Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Advancements in UAV technology for forestry applications: A comprehensive review

DOI
https://doi.org/10.14719/pst.8169
Submitted
10 March 2025
Published
08-09-2025
Versions

Abstract

The rapid growth of Unmanned Aerial Vehicles (UAVs) or Drones have significantly revolutionized the methodologies of modern forestry. Traditional methods being dependent on low resolution satellite data and labour-intensive field work are now being substituted by high resolution drone-based data offering real time monitoring and increased operational efficiency. This review examines the extensive role of UAVs in modernising various forestry practices and its associated challenges. Different types of drones namely, fixed-wing, rotary-wing and hybrid models along with advance imaging systems and sensors such as multispectral, hyperspectral, thermal and LiDAR sensors. These technologies have been proven as inevitable source of forest inventory, health monitoring, wildfire detection and suppression, biodiversity assessment and precision forestry. UAVs Provide high resolution 3D Modelling, early disease detection and pest monitoring and improved seed dispersal through precision techniques. Apart from that usage of machine learning and deep learning technologies have enabled the usage of drone swarms enhancing large scale autonomous operation like real time environment monitoring. Despite their extensive advantages UAVs also have some minor disadvantages including regulatory constrains like lack of data processing, sensor limitation and high investment cost. In the Indian context though drone regulations are evolving there are some lacks on policy enforcement and legal framework. The review insists upon the need for unified legal frameworks, improved data-sharing methodologies and open-source software to support the wider adoption of UAVs in forestry. As drone technology continues to advance with blockchain interpretation, energy harvesting and user-friendly systems, its role in sustainable forest management is set to expand. UAVs are emerging as indispensable tools for efficient, responsive and ecologically responsible forestry practices.

References

  1. 1. Tang L, Shao G. Drone remote sensing for forestry research and practices. J For Res. 2015;26:791-7. https://doi.org/10.1007/s11676-015-0088-y
  2. 2. Torresan C, Berton A, Carotenuto F, Di Gennaro SF, Gioli B, Matese A, et al. Forestry applications of UAVs in Europe: a review. Int J Remote Sens. 2017;38(8-10):2427-47. https://doi.org/10.1080/01431161.2016.1252477
  3. 3. Banu TP, Borlea GF, Banu C. The use of drones in forestry. J Environ Sci Eng B. 2016;5(11):557-62. https://doi.org/10.17265/2162-5263/2016.11.007
  4. 4. Dash JP, Watt MS, Paul TS, Morgenroth J, Pearse GD. Early detection of invasive exotic trees using UAV and manned aircraft multispectral and LiDAR data. Remote Sens. 2019;11(15):1812. https://doi.org/10.3390/rs11151812
  5. 5. Ecke S, Dempewolf J, Frey J, Schwaller A, Endres E, Klemmt HJ, et al. UAV-based forest health monitoring: a systematic review. Remote Sens. 2022;14(13):3205. https://doi.org/10.3390/rs14133205
  6. 6. Shrestha A, Hicke JA, Meddens AJ, Karl JW, Stahl AT. Evaluating a novel approach to detect the vertical structure of insect damage in trees using multispectral and three-dimensional data from drone imagery in the Northern Rocky Mountains, USA. Remote Sens. 2024;16(8):1365. https://doi.org/10.3390/rs16081365
  7. 7. Díaz-Delgado R, Mücher S. Editorial of special issue “Drones for biodiversity conservation and ecological monitoring”. Drones. 2019;3(2):47. https://doi.org/10.3390/drones3020047
  8. 8. Ausonio E, Bagnerini P, Ghio M. Drone swarms in fire suppression activities: a conceptual framework. Drones. 2021;5(1):17. https://doi.org/10.3390/drones5010017
  9. 9. Paneque-Gálvez J, McCall MK, Napoletano BM, Wich SA, Koh LP. Small drones for community-based forest monitoring: an assessment of their feasibility and potential in tropical areas. Forests. 2014;5(6):1481-507. https://doi.org/10.3390/f5061481
  10. 10. Melhim LK, Jemmali M, Boulila W, Alazab M, Rani S, Campbell H, et al. Leveraging drone-assisted surveillance for effective forest conservation: a case study in Australia’s Daintree Rainforest. IEEE Internet Things J. 2024;11(19):31167-79. https://doi.org/10.1109/JIOT.2024.3419710
  11. 11. Okulski M, Ławryńczuk M. A small UAV optimized for efficient long-range and VTOL missions: an experimental tandem-wing quadplane drone. Appl Sci. 2022;12(14):7059. https://doi.org/10.3390/app12147059
  12. 12. Shraim H, Awada A, Youness R. A survey on quadrotors: configurations, modeling and identification, control, collision avoidance, fault diagnosis and tolerant control. IEEE Aerosp Electron Syst Mag. 2018;33(7):14-33. https://doi.org/10.1109/MAES.2018.160246
  13. 13. Khan W, Nahon M. Toward an accurate physics-based UAV thruster model. IEEE/ASME Trans Mechatron. 2013;18(4):1269-79. https://doi.org/10.1109/TMECH.2013.2264105
  14. 14. Guan YJ, Li YP. Design and aerodynamic characteristics analysis of propellers for a novel rescue unmanned aerial vehicle. Aircr Eng Aerosp Technol. 2024;96(1):162-74. https://doi.org/10.1108/AEAT-11-2022-0327
  15. 15. Ryll M, Bülthoff HH, Giordano PR. A novel overactuated quadrotor unmanned aerial vehicle: modeling, control, and experimental validation. IEEE Trans Control Syst Technol. 2014;23(2):540-56. https://doi.org/10.1109/TCST.2014.2330999
  16. 16. Ichiro Ishimaru. Extremely compact hyperspectral camera for drone and smartphone. Proc Int Workshop Image Sens Imaging Syst. 2016;1:264-7.
  17. 17. Meng L, Hirayama T, Oyanagi S. Underwater-drone with panoramic camera for automatic fish recognition based on deep learning. IEEE Access. 2018;6:17880-6. https://doi.org/10.1109/ACCESS.2018.2820326
  18. 18. Svanström F, Alonso-Fernandez F, Englund C. Drone detection and tracking in real-time by fusion of different sensing modalities. Drones. 2022;6(11):317. https://doi.org/10.3390/drones6110317
  19. 19. Falanga D, Kleber K, Scaramuzza D. Dynamic obstacle avoidance for quadrotors with event cameras. Sci Robot. 2020;5(40):eaaz9712. https://doi.org/10.1126/scirobotics.aaz9712
  20. 20. Alexovič S, Lacko M, Bačík J. 3D mapping with a drone equipped with a depth camera in indoor environment. Acta Electrotech Inform. 2023;23(1):18-24. https://doi.org/10.2478/aei-2023-0003
  21. 21. Larsen HL, Møller-Lassesen K, Enevoldsen EM, Madsen SB, Obsen MT, Povlsen P, et al. Drone with mounted thermal infrared cameras for monitoring terrestrial mammals. Drones. 2023;7(11):680. https://doi.org/10.3390/drones7110680
  22. 22. Unlu E, Zenou E, Riviere N, Dupouy PE. Deep learning-based strategies for the detection and tracking of drones using several cameras. IPSJ Trans Comput Vis Appl. 2019;11:1-3. https://doi.org/10.1186/s41074-019-0059-x
  23. 23. Ghazali MH, Rahiman W. An investigation of the reliability of different types of sensors in the real-time vibration-based anomaly inspection in drone. Sensors. 2022;22(16):6015. https://doi.org/10.3390/s22166015
  24. 24. Vanhie-Van Gerwen J, Geebelen K, Wan J, Joseph W, Hoebeke J, De Poorter E. Indoor drone positioning: accuracy and cost trade-off for sensor fusion. IEEE Trans Veh Technol. 2021;71(1):961-74. http://doi.org/10.1109/TVT.2021.3129917
  25. 25. Coluccia A, Parisi G, Fascista A. Detection and classification of multirotor drones in radar sensor networks: a review. Sensors. 2020;20(15):4172. https://doi.org/10.3390/s20154172
  26. 26. Averin D, Borovytsky V. Coordinate measurement in multi-beam drone positioning system. Visn Ternopil Nac Tech Univ. 2023;109(1):80-9. https://doi.org/10.33108/visnyk_tntu2023.01.080
  27. 27. Flak P. Drone detection sensor with continuous 2.4 GHz ISM band coverage based on cost-effective SDR platform. IEEE Access. 2021;9:114574-86. https://doi.org/10.1109/ACCESS.2021.3104738
  28. 28. hang J, Hu J, Lian J, Fan Z, Ouyang X, Ye W. Seeing the forest from drones: testing the potential of lightweight drones as a tool for long-term forest monitoring. Biol Conserv. 2016;198:60-9. https://doi.org/10.1016/j.biocon.2016.03.027
  29. 29. Harris RC, Kennedy LM, Pingel TJ, Thomas VA. Assessment of canopy health with drone-based orthoimagery in a Southern Appalachian red spruce forest. Remote Sens. 2022;14(6):1341. https://doi.org/10.3390/rs14061341
  30. 30. Young DJ, Koontz MJ, Weeks J. Optimizing aerial imagery collection and processing parameters for drone-based individual tree mapping in structurally complex conifer forests. Methods Ecol Evol. 2022;13(7):1447-63. https://doi.org/10.1111/2041-210X.13860
  31. 31. Araujo RF, Chambers JQ, Celes CH, Muller-Landau HC, Santos AP, Emmert F, et al. Integrating high resolution drone imagery and forest inventory to distinguish canopy and understory trees and quantify their contributions to forest structure and dynamics. PLoS One. 2020;15(12):e0243079. https://doi.org/10.1371/journal.pone.0243079
  32. 32. Castro J, Alcaraz-Segura D, Baltzer JL, Amorós L, Morales-Rueda F, Tabik S. Automated precise seeding with drones and artificial intelligence: a workflow. Restor Ecol. 2024;32(5):e14164. https://doi.org/10.1111/rec.14164
  33. 33. Coldrey JJ, Thompson BS. Evaluating stakeholder perceptions on drone use in forest restoration using a social–ecological systems framework. People Nat. 2024;6(4):1624-39. https://doi.org/10.1002/pan3.10660
  34. 34. Nayak VY, Rao VG, Jagruthi H. Drones in forest fire mitigation. In: 2023 3rd Int Conf Electr Comput Commun Mechatron Eng (ICECCME). IEEE; 2023. p. 1-7. https://doi.org/10.1109/ICECCME57830.2023.10252566
  35. 35. Kinaneva D, Hristov G, Raychev J, Zahariev P. Early forest fire detection using drones and artificial intelligence. In: 2019 42nd Int Conv Inf Commun Technol Electron Microelectron (MIPRO). IEEE; 2019. p.1060-5. https://doi.org/10.23919/MIPRO.2019.8756696
  36. 36. Mahmudnia D, Arashpour M, Bai Y, Feng H. Drones and blockchain integration to manage forest fires in remote regions. Drones. 2022;6(11):331. https://doi.org/10.3390/drones6110331
  37. 37. Alsammak IL, Mahmoud MA, Aris H, AlKilabi M, Mahdi MN. The use of swarms of unmanned aerial vehicles in mitigating area coverage challenges of forest-fire-extinguishing activities: a systematic literature review. Forests. 2022;13(5):811. https://doi.org/10.3390/f13050811
  38. 38. Jiménez López J, Mulero-Pázmány M. Drones for conservation in protected areas: present and future. Drones. 2019;3(1):10. https://doi.org/10.3390/drones3010010
  39. 39. Corcoran E, Winsen M, Sudholz A, Hamilton G. Automated detection of wildlife using drones: synthesis, opportunities and constraints. Methods Ecol Evol. 2021;12(6):1103-14. https://doi.org/10.1111/2041-210X.13581
  40. 40. Lyons MB, Brandis KJ, Murray NJ, Wilshire JH, McCann JA, Kingsford RT, et al. Monitoring large and complex wildlife aggregations with drones. Methods Ecol Evol. 2019;10(7):1024-35. https://doi.org/10.1111/2041-210X.13194
  41. 41. Mou C, Liu T, Zhu C, Cui X. Waid: A large-scale dataset for wildlife detection with drones. Appl Sci. 2023;13(18):10397. https://doi.org/10.3390/app131810397
  42. 42. Witczuk J, Pagacz S, Zmarz A, Cypel M. Exploring the feasibility of unmanned aerial vehicles and thermal imaging for ungulate surveys in forests—preliminary results. Int J Remote Sens. 2018;39(15–16):5504–21. https://doi.org/10.1080/01431161.2017.1390621
  43. 43. Abeysinghe T, Simic Milas A, Arend K, Hohman B, Reil P, Gregory A, et al. Mapping invasive Phragmites australis in the Old Woman Creek estuary using UAV remote sensing and machine learning classifiers. Remote Sens. 2019;11(11):1380. https://doi.org/10.3390/rs11111380
  44. 44. Fraser BT, Congalton RG. Monitoring fine-scale forest health using unmanned aerial systems (UAS) multispectral models. Remote Sens. 2021;13(23):4873. https://doi.org/10.3390/rs13234873
  45. 45. Nezami S, Khoramshahi E, Nevalainen O, Pölönen I, Honkavaara E. Tree species classification of drone hyperspectral and RGB imagery with deep learning convolutional neural networks. Remote Sens. 2020;12(7):1070. https://doi.org/10.3390/rs12071070
  46. 46. Fernández-Guisuraga JM, Sanz-Ablanedo E, Suárez-Seoane S, Calvo L. Using unmanned aerial vehicles in postfire vegetation survey campaigns through large and heterogeneous areas: opportunities and challenges. Sensors. 2018;18(2):586. https://doi.org/10.3390/s18020586
  47. 47. Moghadasi N, Kulkarni A, Crayton D, Grissom R, Lambert JH, Feng L. Formal methods in unmanned aerial vehicle swarm control for wildfire detection and monitoring. In: 2023 IEEE Int Syst Conf (SysCon); 2023. p. 1–8. https://doi.org/10.1109/SysCon53073.2023.10131075
  48. 48. Yan X, Chen R. Application strategy of unmanned aerial vehicle swarms in forest fire detection based on the fusion of particle swarm optimization and artificial bee colony algorithm. Appl Sci. 2024;14(11):4937. https://doi.org/10.3390/app14114937
  49. 49. Priya A, Kumar S, Kumar S. Surveillance using 5G based drone swarm system for forest area. In: 2024 IEEE Students Conf Eng Syst (SCES); 2024. p. 1–5. https://doi.org/10.1109/SCES61914.2024.10652563
  50. 50. Nathan RJ, Strand S, Mehrwald D, Shutin D, Bimber O. An autonomous drone swarm for detecting and tracking anomalies among dense vegetation. arXiv. 2024. https://doi.org/10.48550/arXiv.2407.10754
  51. 51. Zhou X, Wen X, Wang Z, Gao Y, Li H, Wang Q, et al. Swarm of micro flying robots in the wild. Sci Robot. 2022;7(66):eabm5954. https://doi.org/10.1126/scirobotics.abm5954
  52. 52. Bjurling O, Granlund R, Alfredson J, Arvola M, Ziemke T. Drone swarms in forest firefighting: a local development case study of multi-level human-swarm interaction. In: Proc 11th Nordic Conf Human-Computer Interaction; 2020. p. 1–7. https://doi.org/10.1145/3419249.3421239
  53. 53. Roldán-Gómez JJ, González-Gironda E, Barrientos A. A survey on robotic technologies for forest firefighting: Applying drone swarms to improve firefighters’ efficiency and safety. Appl Sci. 2021;11(1):363. https://doi.org/10.3390/app11010363
  54. 54. Alsammak IL, Mahmoud MA, Gunasekaran SS, Ahmed AN, AlKilabi M. Nature-inspired drone swarming for wildfires suppression considering distributed fire spots and energy consumption. IEEE Access. 2023;11:50962–83. https://doi.org/10.1109/ACCESS.2023.3279416
  55. 55. Singh P, Shahi V. Laws related to use of drone in India—A critical analysis. DME J Law. 2024;5(1):12–7. https://doi.org/10.53361/dmejl.v5i01.02
  56. 56. Srivastava S, Gupta S, Dikshit O, Nair S. A review of UAV regulations and policies in India. In: Proc UASG 2019: Unmanned aerial system in geomatics. Vol. 1. Springer; 2020. p. 315–25. https://doi.org/10.1007/978-3-030-37393-1_27
  57. 57. Kim DH. Regulations and laws pertaining to the use of unmanned aircraft systems (UAS) by ICAO, USA, China, Japan, Australia, India, and Korea. In: Unmanned aerial vehicles in civilian logistics and supply chain management. Hershey (PA): IGI Global; 2019. p. 169–207. https://doi.org/10.4018/978-1-5225-7900-7.ch007
  58. 58. Nugraha RA, Jeyakodi D, Mahem T. Urgency for legal framework on drones: Lessons for Indonesia, India, and Thailand. Indones Law Rev. 2016;6:137. https://doi.org/10.15742/ilrev.v6n2.229
  59. 59. Dainelli R, Toscano P, Di Gennaro SF, Matese A. Recent advances in unmanned aerial vehicle forest remote sensing—A systematic review. Part I: A general framework. Forests. 2021;12(3):327. https://doi.org/10.3390/f12030327
  60. 60. Mohan M, Richardson G, Gopan G, Aghai MM, Bajaj S, Galgamuwa GP, et al. UAV-supported forest regeneration: Current trends, challenges and implications. Remote Sens. 2021;13(13):2596. https://doi.org/10.3390/rs13132596
  61. 61. Adoni WY, Lorenz S, Fareedh JS, Gloaguen R, Bussmann M. Classification of uncrewed aerial vehicles. Encyclopedia; 2023. https://encyclopedia.pub/entry/43656

Downloads

Download data is not yet available.