensitive tomato plants: A proteomic perspective. PloS One. 2018;13(7):e0201027. https://doi.org/10.1371/journal.pone.0201027
- Gholi-Tolouie S, Davari M, Sokhandan-Bashir N, Sedghi M. Influence of salicylic and jasmonic acids on the antioxidant systems of tomato (Solanum lycopersicum cv. Superchief) plants under biotic stresses. Iranian Journal of Plant Physiology. 2018;8(2):2345-51.
- Szabados L, Savouré A. Proline: a multifunctional amino acid. Trends in Plant Science. 2010;15(2):89-97. https://doi.org/10.1016/j.tplants.2009.11.009
- Berberich T, Sagor G, Kusano T. Polyamines in plant stress response. Polyamines: A universal molecular nexus for growth, survival and specialized metabolism. 2015:155-68. https://doi.org/10.1007/978-4-431-55212-3_13
- Lee JH, Kasote DM, Jayaprakasha GK, Avila CA, Crosby KM, Patil BS. Effect of production system and inhibitory potential of aroma volatiles on polyphenol oxidase and peroxidase activity in tomatoes. Journal of the Science of Food and Agriculture. 2021;101(1):307-14. https://doi.org/10.1002/jsfa.10644
- Snyman M, Cronjé M. Modulation of heat shock factors accompanies salicylic acid-mediated potentiation of Hsp70 in tomato seedlings. Journal of Experimental Botany. 2008;59(8):2125-32. https://doi.org/10.1093/jxb/ern075
- Mohamed HI, El-Shazly HH, Badr A. Role of salicylic acid in biotic and abiotic stress tolerance in plants. Plant Phenolics in Sustainable Agriculture. 2020:533-54. https://doi.org/10.1007/978-981-15-4890-1_23
- Upchurch RG. Fatty acid unsaturation, mobilization and regulation in the response of plants to stress. Biotechnology Letters. 2008;30:967-77. https://doi.org/10.1007/s10529-008-9639-z
- Parrotta L, Aloisi I, Faleri C, Romi M, Del Duca S, Cai G. Chronic heat stress affects the photosynthetic apparatus of Solanum lycopersicum L. cv Micro-Tom. Plant Physiology and Biochemistry. 2020;154:463-75. https://doi.org/10.1016/j.plaphy.2020.06.047
- Biswas P, East AR, Brecht JK, Hewett EW, Heyes JA. Intermittent warming during low temperature storage reduces tomato chilling injury. Post harvest Biology and Technology. 2012;74:71-8. https://doi.org/10.1016/j.postharvbio.2012.07.002
- Bajji M, Kinet J-M, Lutts S. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regulation. 2002;36:61-70. https://doi.org/10.1023/A:1014732714549
- Paupière MJ, van Haperen P, Rieu I, Visser RG, Tikunov YM, Bovy AG. Screening for pollen tolerance to high temperatures in tomato. Euphytica. 2017;213:1-8. https://doi.org/10.1007/s10681-017-1927-z
- Solankey S, Shirin Akhtar SA, Pallavi Neha PN, Meenakshi Kumari MK. Effect of high temperature stress on morpho-biochemical traits of tomato genotypes under polyhouse condition. 2017.
- Tiwari JK, Buckseth T, Zinta R, Bhatia N, Dalamu D, Naik S, et al. Germplasm, breeding and genomics in potato improvement of biotic and abiotic stresses tolerance. Frontiers in Plant Science. 2022;13:805671. https://doi.org/10.3389/fpls.2022.805671
- Cossani CM, Reynolds MP. Physiological traits for improving heat tolerance in wheat. Plant Physiology. 2012;160(4):1710-18. https://doi.org/10.1104/pp.112.207753
- Jha UC, Bohra A, Singh NP. Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breeding. 2014;133(6):679-701. https://doi.org/10.1111/pbr.12217
- Krishna R, Karkute SG, Ansari WA, Jaiswal DK, Verma JP, Singh M. Transgenic tomatoes for abiotic stress tolerance: status and way ahead. 3 Biotech. 2019;9:1-14. https://doi.org/10.1007/s13205-019-1665-0
- Mickelbart MV, Hasegawa PM, Bailey-Serres J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetics. 2015;16(4):237-51. https://doi.org/10.1038/nrg3901
- Wen J, Jiang F, Weng Y, Sun M, Shi X, Zhou Y, et al. Identification of heat-tolerance QTLs and high-temperature stress-responsive genes through conventional QTL mapping, QTL-seq and RNA-seq in tomato. BMC Plant Biology. 2019;19:1-17. https://doi.org/10.1186/s12870-019-2008-3
- Ruggieri V, Francese G, Sacco A, D’Alessandro A, Rigano MM, Parisi M, et al. An association mapping approach to identify favourable alleles for tomato fruit quality breeding. BMC Plant Biology. 2014;14:1-15. https://doi.org/10.1186/s12870-014-0337-9
- Osei MK, Danquah E, Danquah A, Blay E, Adu-Dapaah H. Hybridity testing of tomato F1 progenies derived from parents with varying fruit quality and shelf life using single nucleotide polymorphism (SNPs). Scientific African. 2020;8:e00267. https://doi.org/10.1016/j.sciaf.2020.e00267
- Olivieri F, Graci S, Francesca S, Rigano MM, Barone A. Accelerating the development of heat tolerant tomato hybrids through a multi-traits evaluation of parental lines combining phenotypic and genotypic analysis. Plants. 2021;10(10):2168. https://doi.org/10.3390/plants10102168
- Ruggieri V, Calafiore R, Schettini C, Rigano MM, Olivieri F, Frusciante L, et al. Exploiting genetic and genomic resources to enhance heat-tolerance in tomatoes. Agronomy. 2019;9(1):22. https://doi.org/10.3390/agronomy9010022
- Bessho-Uehara K, Furuta T, Masuda K, Yamada S, Angeles-Shim RB, Ashikari M, et al. Construction of rice chromosome segment substitution lines harboring Oryza barthii genome and evaluation of yield-related traits. Breeding Science. 2017;67(4):408-15. https://doi.org/10.1270/jsbbs.17022
- Ayenan MAT, Danquah A, Agre PA, Hanson P, Asante IK, Danquah EY. Genomic and phenotypic diversity of cultivated and wild tomatoes with varying levels of heat tolerance. Genes. 2021;12(4):503. https://doi.org/10.3390/genes12040503
- Singhal RK, Saha D, Skalicky M, Mishra UN, Chauhan J, Behera LP, et al. Crucial cell signaling compounds crosstalk and integrative multi-omics techniques for salinity stress tolerance in plants. Frontiers in Plant Science. 2021;12:670369. https://doi.org/10.3389/fpls.2021.670369
- Chinnusamy V, Zhu J, Zhou T, Zhu J-K. Small RNAs: big role in abiotic stress tolerance of plants. Advances in molecular breeding toward drought and salt tolerant crops. 2007:223-60. https://doi.org/10.1007/978-1-4020-5578-2_10
- Li Y, Jiang F, Niu L, Wang G, Yin J, Song X, et al. Synergistic regulation at physiological, transcriptional and metabolic levels in tomato plants subjected to a combination of salt and heat stress. The Plant Journal. 2024;117(6):1656-75. https://doi.org/10.1111/tpj.16580
- Bineau E, Diouf I, Carretero Y, Duboscq R, Bitton F, Djari A, et al. Genetic diversity of tomato response to heat stress at the QTL and transcriptome levels. The Plant Journal. 2021;107(4):1213-27. https://doi.org/10.1111/tpj.15379
- Balyan S, Rao S, Jha S, Bansal C, Das JR, Mathur S. Characterization of novel regulators for heat stress tolerance in tomato from Indian subcontinent. Plant Biotechnology Journal. 2020;18(10):2118-32. https://doi.org/10.1111/pbi.13371
- Pan C, Yang D, Zhao X, Jiao C, Yan Y, Lamin?Samu AT, et al. Tomato stigma exsertion induced by high temperature is associated with the jasmonate signaling pathway. Plant Cell & Environment. 2019;42(4):1205-21. https://doi.org/10.1111/pce.13444
- Yin Y, Qin K, Song X, Zhang Q, Zhou Y, Xia X, et al. BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase-mediated reactive oxygen species signaling in tomato. Plant and Cell Physiology. 2018;59(11):2239-54. https://doi.org/10.1093/pcp/pcy146
- Debbarma J, Sarki YN, Saikia B, Boruah HPD, Singha DL, Chikkaputtaiah C. Ethylene response factor (ERF) family proteins in abiotic stresses and CRISPR–Cas9 genome editing of ERFs for multiple abiotic stress tolerance in crop plants: A review. Molecular Biotechnology. 2019;61(2):153-72. https://doi.org/10.1007/s12033-018-0144-x
- Tran MT, Son GH, Song YJ, Nguyen NT, Park S, Thach TV, et al. CRISPR-Cas9-based precise engineering of SlHyPRP1 protein towards multi-stress tolerance in tomato. Frontiers in Plant Science. 2023;14:1186932. https://doi.org/10.3389/fpls.2023.1186932
- Klap C, Yeshayahou E, Bolger AM, Arazi T, Gupta SK, Shabtai S, et al. Tomato facultative parthenocarpy results from Sl AGAMOUS?LIKE 6 loss of function. Plant Biotechnology Journal. 2017;15(5):634-47. https://doi.org/10.1111/pbi.12662
- Ding H, He J, Wu Y, Wu X, Ge C, Wang Y, et al. The tomato mitogen-activated protein kinase SlMPK1 is as a negative regulator of the high-temperature stress response. Plant Physiology. 2018;177(2):633-51. https://doi.org/10.1104/pp.18.00067
- Yu W, Wang L, Zhao R, Sheng J, Zhang S, Li R, et al. Knockout of SlMAPK3 enhances tolerance to heat stress involving ROS homeostasis in tomato plants. BMC Plant Biology. 2019;19:1-3. https://doi.org/10.1186/s12870-019-1939-z
- Ayenan MAT, Danquah A, Hanson P, Ampomah-Dwamena C, Sodedji FAK, Asante IK, et al. Accelerating breeding for heat tolerance in tomato (Solanum lycopersicum L.): An integrated approach. Agronomy. 2019;9(11):720. https://doi.org/10.3390/agronomy9110720
- Aleem S, Sharif I, Amin E, Tahir M, Parveen N, Aslam R, et al. Heat tolerance in vegetables in the current genomic era: An overview. Plant Growth Regulation. 2020;92(3):497-516. https://doi.org/10.1007/s10725-020-00658-5
- Marko D, El-Shershaby A, Carriero F, Summerer S, Petrozza A, Iannacone R, et al. Identification and characterization of a thermotolerant TILLING allele of heat shock binding protein 1 in tomato. Genes. 2019;10(7):516. https://doi.org/10.3390/genes10070516
- Zhang T, Li Z, Li D, Li C, Wei D, Li S, et al. Comparative effects of glycine betaine on the thermotolerance in codA-and BADH-transgenic tomato plants under high temperature stress. Plant Cell Reports. 2020;39:1525-38. https://doi.org/10.1007/s00299-020-02581-5
- Yu W, Wang L, Zhao R, Sheng J, Zhang S, Li R, et al. Knockout of SlMAPK3 enhances tolerance to heat stress involving ROS homeostasis in tomato plants. BMC Plant Biology. 2019;19:1-13. https://doi.org/10.1186/s12870-019-1939-z
- Lee U, Rioflorido I, Hong SW, Larkindale J, Waters ER, Vierling E. The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development. The Plant Journal. 2007;49(1):115-27. https://doi.org/10.1111/j.1365-313X.2006.02940.x
- Kong F, Deng Y, Wang G, Wang J, Liang X, Meng Q. LeCDJ1, a chloroplast DnaJ protein, facilitates heat tolerance in transgenic tomatoes. Journal of Integrative Plant Biology. 2014;56(1):63-74. https://doi.org/10.1111/jipb.12119
- Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, et al. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. The Plant Cell. 2006;18(5):1292-309. https://doi.org/10.1105/tpc.105.035881
- Xu T, Zhou H, Feng J, Guo M, Huang H, Yang P, et al. Involvement of HSP70 in BAG9-mediated thermotolerance in Solanum lycopersicum. Plant Physiology and Biochemistry. 2024;207:108353. https://doi.org/10.1016/j.plaphy.2024.108353
- Reddy AS, Ali GS, Celesnik H, Day IS. Coping with stresses: roles of calcium-and calcium/calmodulin-regulated gene expression. The Plant Cell. 2011;23(6):2010-32. https://doi.org/10.1105/tpc.111.084988
- Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K. Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signaling & Behavior. 2011;6(10):1503-09. https://doi.org/10.4161/psb.6.10.17088
- Nautiyal PC, Shono M, Egawa Y. Enhanced thermotolerance of the vegetative part of MT-sHSP transgenic tomato line. Scientia Horticulturae. 2005;105(3):393-409. https://doi.org/10.1016/j.scienta.2005.02.001
Downloads
Download data is not yet available.