Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 2 (2025)

Sustainable potato production in a changing climate: Challenges and innovations

DOI
https://doi.org/10.14719/pst.8222
Submitted
13 March 2025
Published
26-04-2025 — Updated on 30-04-2025
Versions

Abstract

Climate change presents a major threat to global agriculture, primarily due to the increasing frequency and intensity of extreme weather events. As the third most important food crop after rice and wheat, potatoes play a crucial role in achieving food security and alleviating malnutrition due to their high productivity and nutritional value. However, potato cultivation remains highly susceptible to environmental stressors, with projections indicating a potential 32 % reduction in tuber yield by 2050. Climate-induced stress influences the virulence and population dynamics of pests and pathogens, heightening the risk of sudden outbreaks due to increased host susceptibility. The development of stress-tolerant potato varieties and the extensive application of fungicides accelerate pathogen resistance evolution, ultimately limiting their long-term efficacy. Additionally, excessive chemical inputs elevate production costs and pose significant environmental risks. To mitigate these challenges, weather-based approaches offer a promising solution by enabling timely management practices through increasing the accuracy of real-time forecasting and dissemination of weather information to farming communities. The integration of proper agronomic practices, suitable breeding techniques and forecasting weather information with crop protection measures can enhance resilience to climate-induced stress. Adopting the Internet of Things (IoT) technologies in precision agriculture can optimize resource use, improve decision-making and contribute to global food security.

References

  1. Devaux A, Goffart JP, Petsakos A, Kromann P, Gatto M, Okello J, et al. Global food security, contributions from sustainable potato agri-food systems. In: Campos H, Ortiz O, editors. The potato crop: Its agricultural, nutritional and social contribution to humankind. Springer, Cham; 2020. p. 3–35. https://doi.org/10.1007/978-3-030-28683-5_1
  2. Bnv P, Gvs S. “Potato”—Powerhouse for many nutrients. Potato Res. 2023;66(3):563–80. https://doi.org/10.1007/s11540-022-09589-2
  3. Demirel U. Environmental requirements of potato and abiotic stress factors. In: Potato production worldwide: Academic Press; 2023. p. 71–86. https://doi.org/10.1016/B978-0-12-822925-5.00011-6
  4. Islam S, Raihan A, Nahiyan ASM, Siddique MA, Rahman L. Field screening and marker assisted selection of late blight resistant potato lines. Int J Plant Soil Sci. 2018;25:1–12. https://doi.org/10.9734/IJPSS/2018/45301
  5. Francl LJ. The disease triangle: a plant pathological paradigm revisited. The Plant Health Instructor. 2001;10. https://doi.org/10.1094/PHI-T-2001-0517-01
  6. Pokhrel A. Role of individual components of disease triangle in disease development: a review. J Plant Pathol Microbiol. 2021;12:573.
  7. Hijmans RJ. Global distribution of the potato crop. Am J Potato Res. 2001;78:403–12. https://doi.org/10.1007/BF02896371
  8. Rykaczewska K. The effect of high temperature occurring in subsequent stages of plant development on potato yield and tuber physiological defects. Am J Potato Res. 2015;92:339–49. https://doi.org/10.1007/s12230-015-9436-x
  9. Dahal K, Li X-Q, Tai H, Creelman A, Bizimungu B. Improving potato stress tolerance and tuber yield under a climate change scenario–a current overview. Front Plant Sci. 2019;10:563. https://doi.org/10.3389/fpls.2019.00563
  10. Handayani T, Watanabe K. The combination of drought and heat stress has a greater effect on potato plants than single stresses. Plant Soil Environ. 2020;66(4). https://doi.org/10.17221/126/2020-PSE
  11. Paul S, Das MK, Baishya P, Ramteke A, Farooq M, Baroowa B, et al. Effect of high temperature on yield associated parameters and vascular bundle development in five potato cultivars. Sci Hortic. 2017;225:134–40. https://doi.org/10.1016/j.scienta.2017.06.061
  12. Obiero CO, Milroy SP, Bell RW. Importance of whole plant dry matter dynamics for potato (Solanum tuberosum L.) tuber yield response to an episode of high temperature. Environ Exp Bot. 2019;162:560–71. https://doi.org/10.1016/j.envexpbot.2019.04.001
  13. Lafta AM, Lorenzen JH. Effect of high temperature on plant growth and carbohydrate metabolism in potato. Plant Physiol. 1995;109(2):637–43. https://doi.org/10.1104/pp.109.2.637
  14. Edwards A, Fulton DC, Hylton CM, Jobling SA, Gidley M, Rössner U, et al. A combined reduction in activity of starch synthases II and III of potato has novel effects on the starch of tubers. Plant J. 1999;17(3):251–61. https://doi.org/10.1046/j.1365-313X.1999.00371.x
  15. Lovell PH, Booth A. Effects of gibberellic acid on growth, tuber formation and carbohydrate distribution in Solanum tuberosum. New Phytol. 1967;66(4):525–37. https://doi.org/10.1111/j.1469-8137.1967.tb05424.x
  16. Dong J, Li J, Deng G, Chen C, Jing S, Song B, et al. QTL analysis for low temperature tolerance of wild potato species Solanum commersonii in natural field trials. Sci Hortic. 2023;310:111689. https://doi.org/10.1016/j.scienta.2022.111689
  17. Beck EH, Heim R, Hansen J. Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening. J Biosci. 2004;29:449–59. https://doi.org/10.1007/BF02712118
  18. Fuyi M, Mengyun, L. Potato Cultivation Physiology Beijing: China Agriculture Press; 1995.
  19. Huang X, Shi H, Hu Z, Liu A, Amombo E, Chen L, et al. ABA is involved in regulation of cold stress response in bermudagrass. Front Plant Sci. 2017;8:1613. https://doi.org/10.3389/fpls.2017.01613
  20. Phukan UJ, Jeena GS, Shukla RK. WRKY transcription factors: molecular regulation and stress responses in plants. Front Plant Sci. 2016;7:760. https://doi.org/10.3389/fpls.2016.00760
  21. Yan C, Zhang N, Wang Q, Fu Y, Wang F, Su Y, et al. The effect of low temperature stress on the leaves and microRNA expression of potato seedlings. Front Ecol Evol. 2021;9:727081. https://doi.org/10.3389/fevo.2021.727081
  22. Lin Q, Xie Y, Liu W, Zhang J, Cheng S, Xie X, et al. UV-C treatment on physiological response of potato (Solanum tuberosum L.) during low temperature storage. J Food Sci Technol. 2017;54:55–61. https://doi.org/10.1007/s13197-016-2433-3
  23. Wang X, Guo C, Peng J, Li C, Wan F, Zhang S, et al. ABRE?BINDING FACTORS play a role in the feedback regulation of ABA signaling by mediating rapid ABA induction of ABA co?receptor genes. New Phytol. 2019;221(1):341–55. https://doi.org/10.1111/nph.15345
  24. Sun Y, He Y, Irfan AR, Liu X, Yu Q, Zhang Q, et al. Exogenous brassinolide enhances the growth and cold resistance of maize (Zea mays L.) seedlings under chilling stress. Agronomy. 2020;10(4):488. https://doi.org/10.3390/agronomy10040488
  25. Fu J, Miao Y, Shao L, Hu T, Yang P. De novo transcriptome sequencing and gene expression profiling of Elymus nutans under cold stress. BMC Genomics. 2016;17:1–19. https://doi.org/10.1186/s12864-016-3222-0
  26. Chen BC, Wu XJ, Guo HC, Xiao JP. Effects of appropriate low-temperature treatment on the yield and quality of pigmented potato (Solanum tuberosum L.) tubers. BMC Plant Biol. 2024;24(1):274. https://doi.org/10.1186/s12870-024-04951-7
  27. Zommick DH, Knowles LO, Knowles NR. Tuber respiratory profiles during low temperature sweetening (LTS) and reconditioning of LTS-resistant and susceptible potato (Solanum tuberosum L.) cultivars. Postharvest Biol Technol. 2014;92:128–38. https://doi.org/10.1016/j.postharvbio.2014.01.020
  28. Xia Q. The impact of low-temperature freezing damage on potatoes and defense strategies. Agric Technol. 2021;41(11):3.
  29. UNCCD. Drought. UNCCD Publication; 2022.
  30. Boguszewska-Ma?kowska D, Zarzy?ska K, Nosalewicz A. Drought differentially affects root system size and architecture of potato cultivars with differing drought tolerance. Am J Potato Res. 2020;97(1):54–62. https://doi.org/10.1007/s12230-019-09755-2
  31. Nasir MW, Toth Z. Effect of drought stress on potato production: A review. Agronomy. 2022;12(3):635. https://doi.org/10.3390/agronomy12030635
  32. Byrd SA, Rowland DL, Bennett J, Zotarelli L, Wright D, Alva A, et al. Reductions in a commercial potato irrigation schedule during tuber bulking in Florida: Physiological, yield, and quality effects. J Crop Improv. 2014;28(5):660–79. https://doi.org/10.1080/15427528.2014.929059
  33. Farag AA, Abdrabbo MA, El-Moula MMHG, Abou HAF, McCarl BA. Water requirements for potato production under climate change. Glob J Adv Res. 2015;2(9):1371–89.
  34. Gervais T, Creelman A, Li XQ, Bizimungu B, De Koeyer D, Dahal K. Potato response to drought stress: physiological and growth basis. Front Plant Sci. 2021;12:698060. https://doi.org/10.3389/fpls.2021.698060
  35. Li S, Kupriyanovich Y, Wagg C, Zheng F, Hann S. Water deficit duration affects potato plant growth, yield and tuber quality. Agriculture. 2023;13(10):2007. https://doi.org/10.3390/agriculture13102007
  36. Baker NR, Harbinson J, Kramer DM. Determining the limitations and regulation of photosynthetic energy transduction in leaves. Plant Cell Environ. 2007;30(9):1107–25. https://doi.org/10.1111/j.1365-3040.2007.01680.x
  37. Kaur G, Singh G, Motavalli PP, Nelson KA, Orlowski JM, Golden BR. Impacts and management strategies for crop production in waterlogged or flooded soils: A review. Agron J. 2020;112(3):1475–501. https://doi.org/10.1002/agj2.20093
  38. FAO. The impact of disasters and crises on agriculture and food security. In: Rome. FaAO, editor. Rome; 2017.
  39. Voesenek L, Bailey-Serres J. Flooding tolerance: O2 sensing and survival strategies. Curr Opin Plant Biol. 2013;16(5):647–53. https://doi.org/10.1016/j.pbi.2013.06.008
  40. Liu F, Jensen CR, Shahanzari A, Andersen MN, Jacobsen SE. ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Sci. 2005;168(3):831–6. https://doi.org/10.1016/j.plantsci.2004.10.016
  41. Kifle M, Gebretsadikan TG. Yield and water use efficiency of furrow irrigated potato under regulated deficit irrigation, Atsibi-Wemberta, North Ethiopia. Agric Water Manag. 2016;170:133–9. https://doi.org/10.1016/j.agwat.2016.01.003
  42. Terry LA. Blackheart-an emerging problem for the GB potato packing industry. Potato Council Agriculture & Horticulture Development Board. 2015.
  43. da Silva WL, Yang KT, Pettis GS, Soares NR, Giorno R, Clark CA. Flooding-associated soft rot of sweetpotato storage roots caused by distinct Clostridium isolates. Plant Dis. 2019;103(12):3050–6. https://doi.org/10.1094/PDIS-03-19-0548-RE
  44. Jovovi? Z, Bro?i? Z, Velimirovi? A, Dolijanovi? Ž, Komneni? A, editors. The influence of flooding on the main parameters of potato productivity. 2021. https://doi.org/10.17660/ActaHortic.2021.1320.17
  45. Fukao T, Barrera-Figueroa BE, Juntawong P, Peña-Castro JM. Submergence and waterlogging stress in plants: a review highlighting research opportunities and understudied aspects. Front Plant Sci. 2019;10:340. https://doi.org/10.3389/fpls.2019.00340
  46. Sasidharan R, Hartman S, Liu Z, Martopawiro S, Sajeev N, van Veen H, et al. Signal dynamics and interactions during flooding stress. Plant Physiol. 2018;176(2):1106–17. https://doi.org/10.1104/pp.17.01232
  47. Zhao F, Zhang Q, Lei J, Wang H, Zhang K, Qi Y. Environmental factors influence the responsiveness of potato tuber yield to growing season precipitation. Crop Environ. 2024;3(2):112–22. https://doi.org/10.1016/j.crope.2024.02.002
  48. Edmond C, Geldard R. Extreme weather is driving food prices higher. World Economic Forum. 2024.
  49. Timlin D, Paff K, Han E. The role of crop simulation modeling in assessing potential climate change impacts. Agrosyst Geosci Environ. 2024;7(1):e20453. https://doi.org/10.1002/agg2.20453
  50. Asseng S, Zhu Y, Basso B, Wilson T, Cammarano D. Simulation modeling: applications in cropping systems. In: Alfen NKV, editors. Encyclopedia of Agriculture and Food Systems. Academic Press; 2014. p. 102–12. https://doi.org/10.1016/B978-0-444-52512-3.00233-3
  51. Basso B, Liu L, Ritchie JT. A comprehensive review of the CERES-wheat,-maize and-rice models’ performances. Adv Agron. 2016;136:127–32. https://doi.org/10.1016/bs.agron.2015.11.004
  52. Adekanmbi T, Wang X, Basheer S, Nawaz RA, Pang T, Hu Y, et al. Assessing future climate change impacts on potato yields—A case study for Prince Edward Island, Canada. Foods. 2023;12(6):1176. https://doi.org/10.3390/foods12061176
  53. Banerjee S, Sarmah K, Mukherjee A, Sattar A, Bandopadhyay P. Effect of projected climate scenarios on the yields of potato crop and agronomic adaptation options as evaluated by crop growth model. MAUSAM. 2022;73(1):71–8. https://doi.org/10.54302/mausam.v73i1.5081
  54. Hijmans RJ. The effect of climate change on global potato production. Am J Potato Res. 2003;80:271–9. https://doi.org/10.1007/BF02855363
  55. Egerer S, Puente AF, Peichl M, Rakovec O, Samaniego L, Schneider UA. Limited potential of irrigation to prevent potato yield losses in Germany under climate change. Agric Syst. 2023;207:103633. https://doi.org/10.1016/j.agsy.2023.103633
  56. Jégo G, Crépeau M, Jing Q, Grant B, Smith W, Mesbah M, et al. Potato yield projections under climate change in Canada. Agron J. 2025;117(1):e70017. https://doi.org/10.1002/agj2.70017
  57. Kim YU, Webber H. Contrasting responses of spring and summer potato to climate change in South Korea. Potato Res. 2024;67(4):1265–86. https://doi.org/10.1007/s11540-024-09691-7
  58. Bender FD, Sentelhas PC. Assessment of regional climate change impacts on Brazilian potato tuber yield. Int J Plant Prod. 2020;14(4):647–61. https://doi.org/10.1007/s42106-020-00111-7
  59. Tooley BE, Mallory EB, Porter GA, Hoogenboom G. Predicting the response of a potato-grain production system to climate change for a humid continental climate using DSSAT. Agric For Meteorol. 2021;307:108452. https://doi.org/10.1016/j.agrformet.2021.108452
  60. Raymundo R, Asseng S, Robertson R, Petsakos A, Hoogenboom G, Quiroz R, et al. Climate change impact on global potato production. Eur J Agron. 2018;100:87–98. https://doi.org/10.1016/j.eja.2017.11.008
  61. Dua VK, Singh BP, Govindakrishnan PM, Kumar S, Lal SS. Impact of climate change on potato productivity in Punjab–a simulation study. Curr Sci. 2013:787–94. https://doi.org/10.1007/978-81-322-0974-4_12
  62. Adavi Z, Moradi R, Saeidnejad AH, Tadayon MR, Mansouri H. Assessment of potato response to climate change and adaptation strategies. Sci Hortic. 2018;228:91–102. https://doi.org/10.1016/j.scienta.2017.10.017
  63. Tang J, Xiao D, Bai H, Wang B, Liu DL, Feng P, et al. Potential benefits of potato yield at two sites of agro-pastoral ecotone in North China under future climate change. Int J Plant Prod. 2020;14:401–14. https://doi.org/10.1007/s42106-020-00092-7
  64. Rana A, Dua VK, Chauhan N, Chaukhande P, Kumari M. Climate change impact on potato (Solanum tuberosum) productivity and relative adaptation strategies. J Agrometeorol. 2023;25(3):410–8. https://doi.org/10.54386/jam.v25i3.2181
  65. Morris WL, Taylor MA. The solanaceous vegetable crops: Potato, tomato, pepper, and eggplant. In: Thomas B, Murray BG, Murphy DJ, editors. Encyclopedia of Applied Plant Sciences (Second Edition). Academic Press; 2017. p. 55–8. https://doi.org/10.1016/B978-0-12-394807-6.00129-5
  66. Kreuze JF, Souza-Dias JAC, Jeevalatha A, Figueira AR, Valkonen JPT, Jones RAC. Viral diseases in potato. In: Campos H, Ortiz O, editors. The potato crop: Its agricultural, nutritional and social contribution to humankind. Springer, Cham; 2020. p. 389–430. https://doi.org/10.1007/978-3-030-28683-5_11
  67. Torrance L, Talianksy ME. Potato Virus Y emergence and evolution from the Andes of South America to become a major destructive pathogen of potato and other solanaceous crops worldwide. Viruses. 2020;12(12):1430. https://doi.org/10.3390/v12121430
  68. Rushton J, Larsen B, Houser A, Pitt WJ, Charkowski AO, Chikh-Ali M, et al. Detection and Characterization of Potato Virus Y (PVY) Strains and Mixed Infections in San Luis Valley, Colorado. PhytoFrontiers™. 2024;4(4):746–59. https://doi.org/10.1094/PHYTOFR-03-24-0028-R
  69. Dupuis B, Nkuriyingoma P, Ballmer T. Economic impact of potato virus Y (PVY) in Europe. Potato Res. 2024;67(1):55–72. https://doi.org/10.1007/s11540-023-09623-x
  70. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol. 2012;13(6):614–29. https://doi.org/10.1111/j.1364-3703.2012.00804.x
  71. Charkowski A, Sharma K, Parker ML, Secor GA, Elphinstone J. Bacterial diseases of potato. In: Campos H, Ortiz O, editors. The potato crop: Its agricultural, nutritional and social contribution to humankind. Springer, Cham; 2020. p. 351–88. https://doi.org/10.1007/978-3-030-28683-5_10
  72. Rowe J. Globodera rostochiensis (yellow potato cyst nematode). CABI Compendium. 2022. https://doi.org/10.1079/CPC.27034.20210102986
  73. Sullivan MJ, Inserra RN, Franco J, Moreno-Leheude I, Greco N. Potato cyst nematodes: plant host status and their regulatory impact. Nematropica. 2007:193–202.
  74. Trudgill DL, Elliott MJ, Evans K, Phillips MS. The white potato cyst nematode (Globodera pallida)–a critical analysis of the threat in Britain. Ann Appl Biol. 2003;143(1):73–80. https://doi.org/10.1111/j.1744-7348.2003.00073.x
  75. Perry RN, Moens M. Plant nematology: Cabi; 2006. https://doi.org/10.1079/9781845930561.0000
  76. Peel MC, Finlayson BL, McMahon TA. Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci. 2007;11(5):1633–44. https://doi.org/10.5194/hess-11-1633-2007
  77. Blacket MJ, Agarwal A, Wainer J, Triska MD, Renton M, Edwards J. Molecular assessment of the introduction and spread of potato cyst nematode, Globodera rostochiensis, in Victoria, Australia. Phytopathology. 2019;109(4):659–69. https://doi.org/10.1094/PHYTO-06-18-0206-R
  78. Hodda M, Cook DC. Economic impact from unrestricted spread of potato cyst nematodes in Australia. Phytopathology. 2009;99(12):1387–93. https://doi.org/10.1094/PHYTO-99-12-1387
  79. Koirala S, Watson P, McIntosh CS, Dandurand LM. Economic impact of Globodera pallida on the Idaho economy. Am J Potato Res. 2020;97:214–20. https://doi.org/10.1007/s12230-020-09768-2
  80. Schiffer-Forsyth K, Frederickson MD, Hedley PE, Cock PJA, Green S. Phytophthora in horticultural nursery green waste—A risk to plant health. Horticulturae. 2023;9(6):616. https://doi.org/10.3390/horticulturae9060616
  81. Gallegly ME, Galindo J. Mating types and oospores of Phytophthora infestans in nature in Mexico. Phytopathology. 1958;48:274–7.
  82. Srisawad N, Petchaboon K, Sraphet S, Tappiban P, Triwitayakorn K. Possible reasons affecting different Phytophthora infestans populations in tomato and potato isolates in Thailand. Diversity. 2023;15(11):1121. https://doi.org/10.3390/d15111121
  83. Lu J, Liu T, Zhang X, Li J, Wang X, Liang X, et al. Comparison of the distinct, host-specific response of three Solanaceae hosts induced by Phytophthora infestans. Int J Mol Sci. 2021;22(20):11000. https://doi.org/10.3390/ijms222011000
  84. Jones LR, Giddings NJ, Lutman BF. Investigations of the potato fungus, Phytophthora infestans. In: Bulletin VAES, editor. Burlington: University of Vermont; 1912. https://doi.org/10.5962/bhl.title.119162
  85. Crosier W. Studies in the biology of Phytophthora infestans (Mont.) de Bary. 1934.
  86. Van Everdingen E. Het verband tusschen de weersgesteldheid en de aardappelziekte (Phytophthora infestans). Tijdschrift Over Plantenziekten. 1926;32:129–39. https://doi.org/10.1007/BF02812973
  87. Beaumont A. The dependence on the weather of the dates of outbreak of potato blight epidemics. Mycol Res. 1947;31(1-2):45–53. https://doi.org/10.1016/S0007-1536(47)80005-1
  88. Bourke PMA. Potato blight and the weather: a fresh approach. 1953.
  89. Hyre RA. Progress in forecasting late blight of Potato and Tomato. 1954.
  90. Smith LP. Potato blight forecasting by 90 per cent humidity criteria. Plant Pathol. 1956;5(3). https://doi.org/10.1111/j.1365-3059.1956.tb00093.x
  91. Wallin JR. Summary of recent progress in predicting late blight epidemics in United States and Canada. Am Potato J. 1962;39:306–12. https://doi.org/10.1007/BF02862155
  92. Førsund E. Late Blight Forecasting in Norway 1957–1980 1. Bull OEPP. 1983;13(2):255–8. https://doi.org/10.1111/j.1365-2338.1983.tb01609.x
  93. Sharma KK. Influence of meteorological factors on potato late blight development in North-Western plains of India. J Indian Potato Assoc. 2000;27:1–3.
  94. Ullrich J, Schrödter H. Das Problem der Vorhersage des Auftretens der Kartoffelkrautfäule (Phytophthora infestans) und die Möglichkeit seiner Lösung durch eine “Negativprognose”. Nachrichtenblatt Deutsch Pflanzenschutzdienst (Braunschweig). 1966;18:33–40.
  95. Krause RA, Massie LB, Hyre RA. Blitecast: a computerized forecast of potato late blight. 1975.
  96. Bruhn JA, Fry WE. Analysis of potato late blight epidemiology by simulation modeling. Phytopathology. 1981;71(6):612–6. https://doi.org/10.1094/Phyto-71-612
  97. Schepers H, editor ProPhy: a computerized expert system for control of late blight in potatoes in the Netherlands. 1995.
  98. Stevenson WR, Wyman JA, Kelling KA, Binning LK, Curwen D, Connell TR, et al., editors. Prescriptive crop and pest management software for farming systems involving potatoes. In: Haverkort AJ, MacKerron DKL, editors. Potato Ecology and Modelling of crops under conditions limiting growth. Current Issues in Production Ecology, vol 3. Springer, Dordrecht; 1995. p. 291–303. https://doi.org/10.1007/978-94-011-0051-9_19
  99. Gutsche V. PROGEB—a model?aided forecasting service for pest management in cereals and potatoes 1. Bull OEPP. 1993;23(4):577–81. https://doi.org/10.1111/j.1365-2338.1993.tb00552.x
  100. Forrer HR, Gujer HU, Fried PM. PhytoPRE-a comprehensive information and decision support system for late blight in potatoes. 1993.
  101. Hansen JG, Andersson B, Hermansen A, editors. NEGFRY-A system for scheduling chemical control of late blight in potatoes1995: Boole Press Ltd.
  102. Singh BP, Islam AIA, Sharma VC, Shekhawat GS. JHULSACAST: a computerized forecast of potato late blight in western Uttar Pradesh. 2000.
  103. Henshall WR, Shtienberg D, Beresford RM. A new potato late blight disease prediction model and its comparison with two previous models. N Z Plant Prot. 2006;59:150–4. https://doi.org/10.30843/nzpp.2006.59.4548
  104. Kleinhenz B, Falke K, Kakau J, Rossberg D. SIMBLIGHT1–A new model to predict first occurrence of potato late blight. Bull OEPP. 2007;37(2):339–43. https://doi.org/10.1111/j.1365-2338.2007.01135.x
  105. Afifi M, Zayan SAM, Bruce T, Foyer C, Halford N, Keys A, et al. Implementation of Egy-Blight Cast the first computer simulation model for potato late blight in Egypt. Proceedings of Agriculture: Africa’s “Engine for Growth”-Plant Science & Biotechnology Hold the Key at Roth Amsted Research. 2009:12–4.
  106. Small IM, Joseph L, Fry WE. Development and implementation of the BlightPro decision support system for potato and tomato late blight management. Comput Electron Agric. 2015;115:57–65. https://doi.org/10.1016/j.compag.2015.05.010
  107. Singh BP, Govindakrishnan PM, Ahmad I, Rawat S, Sharma S, Sreekumar J. INDO-BLIGHTCAST–a model for forecasting late blight across agroecologies. Int J Pest Manag. 2016;62(4):360–7. https://doi.org/10.1080/09670874.2016.1210839
  108. Gu YH, Yoo SJ, Park CJ, Kim YH, Park SK, Kim JS, et al. BLITE-SVR: New forecasting model for late blight on potato using support-vector regression. Comput Electron Agric. 2016;130:169–76. https://doi.org/10.1016/j.compag.2016.10.005
  109. Narouei-Khandan HA, Shakya SK, Garrett KA, Goss EM, Dufault NS, Andrade-Piedra JL, et al. BLIGHTSIM: A new potato late blight model simulating the response of Phytophthora infestans to diurnal temperature and humidity fluctuations in relation to climate change. Pathogens. 2020;9(8):659. https://doi.org/10.3390/pathogens9080659
  110. Hjelkrem A-GR, Eikemo H, Le VH, Hermansen A, Nærstad R. A process-based model to forecast risk of potato late blight in Norway (The Nærstad model): model development, sensitivity analysis and Bayesian calibration. Ecol Modell. 2021;450:109565. https://doi.org/10.1016/j.ecolmodel.2021.109565
  111. Babarinde SO, Al-Mughrabi K, Burlakoti RR, Peters RD, Asiedu SK, Prithiviraj B. Current understanding and future perspectives on pathogen biology and management of potato and tomato late blight (Phytophthora infestans) in Canada. Can J Plant Pathol. 2025:1–21. https://doi.org/10.1080/07060661.2024.2448690
  112. Subedi S, Ghimire YN, Gautam S, Poudel HK, Shrestha J. Economics of potato (Solanum tuberosum L.) production in terai region of Nepal. Arch Agric Environ Sci. 2019;4(1):57–62. https://doi.org/10.26832/24566632.2019.040109
  113. Haque MA, Rafii MY, Yusoff MM, Ali NS, Yusuff O, Datta DR, et al. Recent advances in rice varietal development for durable resistance to biotic and abiotic stresses through marker-assisted gene pyramiding. Sustainability. 2021;13(19):10806. https://doi.org/10.3390/su131910806
  114. Tiwari JK, Siddappa S, Singh BP, Kaushik SK, Chakrabarti SK, Bhardwaj V, et al. Molecular markers for late blight resistance breeding of potato: an update. Plant Breed. 2013;132(3):237–45. https://doi.org/10.1111/pbr.12053
  115. Caruana BM, Pembleton LW, Constable F, Rodoni B, Slater AT, Cogan NOI. Validation of genotyping by sequencing using transcriptomics for diversity and application of genomic selection in tetraploid potato. Front Plant Sci. 2019;10:670. https://doi.org/10.3389/fpls.2019.00670
  116. Slater AT, Schultz L, Lombardi M, Rodoni BC, Bottcher C, Cogan NOI, et al. Screening for resistance to PVY in Australian potato germplasm. Genes. 2020;11(4):429. https://doi.org/10.3390/genes11040429
  117. Tiwari JK, Luthra SK, Bhardwaj V, Singh RK, Buckseth T, Kumar R, et al. Indian potato varieties. Indian Hortic. 2021;64(1).
  118. Paul S, Farooq M, Bhattacharya SS, Gogoi N. Management strategies for sustainable yield of potato crop under high temperature. Arch Agron Soil Sci. 2017;63(2):276–87. https://doi.org/10.1080/03650340.2016.1204542
  119. Nyawade SO, Karanja NN, Gachene CKK, Gitari HI, Schulte-Geldermann E, Parker ML. Intercropping optimizes soil temperature and increases crop water productivity and radiation use efficiency of rainfed potato. Am J Potato Res. 2019;96(5):457–71. https://doi.org/10.1007/s12230-019-09737-4
  120. Sadawarti MJ, Singh SP, Kumar V, Lal SS. Effect of mulching and irrigation scheduling on potato cultivar Kufri Chipsona-1 in Central India. Potato J. 2013;40(1).
  121. Dash SN, Pushpavathi Y, Behera S. Effect of irrigation and mulching on growth, yield and water use efficiency of potato. Int J Curr Microbiol App Sci. 2018;7(2):2582–7. https://doi.org/10.20546/ijcmas.2018.702.314
  122. Xie K, Wang XX, Zhang R, Gong X, Zhang S, Mares V, et al. Partial root-zone drying irrigation and water utilization efficiency by the potato crop in semi-arid regions in China. Sci Hortic. 2012;134:20–5. https://doi.org/10.1016/j.scienta.2011.11.034
  123. Liu J, Zhang J, Zhu M, Wan H, Chen Z, Yang N, et al. Effects of plant growth promoting rhizobacteria (PGPR) strain Bacillus licheniformis with biochar amendment on potato growth and water use efficiency under reduced irrigation regime. Agronomy. 2022;12(5):1031. https://doi.org/10.3390/agronomy12051031
  124. Mihrete TB, Mihretu FB. Crop Diversification for Ensuring Sustainable Agriculture, Risk Management and Food Security. Glob Chall. 2025:2400267. https://doi.org/10.1002/gch2.202400267
  125. Hertel T, Elouafi I, Tanticharoen M, Ewert F. Diversification for enhanced food systems resilience. In: von Braun J, Afsana K, Fresco LO, Hassan MHA, editors. Science and innovations for food systems transformation. Springer, Cham; 2023. p. 207–15. https://doi.org/10.1007/978-3-031-15703-5_11
  126. Gora MK, Kumar S, Jat HS, Kakraliya SK, Choudhary M, Dhaka AK, et al. Scalable diversification options delivers sustainable and nutritious food in Indo-Gangetic plains. Sci Rep. 2022;12(1):14371. https://doi.org/10.1038/s41598-022-18156-1
  127. Jung J, Maeda M, Chang A, Bhandari M, Ashapure A, Landivar-Bowles J. The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Curr Opin Biotechnol. 2021;70:15–22. https://doi.org/10.1016/j.copbio.2020.09.003
  128. Dheebakaran G, Panneerselvam S, Geethalakshmi V, Kokilavani S. Weather based automated agro advisories: an option to improve sustainability in farming under climate and weather vagaries. In: Venkatramanan V, Shah S, Prasad R, editors. Global Climate Change and Environmental Policy: Agriculture Perspectives. Springer, Singapore; 2020.p. 329–49. https://doi.org/10.1007/978-981-13-9570-3_11
  129. Bal SK, Rao KV, Chandran MS, Sasmal S, Singh VK. Weather forecast, agriculture contingency plan and agromet–advisory services for climate resilient agriculture. Indian J Agron. 2021;66:S1–S14.
  130. Schmidt C, Schindele P, Puchta H. From gene editing to genome engineering: restructuring plant chromosomes via CRISPR/Cas. aBIOTECH. 2020;1(1):21–31. https://doi.org/10.1007/s42994-019-00002-0
  131. Moon KB, Park SJ, Park JS, Lee HJ, Shin SY, Lee SM, et al. Editing of StSR4 by Cas9-RNPs confers resistance to Phytophthora infestans in potato. Front Plant Sci. 2022;13:997888. https://doi.org/10.3389/fpls.2022.997888
  132. Karlsson M, Kieu NP, Lenman M, Marttila S, Resjö S, Zahid MA, et al. CRISPR/Cas9 genome editing of potato St DMR6-1 results in plants less affected by different stress conditions. Hortic Res. 2024;11(7):uhae130. https://doi.org/10.1093/hr/uhae130
  133. Norouzi M, Nazarain-Firouzabadi F, Ismaili A, Ahmadvand R, Poormazaheri H. CRISPR/Cas StNRL1 gene knockout increases resistance to late blight and susceptibility to early blight in potato. Front Plant Sci. 2024;14:1278127. https://doi.org/10.3389/fpls.2023.1278127
  134. Chakraborty KK, Mukherjee R, Chakroborty C, Bora K. Automated recognition of optical image based potato leaf blight diseases using deep learning. Physiol Mol Plant Pathol. 2022;117:101781. https://doi.org/10.1016/j.pmpp.2021.101781
  135. Pineda MD, Miranda CI, de la Cruz RA, Guerra AL, Cuello PS, Bianchini M. A mobile app for detecting potato crop diseases. J Imaging. 2024;10(2):47. https://doi.org/10.3390/jimaging10020047
  136. Fenu G, Malloci FM, editors. Artificial intelligence technique in crop disease forecasting: A case study on potato late blight prediction. Intelligent Decision Technologies: Proceedings of the 12th KES International Conference on Intelligent Decision Technologies (KES-IDT 2020); 2020: Springer. https://doi.org/10.1007/978-981-15-5925-9_7
  137. Kool J, Evenhuis A. Early detection of Phytophthora infestans in potato plants using hyperspectral imaging, local comparison and a convolutional neural network. Smart Agric Technol. 2023;6:100333. https://doi.org/10.1016/j.atech.2023.100333
  138. Patarroyo C, Dupas S, Restrepo S. A machine learning algorithm for the automatic classification of Phytophthora infestans genotypes into clonal lineages. Appl Plant Sci. 2024;12(5):e11603. https://doi.org/10.1002/aps3.11603

Downloads

Download data is not yet available.